Permutation Rewriting and Algorithmic Verification *

Ahmed Bouajjani', Anca Muscholl!, and Tayssir Touili?

L LIAFA, University of Paris 7, 2 place Jussieu, 75251 Paris cedex 5, France.
email: {abou, anca}@liafa.jussieu.fr

2 School of Comput. Sci., Carnegie Mellon University, Pittsburgh, PA 15213, USA.
email: tayssirt@cs.cmu.edu

Abstract. We propose a natural subclass of regular languages (Alphabetic Pattern
Constraints, APC) which is effectively closed under permutation rewriting, i.e., under
iterative application of rules of the form ab — ba. It is well-known that regular languages
do not have this closure property, in general. Our result can be applied for example
to reqular model checking, for verifying properties of parametrized linear networks of
regular processes, and for modeling and verifying properties of asynchronous distributed
systems.

We also consider the complexity of testing membership in APC and show that the ques-
tion is complete for PSPACE when the input is an NFA, and complete for NLOGSPACE
when it is a DFA. Moreover, we show that both the inclusion problem and the question
of closure under permutation rewriting are PSPACE-complete when we restrict to the
class APC.

1 Introduction

Regular languages in their various representations (finite state automata, regular ex-
pressions, monadic second order logics, temporal logics, etc) are extensively used for
modeling and verifying properties of concurrent systems. The main reason is that reg-
ular languages enjoy important closure and decidability properties. They can model
behaviors of systems in form of sets of computational sequences, often modulo some
abstraction relation [7, 17, 30]. Furthermore, regular model checking has been proposed
recently as a generic (automata/regular languages) based technique for symbolic veri-
fication of infinite state systems such as pushdown automata, fifo-channel systems, and
parametrized networks of processes, see e.g. [2,4-6, 13, 25, 31]. A fundamental problem
which arises in these areas is then the following one: Given a regular language L and
a relation R on sequences (represented either by a finite transducer or by a rewriting
system), compute — if possible — the set R*(L), i.e., the R-closure of L (R* denotes
the reflexive-transitive closure of R). Since unrestricted rewriting systems have the
computational power of Turing machines, we must impose restrictions on the rewrit-
ing rules and on the regular languages we consider, in order to be able to compute the
R-closure. In this paper we focus on permutation rewriting rules of the form ab — ba,
where a,b are letters of a given alphabet Y. Such rewriting rules are usually called
semi-commutation rules in Mazurkiewicz trace theory [8]. However, semi-commutation
rewriting does not preserve regularity in general. To see that, it suffices to consider the
closure of the language (ab)* under the semi-commutation rule ab — ba. Therefore,

* An earlier version of this article was presented at the 16th Annual IEEE Symposium on Logic in
Computer Science, Boston (Ma), USA, June 2001.

our primary goal is to determine a suitable subclass of regular languages for which we
can effectively compute the R-closure, for any semi-commutation rewriting system R.

The problem of computing the closure of a language under a semi-commutation
rewriting systems appears naturally in several areas related to formal modeling and
verification of systems. For instance, partial-order reduction methods [11,22,29] ap-
plied in traditional model-checking rely on the fact that the property we want to verify
does not distinguish different linearizations of the same partial order. This allows to
perform an improved, reduced exploration of large systems. In the simplest setting, a
partial-order property means that the property is closed under partial commutation
rules, i.e., (symmetric) rules of the form ab < ba, meaning that two actions a and b
are causally independent. However, it is often more convenient to express a property
(or its negation) regardless of all possible interleavings of independent actions. There-
fore, if a given property ¢ is not a partial-order property, then we are led to compute
its closure R*(¢). The interest in doing this is that closing ¢ is in general much less
expensive than a full exploration of the system.

