Logic, automata and languages – Master 2, Univ. Bordeaux, 2016/17

Contents

- Anca Muscholl: Logic on graphs and trees.
- Marc Zeitoun: Logic and algebra on words, Presburger logic.

References:

- L. Libkin, Elements of finite model theory. Springer 2004.
- W. Thomas, Languages, automata and logic. Chapter in Handbook of Formal Languages, Springer 1997.

LOGIC IN DATABASES

- In relational databases we use the relational calculus (cf. SQL): first-order predicate calculus over relational structures.
- Query: select elements of a database with a given property.
- Query equivalence: determine if two SQL queries return the same results.

Logic in Program Verification

- A program is modelled by a transition system (Kripke structure), a property (specification) in some logic, e.g. temporal logic, first-order logic, etc.
- Proof systems (cf. Coq): semi-automatic way to show the validity of program properties.
- Model-checking method (cf. Spin, nu-SMV, ...): check whether all
 executions of the program satisfy a given specification. Fully automatic
 procedure.

RELATED TOPICS

- Descriptive complexity theory. Deals with expressivity of logics. Logics that capture complexity classes.
- Algorithmic complexity. Deals with the complexity of reasoning tasks such as satisfiability and model-checking. Fine analysis of parameters that influence the complexity.
- Game theory. Game formulation of problems such as model-checking.
- Automata theory. Tight relation to logics in terms of expressivity.

SYNTAX

Vocabulary σ : constant symbols (c_1, c_2, \ldots) , predicates (P_1, P_2, \ldots) , functions (f_1, f_2, \ldots) . Each relational/functional symbol has an associated arity $(\rho(P), \rho(f))$.

Terms and formulas over σ are defined inductively:

- A term is either a variable, or a constant, or an expression $f(t_1,\ldots,t_n)$, where t_i are terms.
- A formula has one of the forms: $t_1 = t_2$ (t_i terms), $P(t_1, \ldots, t_n)$ (P is k-ary relation, t_i terms), $\varphi_1 \vee \varphi_2$, $\neg \varphi$, $\exists x . \phi$.

Free variables of a term t or formula φ : free(t), free (φ) .

SEMANTICS

- σ -structure (or model): $\mathfrak{A} = \langle A, \{c_i^{\mathfrak{A}}\}, \{P_i^{\mathfrak{A}}\}, \{f_i^{\mathfrak{A}}\} \rangle$ with universe A, $c_i^{\mathfrak{A}} \in A$, $P_i^{\mathfrak{A}} \subset A^{\rho(P_i)}$, $f_i^{\mathfrak{A}} : A^{\rho(f_i)} \to A$.
- Each term $t(x_1,\ldots,x_n)$ defines, for each tuple of values $\vec{a}=(a_1,\ldots,a_n)\in A^n$, a value $t^{\mathfrak{A}}(a_1,\ldots,a_n)$.
- For every formula $\varphi(x_1,\ldots,x_n)$, for every tuple of values $\vec{a}=(a_1,\ldots,a_n)\in A^n$, define the satisfaction relation $\mathfrak{A}\vDash \varphi(a_1,\ldots,a_n)$.

EXAMPLES

• Vocabulary σ : $(P_a)_{a \in \Sigma}$, succ, <. Each P_a is a unary predicate, and succ, < are binary predicates.

```
Finite words as \sigma-structures: w = \langle [n] := \{1, \ldots, n\}, (P_a)_{a \in \Sigma}, \mathsf{succ}, < \rangle with P_a = \{k \in [n] \mid \mathsf{the}\ k\text{-th letter is } a\}. Infinite words w = \langle \mathbb{N}, (P_a)_{a \in \Sigma}, \mathsf{succ}, < \rangle.
```

• Vocabulary σ : $(P_a)_{a \in \Sigma}$, left, right, <. Predicates left, right, < are binary.

```
Finite labelled binary trees as \sigma-structures: t = \langle D, (P_a)_{a \in \Sigma}, \text{left}, \text{right}, < \rangle. Domain D is a (finite) prefix-closed subset of \{0,1\}^*, left, right : D \to D with left(x) = x0, right(x) = x1 and x < y if x is prefix of y. Infinite labelled binary trees: D = \{0,1\}^*.
```

• Vocabulary σ : $(P_a)_{a \in \Sigma}$, E binary predicate.

Labelled graphs as σ -structures: P_a node labelings, E edge relation.

QUESTIONS

Model-Checking Problem

Given a model $\mathfrak A$ and a formula φ : does $\mathfrak A \vDash \varphi$ hold?

Satisfiability problem

Given a formula φ , is there some model $\mathfrak A$ with $\mathfrak A \vDash \varphi$?

