TD1 "Logique et langages"

Exercise 1 The *shuffle* product of two words $u, v \in \Sigma^*$ is defined as a set of words $u \parallel v$ as follows:

 $u \parallel v = \{u_0 v_0 u_1 v_1 \cdots u_n v_n \mid u_i, v_j \in \Sigma^+ \text{ for } i > 0, j \ge 0, u = u_0 u_1 \cdots u_n, v = v_0 v_1 \cdots v_n\}$

For languages $L, K \subseteq \Sigma^*$ we define $L \parallel K = \bigcup_{u \in L, v \in K} u \parallel v$.

Show that if L, K are regular, then $L \parallel K$ is regular, too.

Exercise 2 Give formulas (MSO or FO) for the following regular languages. Try to give an FO formula, if one exists - otherwise argue that no FO formula is possible.

- 1. The set of all words over $\{a, b\}$ such that there is an a at an even position.
- 2. The binary encodings of the (positive) solution of y = 5x.
- 3. $(aa+b)^*(aba)^*a^{\omega}$.

Exercise 3 What kind of properties on words can be specified by first-order logic that uses only the labeling predicates P_a ($a \in \Sigma$) and the successor as atomic predicates?

Exercise 4 Write *first-order formulas* expressing the graph properties listed below.

- The graph is complete.
- The graph contains a clique of size 4.
- Every vertex is connected to a vertex of out-degree 3.

Exercise 5 Write formulas of *existential second-order logic* $(\exists SO)$ expressing the graph properties listed below.

- The graph is bipartite.
- The graph is strongly connected.
- The graph is colorable with 3 colors.
- The graph contains a clique of size |U|. Here U is a subset of nodes of G, and it is described by an (additional) unary predicate U(x).
- The graph contains a hamiltonian cycle.