In the context of regular model checking [6,13,25], a set of configurations is repre-
sented as a regular language and the actions of a system are modeled as a rewriting
system R. Then, the verification problem amounts to compute the R-closure R*(L) for
a given set of initial configurations L. This allows for instance to analyze parameter-
ized systems with arbitrarily many identical finite state processes which are connected
linearly. In that case, a configuration is a sequence of control states of individual pro-
cesses, the i-th element of the sequence being the state of the i-th process. Thus,
sets of configurations of arbitrary length (corresponding to systems with an arbitrary
number of processes) are described by a regular language. This allows to perform a
uniform verification, i.e., for any number of processes. In protocols based on infor-
mation exchange between neighbors (e.g., token exchange, mutual exclusion, leader
election), certain transitions can be modeled by semi-commutation rewriting rules of
the form ab — ba. Being able to compute the R-closure thus allows to compute the ef-
fect of meta-transitions corresponding to the semi-commutation rewriting rules. Take
as a very simple example a mutual exclusion protocol for linearly ordered processes.
Suppose that the state of a process is 1 if it owns the token giving access to the critical
section, and 0 otherwise. The initial configuration is then the regular expression 10*
(note that the number of processes is not fixed). An (abstract) transition rule of the
system can be represented by the semi-commutation one-rule system R = {10 — 01},
meaning that the token can be passed from left to right between neighbors. We can
now compute the reachable set of configurations R*(10*) = 0*10* and check for in-
stance that the intersection with the set of bad configurations (04+1)*1(041)*1(0+1)*
is empty.

Thus, given a regular language L and a semi-commutation relation R, our aim is to
compute the reflexive, transitive closure R*(L). In our setting we would like to have a
subclass of regular languages which enjoys several closure and decidability properties.
First, we require that this class must be (1) effectively closed under basic operations
such as union and intersection, and (2) effectively closed under semi-commutation
rewriting. Moreover, we require that that the problems of (1) inclusion checking, and
(2) membership to the class (of regular languages) are decidable. Indeed, all these
features are needed in the context of the applications we consider, especially for regular

model checking where semi-commutation rewriting steps can be used iteratively during
the reachability analysis of a system.

The solution proposed in this paper is the class of Alphabetic Pattern Constraints
(APC), which appears naturally in many contexts of verification of concurrent systems.
An APC is a finite union of languages of the form Xja;X7 ---a,X), where every
X); denotes a subset of the alphabet X and every a; € X denotes a single letter.
For instance, the regular expressions in the token passing example above are APC
expressions. APCs can be used for example to express (negated) safety properties
corresponding to the presence of (bad) patterns within computations or configurations,
such as required for mutual exclusion. The class of APCs actually corresponds to
the Ys-level of the quantifier-alternation hierarchy of first-order logic with the order
relation [27].

We show that this class satisfies all the closure properties stated above and establish
complexity bounds for several basic decision problems concerning this class. We show
that deciding whether a regular language belongs to APC is complete for PSPACE
when the language is given by a non-deterministic automaton, respectively complete
for NLOGSPACE, when the input is a deterministic automaton. Moreover, we show
that testing whether an APC language is closed under a semi-commutation rewrit-
ing relation, as well as the inclusion problem for APC, are both PSPACE-complete
problems. These results suggest that APC is as “hard” as the whole class of regular
languages, which means in some sense that APCs are expressive enough for specify-
ing interesting properties. It is also interesting to note that APCs correspond to the
smallest level in the quantifier-alternation hierarchy of first-order logic which has this
“hardness property”. Indeed, languages in X and II; correspond respectively to up-
ward and downward subword-closed sets. For example, I1; is precisely the class SRE
[2], for which it can be shown that inclusion can be checked in polynomial time.

The first main result of this paper is that APC is closed under semi-commutation
rewriting and we provide an effective algorithm that computes the closure R*(L),
given a semi-commutation system R and an APC language L.

For applications in regular model checking we consider also circular semi-commu-
tation rewriting. Indeed, the simplest interconnection topology in distributed comput-
ing is the ring topology. A (parameterized) configuration corresponds then to a circular
word, i.e. a word 1 - - -z, with the understanding that xy follows x,. This means that
x1---xy, and all its conjugated words xpTyyq -+ Tpxy - - - Tp—1 represent the same (cir-
cular) configuration. Thus, we consider that the set of configurations of a ring network
is a set of words L which is closed under conjugacy, i.e. L = Conj(L). Our second main
result shows that for any semi-commutation rewriting system R, the circular R-closure
(Conj o R*)*(L) of any language L C X* can be computed as long as the set R*(L)
is computable. More precisely, we prove that (Conj o R*)*(L) = (Conj o R*)2*I(L).
Therefore, for each APC language L the circular R-closure is an effectively computable
APC set.