Expressivity

Given a logic \mathcal{L} and a formula φ , is there some equivalent formula φ' from \mathcal{L} ?

REMARK

We are interested in finite models ("finite model theory").

PLAN

1 First-order logic

2 Second-order logic

FIRST-ORDER AND SECOND-ORDER LOGIC

FIRST-ORDER LOGIC (FO)

Variables are interpreted over elements of the structure.

Expressivity

As we will see, first-order logic is rather weak. So it is interesting to extend it, e.g. to second-order logic, or by adding fixpoints, etc

SECOND-ORDER LOGIC (SO), MONADIC SECOND-ORDER LOGIC (MSO)

- SO: add second-order variables, interpreted as relations over the universe
 A.
- MSO logic: restriction of SO where second-order variables are subsets of A (relations of arity 1).

EXAMPLES

Words containing factor ab (FO formula):

$$\exists x (a(x) \land b(x+1))$$

Here: a(x) instead of $P_a(x)$, and x + 1 shorthand for succ:

$$\exists x \, \exists y \, (a(x) \land b(y) \land \mathsf{succ}(x,y))$$

Words of even length (SO formula):

$$\exists X_0 \ \exists X_1 \qquad \left(\mathsf{Partition}(X_0, X_1) \land \mathsf{min} \in X_0 \land \mathsf{max} \in X_1 \land \\ \forall x \left(x \in X_0 \Leftrightarrow x + 1 \in X_1 \right) \right)$$

Graphs of minimal out-degree 2 (FO formula):

$$\forall x \,\exists y \,\exists z \; (y \neq z \land (x, y) \in E \land (x, z) \in E)$$

• (Dis)connected graphs (SO formula):

$$\exists X\exists Y \qquad \left(X \neq \emptyset \land Y \neq \emptyset \land \mathsf{Partition}(X,Y) \land \\ \forall x \forall y \left((x,y) \in E \to \left((x \in X \land y \in X) \lor (x \in Y \land y \in Y)\right)\right)\right)$$

Model-Checking first-order logic

Model-Checking Problem

- Given structure $\mathfrak A$ and (closed) formula φ , check if $\mathfrak A \models \varphi$.
- Query evaluation problem: given structure $\mathfrak A$ and formula $\varphi(\vec x)$ with k free variables, compute $\{\vec a\in A^k\mid \mathfrak A\models \varphi(\vec a)\}.$
- Measuring complexity: combined complexity if \mathfrak{A}, φ both given as input, and data complexity if φ is fixed.

Model-Checking game

- Two players: Verifier (or player P_0) and Falsifier (player P_1). Verifier tries to establish that $\mathfrak{A} \models \varphi(\vec{a})$, Falsifier has the opposite goal.
- Formula $\varphi(\vec{x})$ is in negation normal form (negations only at atoms).
- Game positions: (ψ, ρ) with ψ subformula of φ and ρ : free $(\psi) \to A$. Write $\psi(\vec{b})$ instead of (ψ, ρ) , where ρ maps free (ψ) to \vec{b} .
- Initial game position: $\varphi(\vec{a})$.

Model-Checking FO

Model-Checking game

- Verifier moves at positions $\psi(\vec{b})$ where either $\psi=\psi_1\vee\psi_2$ or $\psi=\exists x\,.\chi$. From $\psi=\psi_1\vee\psi_2$ she goes either to ψ_1 or to ψ_2 . From $\exists x\,.\chi(\vec{b})$ she chooses $a\in A$ and goes to $\chi(\vec{b},a)$.
- Falsifier moves at positions $\psi(\vec{b})$ where either $\psi=\psi_1\wedge\psi_2$ or $\psi=\forall x\,.\chi$, making the dual moves.
- Positions corresponding to (negated) atoms $\psi(\vec{b})$ are final: they are winning for Verifier iff $\mathfrak{A} \models \psi(\vec{b})$.

Тнм.

Verifier has a winning strategy iff $\mathfrak{A} \models \varphi(\vec{a})$.

ALCORITHM

The model-checking game can be solved in time linear in the size of the game arena, thus in exponential time (combined complexity: polynomial space, data complexity: polynomial time).

EHRENFEUCHT-FRAÏSSÉ GAMES

Method for exploring limits of expressivity of various logics.

EF GAME ON FINITE WORDS OVER $\Sigma = \{c\}$ FOR FO(<).

FO(<): built from the atomic formulas x < y, x = y, $\min(x)$, $\max(x)$, using $\lor, \land, \lnot, \exists, \forall$.