Related work: The notion of semi-commutations was proposed in the late 70’s by
Mazurkiewicz [14] for describing the semantics of 1-safe Petri nets. Problems related to
the closure of languages under semi-commutations have been studied in the community

of Mazurkiewicz trace theory (see e.g. chapter 12 in [8] for a survey). However, the
problems we address here and our results are of different flavor.

Our aim is to identify subclasses of regular languages which are closed under any
semi-commutation rewriting relation whereas classical results of trace theory aim at
providing for a given semi-commutation relation R sufficient conditions on regular
languages ensuring that their R-closure remains regular. Such a condition was pro-
posed first by Ochmanski [21] (see also [18]) and is known as “star-connectedness”.
This property restricts the sets of symbols labeling cycles in an automaton (resp., the
iteration operator in a regular expression is restricted) and it depends on the relation
R. Since loops in APC are very simple (self-loops), one can easily see that APCs are
star-connected. Nevertheless, our result is stronger in the sense that it shows that the
closure of an APC remains an APC, whereas [21, 18] allows only to obtain that it is
a regular language. As mentioned before, and as it will be shown in more details in
Section 6, we do need such a stronger statement especially in the context of regular
model checking where we must apply iteratively a sequence of rewriting steps including
semi-commutation rewriting steps during the reachability analysis of a system. More-
over, our construction is different and has better complexity than the one described
in [9]. Indeed, the proof of [9] is based on a notion of rank of a regular language, and
on showing that if X is a regular language of finite rank, then the closure of X is
regular. More precisely, if the rank of X is k, then Theorem 4.2 p. 481 in [9] leads
to a deterministic finite automaton accepting the closure of X that has gst ! states,
with s the size of a monoid recognizing X. The size s is exponential in the automa-
ton or the regular expression given for X, as well as in the size of the alphabet, and
the rank k is polynomial. In contrast, our algorithm gives a singly exponential size
expression for the closure of the APC describing X (see Theorem 5, and Corollary
3). Furthermore, starting from an APC an applying the construction in [15], it is not
possible to deduce that the resulting language is an APC, since the reasoning based
on the rank leads only to a bound on the number of states of an automaton, and not
to any statement about the structure of the automaton. So, our algorithm is not a
simple instantiation of known results, as described in [8]. Let us also mention that
the complexity of deciding whether a regular w-language is closed under commutation
rewriting was considered in [20, 26].

APC languages have been intensively studied in logic and algebra. As mentioned
above, they correspond to the Xs-level of the quantifier-alternation hierarchy of first
order logic, i.e., to formulas of the form 3*V*¢, where ¢ is quantifier-free and uses
as atomic predicates the order and the letter labeling. The class APC has also an
algebraic characterization, it corresponds to level 3/2 of Straubing’s concatenation
hierarchy of star-free sets. Moreover, it is the largest hierarchy level known to be
decidable [23].

Finally, several works on regular model checking propose automata-based construc-
tions for computing the closure of a regular language under a rewriting system (regular
relations/finite transducers) [3, 6, 10, 12, 25]. While the proposed techniques are generic
and have a wide range of application, they are not complete in general. In contrast,
our work proposes a complete construction for the specific class of semi-commutation
systems and the class of APC languages. As it will be shown in Section 6, this con-

struction could be integrated with the other generic construction in order to deal with
the semi-commutation rules which may appear in the definition of a system.

2 Alphabetic Pattern Constraints

We define in this section the class of Alphabetic Pattern Constraints (APC) and present
some of its characterizations.