- Given finite words w_0, w_1 . Let 0 be the first position of w_i and N_i the last position.
- Players: Spoiler and Duplicator.
- ullet Play k rounds. In each round, Spoiler picks a position either in w_0 or in w_1 ; Duplicator answers by choosing a position in the other word.
- Let a_1, \ldots, a_k (resp. b_1, \ldots, b_k) be the positions chosen in w_0 (resp. w_1).
- Duplicator wins if the mapping $\{a_i \to b_i \mid 1 \le i \le k\}$ is a partial isomorphism: for all $1 \le i, j \le k$,
 - \bullet $a_i = 0$ iff $b_i = 0$, and $a_i = N_0$ iff $b_i = N_1$
 - $a_i = a_j \text{ iff } b_i = b_j$

Prop.

If $\min(|w_0|, |w_1|) > 2^k$ then Duplicator wins the k-round EF game on w_0, w_1 .

Proof

Duplicator plays in such a way that after i rounds the following holds for all 0 < j, l < i + 1 (with $a_0 = b_0 = 0$, $a_{i+1} = N_0$, $b_{i+1} = N_1$):

- $a_i < a_l$ iff $b_i < b_l$,
- $|a_i a_l| > 2^{k-i}$ iff $|b_i b_l| > 2^{k-i}$,
- if $|a_i a_l| < 2^{k-i}$ then $|a_i a_l| = |b_i b_l|$.

EXAMPLE

Words $w_0 = cccc$, $w_1 = ccc$: Spoiler wins the 2-round game. Spoiler starts on the left word:

$$cccc$$
 ccc

Proof

Duplicator plays in such a way that after i rounds the following holds for all 0 < j, l < i + 1 (with $a_0 = b_0 = 0$, $a_{i+1} = N_0$, $b_{i+1} = N_1$):

- $a_i < a_l$ iff $b_i < b_l$,
- $|a_i a_l| > 2^{k-i}$ iff $|b_i b_l| > 2^{k-i}$,
- if $|a_i a_l| < 2^{k-i}$ then $|a_i a_l| = |b_i b_l|$.

EXAMPLE

Words $w_0 = cccc$, $w_1 = ccc$: Spoiler wins the 2-round game. Spoiler starts on the left word:

EHRENFEUCHT-FRAÏSSÉ GAMES ON FINITE WORDS

Proof

Duplicator plays in such a way that after i rounds the following holds for all $0 \le j, l \le i+1$ (with $a_0=b_0=0$, $a_{i+1}=N_0$, $b_{i+1}=N_1$):

- $a_i < a_l$ iff $b_i < b_l$,
- $|a_i a_l| \ge 2^{k-i}$ iff $|b_i b_l| \ge 2^{k-i}$,
- if $|a_j a_l| < 2^{k-i}$ then $|a_j a_l| = |b_j b_l|$.

EXAMPLE

Words $w_0 = cccc$, $w_1 = ccc$: Spoiler wins the 2-round game. Spoiler starts on the left word; Duplicator responds on the right one.

Proof

Duplicator plays in such a way that after i rounds the following holds for all 0 < j, l < i + 1 (with $a_0 = b_0 = 0$, $a_{i+1} = N_0$, $b_{i+1} = N_1$):

- $a_i < a_l$ iff $b_i < b_l$,
- $|a_i a_l| \ge 2^{k-i}$ iff $|b_i b_l| \ge 2^{k-i}$,
- if $|a_i a_l| < 2^{k-i}$ then $|a_i a_l| = |b_i b_l|$.

EXAMPLE

Words $w_0 = cccc$, $w_1 = ccc$: Spoiler wins the 2-round game. Spoiler starts on the left word; Duplicator responds on the right one.

$$c c c c$$
 $c c$

Spoiler replays $a_2 = 1$ on the left word.

Proof

Duplicator plays in such a way that after i rounds the following holds for all $0 \le j, l \le i+1$ (with $a_0 = b_0 = 0, a_{i+1} = N_0, b_{i+1} = N_1$):

- $a_i < a_l$ iff $b_i < b_l$,
- $|a_i a_l| \ge 2^{k-i}$ iff $|b_i b_l| \ge 2^{k-i}$,
- if $|a_i a_l| < 2^{k-i}$ then $|a_i a_l| = |b_i b_l|$.

EXAMPLE

Words $w_0 = cccc$, $w_1 = ccc$: Spoiler wins the 2-round game. Spoiler starts on the left word; Duplicator responds on the right one.

Spoiler replays $a_2 = 1$ on the left word. If Duplicator chooses $b_2 = 0$ she looses because $a_2 \neq 0$. If Duplicator chooses $b_2 = 1$ she looses because $a_2 \neq a_1$.

Proof

Duplicator plays in such a way that after i rounds the following holds for all $0 \le j, l \le i+1$ (with $a_0 = b_0 = 0$, $a_{i+1} = N_0$, $b_{i+1} = N_1$):

- $a_i < a_l$ iff $b_i < b_l$,
- $|a_i a_l| \ge 2^{k-i}$ iff $|b_i b_l| \ge 2^{k-i}$,
- if $|a_i a_l| < 2^{k-i}$ then $|a_i a_l| = |b_i b_l|$.

EXAMPLE

Words $w_0 = cccc$, $w_1 = ccc$: Spoiler wins the 2-round game. Spoiler starts on the left word; Duplicator responds on the right one.

$$c \cdot c \cdot c \cdot c$$

$$c$$
 c c c c c

Spoiler replays $a_2 = 1$ on the left word. If Duplicator chooses $b_2 = 0$ she looses because $a_2 \neq 0$. If Duplicator chooses $b_2 = 1$ she looses because $a_2 \neq a_1$.

Spoiler looses in 2 rounds on $w_0 = c^5$, $w_1 = c^6$.

EHRENFEUCHT-FRAÏSSÉ GAMES ON FINITE WORDS

OTHER VARIANTS

Each EF-game depends on the logic under consideration. If we add to FO(<) e.g. the predicates P_a ($a \in \Sigma$) and succ, then we add also (for all i,j):

- **①** The labels of positions a_i, b_i , are the same.
- $|a_i a_j| = 1$ iff $|b_i b_j| = 1$

EXAMPLES

• Let $w_0 = aabaacaa$, $w_1 = aacaabaa$. Spoiler wins the 2-round game for $\mathsf{FO}(<)$ by choosing the b,c positions in w_0 . Note: w_0,w_1 are distinguished by the $\mathsf{FO}(<)$ formula

$$\exists x \, \exists y \, .(b(x) \land c(y) \land x < y)$$

• Let $w_0 = aabaacaa$, $w_1 = aacaabaa$ and consider the 2-round game for FO(succ) (no linear order). In this game, Duplicator wins: if Spoiler chooses the first/last position, Duplicator does the same. And if Spoiler chooses b, c or one of their neighbors, Duplicator does the same again. But 3 rounds are won by Spoiler (assuming that we have min or max in our vocabulary). A FO(succ) formula distinguishing w_0, w_1 :

$$\exists x\,\exists y\,\exists z\;.(\mathsf{succ}(x,y)\land\mathsf{succ}(y,z)\land\mathsf{max}(z)\land c(x))$$

EF GAME FOR GRAPHS

- Given: 2 graphs G_0, G_1 ; $G_i = (V_i, E_i)$.
- Players: Spoiler and Duplicator.
- k rounds. In each round, Spoiler chooses a graph and a node in that graph. Duplicator answers by choosing a node in the other graph. Let a_1, \ldots, a_k (resp. b_1, \ldots, b_k) be the nodes chosen in G_0 (resp. G_1).
- Duplicator wins if for all $1 \le i, j \le k$: (1) $a_i = a_j$ iff $b_i = b_j$ and (2) $(a_i, a_j) \in E_0$ iff $(b_i, b_j) \in E_1$.

EF GAME FOR GRAPHS

- Given: 2 graphs G_0, G_1 ; $G_i = (V_i, E_i)$.
- Players: Spoiler and Duplicator.
- k rounds. In each round, Spoiler chooses a graph and a node in that graph. Duplicator answers by choosing a node in the other graph. Let a_1, \ldots, a_k (resp. b_1, \ldots, b_k) be the nodes chosen in G_0 (resp. G_1).
- Duplicator wins if for all $1 \le i, j \le k$: (1) $a_i = a_j$ iff $b_i = b_j$ and (2) $(a_i, a_j) \in E_0$ iff $(b_i, b_j) \in E_1$.

QUANTIFIER RANK

Measures the nesting of quantifiers in a FO formula. Denote by FO[k] the set of FO-formulas of quantifier rank at most k.

Examples: $A(x) \vee B(y)$ is an FO[0] formula, $\exists x \forall y (A(x) \rightarrow (B(y) \land (x,y) \in E))$ is an FO[2] formula.

NOTATIONS

The formula φ below and the vectors of nodes \vec{a}, \vec{b} are such that the number of free variables of φ equals the length of \vec{a} and the length of \vec{b} .

• Assume that \vec{a} (\vec{b} , resp.) is a vector of nodes in G_0 (G_1 , resp.). Write $(G_0, \vec{a}) \equiv_k (G_1, \vec{b})$ if for all formulas $\varphi \in \mathsf{FO}[k]$:

$$G_0 \vDash \varphi(\vec{a}) \quad \Leftrightarrow \quad G_1 \vDash \varphi(\vec{b})$$

• EF-game played on (G_0, \vec{a}) and (G_1, \vec{b}) : as before, with predefined values \vec{a}, \vec{b} .