2.1 Definitions and notations

Definition 1. Let X be a finite alphabet. An atomic expression over X is either a

letter a of X or a star expression (a1 +az + -+ + ap)*, where a1, as,...,a, € X.
A product p over X* is a (possibly empty) concatenation eies---ey, of atomic ex-
pressions ey, . .., ey over Y. We use € to denote the empty product.

An Alphabetic Pattern Constraint (APC) over X* is an expression of the form
p1+ -+ pp, where pi,...,p, are products over X*. By APC(X) we denote the set of
reqular languages described by some APC over X*.

In the rest of the paper we will not distinguish between a regular expression and
the language that it defines. However, the input for our algorithms in Sections 4, 5
will be an APC expression.

Notation. The length of p = e; ---e,, denoted I(p) = n, is the number of atomic
expressions in p. Let e =). p; be an APC expression, then the length of e is defined
as [(e) = max; [(p;). The size of an expression is the sum of the lengths of its products.
For L C X, we denote by (L) the set of letters of X' appearing in words from L. As
usual, |L| denotes the cardinality of L. For a string w € X* and a letter a € ¥, we
denote by |wl|, the number of occurrences of a in w.

2.2 Characterizations of APCs

APC corresponds to he set of expressions defining the languages of level 3/2 of the
Straubing-Thérien hierarchy [23]. In this hierarchy, level 0 corresponds to (), ¥* and
the higher levels are defined recursively as follows: level n + 1/2 is the polynomial
closure of level n and level n + 1 is the boolean closure of level n + 1/2, where the
polynomial closure of a class £ of languages is the set of languages of X* that are
finite union of languages of the form LgagLq - - - a,L, where the a;’s are letters and
the L;’s are elements of L. It is well-known that the Straubing-Thérien hierarchy is
strict.

Closely related is the well known X, -hierarchy of first order logic (over the or-
der relation) obtained by counting the number of alternating blocks of existential and
universal quantifiers. The level Y,, denotes formulas with n alternating blocks of quan-
tifiers, starting with an existantial block. Thomas [27] showed that the level n+1/2 in
the Straubing-Thérien hierarchy corresponds precisely to X, 11. Thus, it follows that
each language in APC can be defined by a formula of the form ¢ = 3*V*y where 1 is
quantifier free.

Furthermore, it can be easily shown that APC corresponds to the following frag-
ment of the linear-time temporal logic LTL [24]:

pu=AloVvelone| AUg|OA| O

where A is of the form A =a; V---V a,. Indeed, every APC can be described by a
formula in this fragment since a product of the form Y§apXa; - - - a,—1 27, is equivalent
to the formula

ZoU(ao A O(le/[(al INOEEE (En—lu(an—l A ODZn)) e)

For the other direction, we use the fact that APC are closed under union, intersec-
tion, and concatenation (see Proposition 1).

3 Closure properties and decision problems

We consider in this section closure properties of APC under basic operations such as
boolean operations and conjugacy, and address decision proplems (and their complex-
ity) such as the test of inclusion, closure under a given semi-commutation relation,
and membership of regular language to APC. These closure properties and decision
problems are particularly relevant for the applications we consider in this paper, that
is, verification of partial-order models and regular model checking.

3.1 Closure properties

It can easily be seen that the class of APCs is not closed under complementation.
Consider for example the alphabet ¥ = {a,b} and the APC language X*aaX™ +
XF0bX* 4+ bX* + X*a. Its complement (ab)* does not belong to APC.

We recall that two words x and y € X* are called conjugated if * = uv and y = vu
for some u,v € X*. For a language L, we denote by Conj(L) the set {uv € X*
vu € L} of conjugates of words from L. For a class of languages C to be closed under
conjugacy we require that L € C implies that Conj(L) € C.

Proposition 1. APC is closed under product, union, intersection and conjugacy.