NOTATIONS

The formula φ below and the vectors of nodes \vec{a}, \vec{b} are such that the number of free variables of φ equals the length of \vec{a} and the length of \vec{b} .

• Assume that \vec{a} (\vec{b} , resp.) is a vector of nodes in G_0 (G_1 , resp.). Write $(G_0, \vec{a}) \equiv_k (G_1, \vec{b})$ if for all formulas $\varphi \in \mathsf{FO}[k]$:

$$G_0 \vDash \varphi(\vec{a}) \quad \Leftrightarrow \quad G_1 \vDash \varphi(\vec{b})$$

• EF-game played on (G_0, \vec{a}) and (G_1, \vec{b}) : as before, with predefined values \vec{a}, \vec{b} .

Thm. (Ehrenfeucht-Fraïssé)

The following is equivalent:

- \bigcirc $G_0 \equiv_k G_1$
- **Outplicator** wins the k-round EF-game on G_0, G_1 .

NOTATIONS

The formula φ below and the vectors of nodes \vec{a}, \vec{b} are such that the number of free variables of φ equals the length of \vec{a} and the length of \vec{b} .

• Assume that \vec{a} (\vec{b} , resp.) is a vector of nodes in G_0 (G_1 , resp.). Write $(G_0, \vec{a}) \equiv_k (G_1, \vec{b})$ if for all formulas $\varphi \in \mathsf{FO}[k]$:

$$G_0 \vDash \varphi(\vec{a}) \quad \Leftrightarrow \quad G_1 \vDash \varphi(\vec{b})$$

• EF-game played on (G_0, \vec{a}) and (G_1, \vec{b}) : as before, with predefined values \vec{a}, \vec{b} .

Thm. (Ehrenfeucht-Fraïssé)

The following is equivalent:

- $(G_0, \vec{a}) \equiv_k (G_1, \vec{b})$
- **2** Duplicator wins the k-round EF-game on $(G_0, \vec{a}), (G_1, \vec{b})$.

How Duplicator wins k rounds

- Partial isomorphism from $(G_0, \vec{c}), (G_1, \vec{d})$: each c_i maps to the corresponding d_i , and the mapping respects all atomic relations (labels, edges etc).
- Duplicator wins k rounds on $(G_0,\vec{a}),(G_1,\vec{b})$ iff there exist non-empty sets I_k,I_{k-1},\ldots,I_0 of partial isomorphisms s.t.:
 - **()** all partial isomorphisms extend $\vec{a} \mapsto \vec{b}$,
 - (forward property) for all $F \in I_j$, for every node a in G_0 there exists a node b in G_1 s.t. $F \cup \{a \mapsto b\} \in I_{j-1}$.
 - ② (backward property) for all $\vec{F} \in I_j$, for every node b in G_1 there exists a node a in G_0 s.t. $F \cup \{a \mapsto b\} \in I_{j-1}$.

Proof

- If Duplicator wins k rounds on $(G_0, \vec{a}), (G_1, \vec{b})$, then it follows by induction (on k) that $(G_0, \vec{a}) \equiv_k (G_1, \vec{b})$.
- ② Fix (G_0, \vec{a}) . We define a FO[k] formula $\varphi_{G_0, \vec{a}}$ that holds for exactly those (G_1, \vec{b}) such that Duplicator wins k rounds on $(G_0, \vec{a}), (G_1, \vec{b})$:
 - $\varphi^0_{G_0, \vec{a}}(\vec{x})$ is the conjunction of all atoms $\psi(\vec{x})$ where $(G_0, \vec{a}) \vDash \psi(\vec{x})$, and all negated atoms $\neg \psi(\vec{x})$ where $(G_0, \vec{a}) \not\vDash \psi(\vec{x})$.
 - $\bullet \ \varphi_{G_0,\vec{a}}^{j+1}(\vec{x}) = \bigwedge_{c \in V(G_0)} \exists y \, . \varphi_{G_0,\vec{a},c}^j(\vec{x},y) \land \forall y \, . \bigvee_{d \in V(G_0)} \varphi_{G_0,\vec{a},d}^j(\vec{x},y)$

First-order logic FO(E) on finite graphs

$\{c^n \mid n \text{ is even}\}$ is not FO-definable

Apply EF and recall that Duplicator wins on c^{2^k} , c^{2^k+1} .

CONNECTIVITY

Deduce that "graph connectivity" is not expressible in FO(E):

Given a word w over $\Sigma = \{c\}$ "build" a directed graph G(w) as follows.

- The set of vertices is the set $\{0,\ldots,|w|-1\}$ of positions in w.
- ullet There is en edge from i to j if
 - either i = i + 2, or
 - i = |w| 2, j = 0, or
 - i = |w| 1, j = 1 holds.

Observe that |w| is odd iff G(w) is connected.

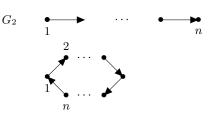
Suppose that connectivity is expressed by an FO(E) formula φ . The formula obtained from φ by replacing each atomic formula E(x,y) by

$$y = x + 2 \lor (x = \max -1 \land y = \min) \lor (x = \max \land y = \min +1)$$

says that |w| is odd. Thus, we get a contradiction.

Example: FO[E] cannot express "graph acyclicity"

 G_1 \longrightarrow \cdots \longrightarrow 2n



EF-GAME

- a_1, \ldots, a_k resp. b_1, \ldots, b_k : nodes chosen by Spoiler and Duplicator.
- d(c,c') = distance between nodes c,c':

$$d(c,c') \in \mathbb{N} \cup \{\infty\}$$
.

- Invariant after i rounds:

 - $d(a_i, a_l) > 2^{k-i}$ implies $d(b_i, b_l) > 2^{k-i}$.
- The invariant can be preserved if n is sufficiently large (compared to k).

Local neighborhoods

Consider only graphs of bounded degree, say d.

• Let $G=(V,E), \ v\in V$, and r an integer. The neighborhood $B_r^G(v)$ around v of radius r is the subgraph induced by all w that are connected to v via a path in $E\cup E^{-1}$ of length at most r.

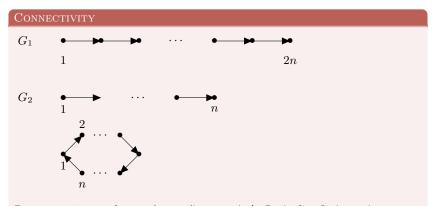
$$B_0^G(v) = \{v\}, \ B_1^G(v) = \{w \mid (u,v) \in E \text{ or } (v,u) \in E\} \cup \{v\}, \ \dots$$

- Since the degree is bounded, the number of different $B_r^G(v)$ is finite. We refer to each $B_r^G(v)$ up to isomorphism, as a type.
- For a type t, let occ(G, t) be the number of occurrences of type t neighborhoods in G.
- Fix some integers r,m and let G,G' be graphs. We define $G\sim_{r,m}G'$ if for every type t of neighborhoods of radius r, either both $\operatorname{occ}(G,t)$ and $\operatorname{occ}(G',t)$ are larger than m, or they are equal.

HANF-LOCALITY (HANF '65)

For every k there exist r, m such that for any graphs G, G' of degree at most d, we have: $G \sim_{r,m} G'$ implies $G \equiv_k G'$.

Equivalent formulation: any FO-definable set of graphs of bounded degree is locally threshold testable.



For r=1: 3 types (source/target/inner nodes). Both G_1 , G_2 have the same $\operatorname{occ}(G_i,t)$, for every type t. Thus, no $\operatorname{FO}[E]$ -formula of quantifier rank 1 can distinguish them. Similarly for r>1 (for large enough n).

HANF: APPLICATION

Prop.

Over words, every formula of FO[succ] is equivalent to a disjunction of conjunctions of properties of the following form:

- ullet the word w starts with prefix p,
- the word w ends with suffix s,
- ullet the factor f occurs in w at least (at most) m times.

Proof

We apply Hanf's theorem (d=2). Let φ be a formula of FO[succ] of quantifier rank k. There exist r,m such that $L(\varphi)$ is a union of $\sim_{r,m}$ -classes. But $w\sim_{r,m}w'$ is equivalent to a conjunction of conditions as above, with words p,s of length r+1, f of length r+1. Such languages are called locally threshold testable.

HANF LOCALITY (BOUNDED DEGREE GRAPHS)

Proof

Let $r=3^k, m=k\cdot s$ with $s=d^{r+1}$ (maximal size of neighborhood of radius r). We show that $G\sim_{r,m}G'$ implies that Duplicator has a winning strategy for k rounds.

Define sets $I_k,\ldots I_0$ of partial isomorphisms. For $j=k,\ldots,0$ let $(a_1,\ldots,a_{k-j})\mapsto (b_1,\ldots,b_{k-j})$ belong to I_j if the graph consisting of the union of neighborhoods of radius 3^j around the a_i is isomorphic to the graph consisting of the union of neighborhoods of radius 3^j around the b_i (with (a_1,\ldots,a_{k-j}) mapped to (b_1,\ldots,b_{k-j})).

Check the "forward property": assume the a is chosen in G.

- If for some $1 \le i \le (k-j)$ we have $d(a,a_i) \le \frac{2}{3} \cdot 3^j$ then $B_{3^j-1}^G(a) \subseteq B_{3^j}^G(a_i)$ and we choose b in G' as the image of a in $B_{3^j}^{G'}(b_i)$.
- ② Else, $B_{3^j-1}^G(a)$ is disjoint from all $B_{3^j-1}^G(a_i)$. It suffices to find a neighborhood in G' of same type as $B_{3^j-1}^G(a)$, disjoint from all $B_{3^j-1}^{G'}(b_i)$. This is possible if there are enough neighborhoods of each type, which is ensured by the choice of m.

HANF LOCALITY: GENERAL VERSION

Fix an integer r > 0.

- For arbitrary graphs G, G' define $G \sim_r G'$ if there exists a bijection $f: V \to V'$ s.t. $B_r^G(v)$ and $B_r^{G'}(f(v))$ are isomorphic, for all $v \in V$.
- If \vec{a} are vertices in V and \vec{b} vertices in V', then define $(G, \vec{a}) \sim_r (G', \vec{b})$ if there exists a bijection $f: V \to V'$ s.t. $B_r^G(\vec{a}, v)$ and $B_r^{G'}(\vec{b}, f(v))$ are isomorphic, for all $v \in V$.

HANF'S THEOREM

For every k there exists r such that $G \sim_r G'$ implies $G \equiv_k G'$.

Proof.

Induction over the quantifier rank k. Set $r = 3^k$.

For k=0, $(G,\vec{a})\sim_1(G',\vec{b})$ means in particular that \vec{a} and \vec{b} satisfy the same atomic formulas, so $G,\vec{a}\equiv_0G',\vec{b}$.

For k>0 let $G, \vec{a} \sim_{3k+1} G', \vec{b}$. Assume that $G, \vec{a} \vDash \varphi(\vec{x})$ with φ of quantifier rank k+1. The formula $\varphi(\vec{x})$ is a Boolean combination of formulas $\exists y. \ \psi(\vec{x},y)$, with ψ of rank k.

 $G, \vec{a} \vDash \exists y. \, \psi(\vec{x}, y)$ iff there exists $c \in V$ such that $G, \vec{a}, c \vDash \psi(\vec{x}, y)$. But $G, \vec{a} \sim_{3^k + 1} G', \vec{b}$ implies $G, \vec{a}, c \sim_{3^k} G', \vec{b}, d$ for some suitable d (see proof for bounded degree). By induction, $G', \vec{b}, d \vDash \psi(\vec{x}, y)$, therefore $G', \vec{b} \vDash \varphi(\vec{x})$.

Gaifman's theorem

Local formulas

• Formula $\varphi(x_1,\ldots,x_k)$ is r-local if it uses only quantification restricted to $B_r^G(x_1,\ldots,x_k)$.

Thm. (Gaifman)

For every FO formula $\varphi(x_1,\ldots,x_k)$ there is some integer r>0 such that φ is a Boolean combination of

- r-local formulas of the form $\psi(x_1,\ldots,x_k)$,
- sentences of the form

$$\exists y_1, \ldots, y_n \left(\bigwedge_i \chi(y_i) \wedge \bigwedge_{i < j} d^{>2r}(y_i, y_j) \right)$$

where each χ is r-local and $d^{>2r}(y_i,y_j)$ means that y_i,y_j are at least 2r+1 far from each other.

PLAN

1 First-order logic

2 Second-order logic

SECOND-ORDER LOGIC (SO)

Countable set of variables $(x,y,\ldots$ first-order, X,Y,\ldots second-order). We define terms and formulas:

- Each variable, each constant is a term.
- Atomic formulas:
 - FO atomic formulas: t = t', $P(t_1, ..., t_k)$ (t, t') terms, P predicate)
 - ullet $X(t_1,\ldots,t_k)$ with t_i terms, X second-order variable
- if $\varphi, \varphi_1, \varphi_2$ are formulas then $\varphi_1 \vee \varphi_2$, $\neg \varphi$ are formulas.
- If φ is a formula then $\exists x . \varphi$, $\exists X . \varphi$ is a formula.

SEMANTICS

For each formula $\varphi(\vec{x}, \vec{X})$ we define $\mathfrak{A}, \vec{b}, \vec{B} \models \varphi \colon \vec{b}$ is a tuple of elements of the universe A of the same length as \vec{x} ; $\vec{B} = (B_1, \ldots, B_k)$ with $B_i \subseteq A^{n_i}$ if X_i is of arity n_i .

Example: $\mathfrak{A}, \vec{b}, B \models X(t_1, \dots, t_k)$ (with free variables of t_i among \vec{x}) if the tuple $(t_1^{\mathfrak{A}}(\vec{b}), \dots, t_k^{\mathfrak{A}}(\vec{b}))$ belongs to B.

Monadic second-order logic (MSO)

Restriction of SO where all second-order variables have arity 1 (ie., sets). Notation: X(x), or equivalently $x \in X$.

EXISTENTIAL/UNIVERSAL SO

• Every SO formula can be rewritten into prenex normal form:

$$Q_1X_1 \ldots Q_mX_m \ Q_1'x_1 \ldots Q_n'x_n \ \varphi(X_1,\ldots,X_m,x_1,\ldots,x_n)$$

 $(Q_i,Q_j'$ quantifiers, φ is quantifier-free)

Existential SO logic (∃SO):

$$\exists X_1 \ldots \exists X_m \ \varphi(X_1,\ldots,X_m)$$

(φ has no further second-order quantification)

Universal SO logic (∀SO): ∃ replaced by ∀.

EXAMPLES

- REACHABILITY is ∀MSO-definable and ∃SO-definable
- 3-COL is ∃MSO-definable
- CLIQUE and HAMILTONICITY are ∃SO-definable

Monadic second-order logic

MSO-games

- Given: 2 graphs G_0, G_1 ; $G_i = (V_i, E_i)$.
- Players: Spoiler and Duplicator.
- k rounds. In each round, two possible kinds of moves:
 - Spoiler chooses a graph and a node in that graph. Duplicator answers by choosing a node in the other graph.
 - Spoiler chooses a graph and a subset of nodes in that graph. Duplicator answers by choosing a subset of nodes in the other graph.

Let a_1, \ldots, a_m (resp. b_1, \ldots, b_m) be the nodes chosen in G_0 (resp. G_1), and A_1, \ldots, A_n (resp. B_1, \ldots, B_n) be the sets of nodes chosen in G_0 (resp. G_1).

- Duplicator wins if for all $1 \le i, j \le m$, $1 \le p \le n$:

 - $(a_i, a_j) \in E_0 \text{ iff } (b_i, b_j) \in E_1,$
 - $a_i \in A_p \text{ iff } b_i \in B_p.$

Monadic second-order logic

NOTATIONS

- MSO[k]: MSO (monadic SO) formulas of quantifier rank k.
- Let G_0, G_1 be graphs. For MSO[k] formulas with free variables \vec{x}, \vec{X} : let \vec{a} $(\vec{b}$ resp.) be a vector of nodes in G_0 $(G_1$, resp.) and \vec{A} $(\vec{B}$, resp.) be a vector of subsets of nodes in G_0 $(G_1$, resp.).

Write $(G_0, \vec{a}, \vec{A}) \equiv_k (G_1, \vec{b}, \vec{B})$ if for all $\varphi \in \mathsf{MSO}[k]$:

$$G_0 \vDash \varphi(\vec{a}, \vec{A}) \quad \Leftrightarrow \quad G_1 \vDash \varphi(\vec{b}, \vec{B})$$

Тнм.

The following are equivalent:

- $(G_0, \vec{a}, \vec{A}) \equiv_k (G_1, \vec{b}, \vec{B})$
- ullet Duplicator has a winning strategy in the k round MSO-game.

Complexity of MSO

MSO OVER WORDS AND TREES

- Data complexity of model-checking MSO over words or trees is solvable in linear time (Büchi's theorem). Combined complexity is solvable in polynomial space.
- Satisfiability of MSO over words or trees is solvable in non-elementary time ($\geq 2^{2}$ for every n).

"Tree-like" graphs: bounded tree-width

An undirected graph G=(V,E) has tree-width k if there is some tree T with nodes labeled by subsets of V of size at most k+1, such that:

- ullet For each edge uv of G, there is some node in T with label containing both u and v.
- ullet For each node v of G, the set of nodes of T with labels containing v, is connected.

Courcelle's theorem

Data complexity of (model-checking) MSO over graphs of fixed tree-width is solvable in linear time. Combined complexity is solvable in PSPACE.

FAGIN'S THEOREM

 $\exists SO = NP.$

Proof

- ① Upper bound: given a graph G and an $\exists SO$ formula $\exists S. \varphi$, with φ first-order model-checking $G \vDash \varphi$ is in NP: guess S and recall that data complexity of FO model-checking is in P.
- ② Lower bound: start with any NP-complete graph problem. Express in FO that a binary relation L is linear order on the set of vertices $\{0,\ldots,n-1\}$:
 - $\forall x, y, z : L(x, x) \land (L(x, y) \land L(y, z) \rightarrow L(x, z))$ (reflexive, transitive)
 - $\forall x, y : L(x, y) \lor L(y, x)$ (total)
 - $\forall x, y : L(x, y) \land L(y, x) \rightarrow x = y$ (anti-symmetric)

Use L for describing the successor relation on $\{0,\ldots,n-1\}^k$ (integers in basis n, ranging from 0 to n^k-1). Encode then the proof of Cook's theorem.