Proof. APC is closed under product and union by definition. Let p; and ps be two
products over Y. Then, the regular expression corresponding to p; N ps is inductively
defined by:

- [Z)a lfpl :QOTPZZ(Z)a

—¢,if py =ec and € € py, or ps =€ and ¢ € pq,

— a(p) Nph), if p1 = ap} and py = ap),

- ®a if pp = aplla p2 = bpl2a and a 7é b,

— a(py Np2), if p1 = ap and p2 = A*p; with a € A,

— b(p1 NpY), if p1 = B*p) and py = bp}, with b € B,

— C*(p1 Npy) + C*(p) Np2), if p1 = A*pY, pa = B*py, and C = AN B # .

To show that APC is closed under conjugacy, it suffices to show that for any product
p, the set of conjugates Conj(p) is an APC. Let p =e; - -, be a product, then it is
easy to see that :
Conj(p) = Z €t ener € 1€
i
such that (1) e} = ¢; if e; is a star expression, and (2) €, = € if e; is a letter. Since the
expression above is an APC, the result follows. O

Remark 1. While union and conjugacy are polynomial operations, computing the in-
tersection of two APC languages yields an expression of exponential size. The worst-
case is indeed exponential, as shown by the following example. Consider the products
pn = b*(ab*)™ and ¢, = (a*b)"a*, each of size 2n + 1. Then {w € (a +b)* : |w|, =
|w|lp = n} = pp N @y is a finite set with the property that every APC expression for
Pn N gy is of exponential size.

3.2 Decision properties and complexity issues

We consider in this section basic decision problems concerning the class APC. We es-
tablish the complexity for the problems of testing inclusion, deciding whether an APC
language is closed under a given semi-commutation relation, and deciding whether a
given regular language is in the APC class. Basically, we show that all these problems
are PSPACE-complete (which means that they are already as complex as for the case
of the whole class of regular languages), except for the last problem in the case where
the considered regular language is given as a deterministic automaton. We show that
the problem is NLOGSPACE-complete in that case.

Let us start with the universality problem.

Theorem 1. The following problem is PSPACE-complete:
Input: An APC expression L over X*.
Question: Is L = X*?

Proof. We already know that the universality problem for languages in APC(XY) is in
PSPACE since it is in PSPACE for regular languages. Thus we need only to show the
PSPACE-hardness.

Let M be a P-space-bounded, single-tape deterministic Turing machine that ac-
cepts L (where P is some polynomial). Let @) be the set of states of M, let X' be its
tape alphabet, and let qo, ¢ its initial and final states respectively. The blank symbol
is denoted by b.

The reduction is classical, iconsists of showing that for every input = we can con-
struct in polynomial time a language R, in APC(X) such that R, =) if and only
if M does not accept x. Let x be such an input to M of length n. The language R,
that we construct is the language representing all the sequences of configurations of
M that do not correspond to accepting runs of M on z.

Let p = P(n). We impose that all the configurations of M are of length p (we can
add blanks to a configuration if necessary to make it of length p). Thus, a configuration

of M can be represented by a string ajas - - - ap where all symbols a; are letters from
¥, except for one, which is in @ x X. This symbol is of the form [¢X] and corresponds
to the cell of the tape which is scanned by the head of the machine and holds the
letter X, while M is in the control state q.

A run of M can be represented by a string fw fws - - - wiff for some k > 1, where w;
is an encoding of the configuration C; of M after i — 1 moves. The encodings w; have
the following form: w; = a108a203>- --a,06P, where ajas---ap is the configuration
C;. The additional counters 3* used in our proof are needed in order to obtain an
expression of the required form and of polynomial size.

Let A = Y U{[gX] : ¢ € Qet X € X} and A" = AU {0,3}. A string y in
(A" U{t})* represents a non-accepting computation of M if and only if at least one of
the following conditions holds:

1. y is not of the form fwifws - - - wif for some k > 1, w; € A",

2. The initial configuration w; is wrong. That is, y does not begin with
tlaoc1]08ca03? - - - c,0B™bOBLBO B2 - . BOSPE, where & = ¢y - - - Cp,

3. The last configuration is not final. That is y does not end with the encoding of a
final configuration,

4. y contains two consecutive configurations which do not respect the transition re-
lation of M.

We define the expression R, as the union of four expressions A, B,C' and D cor-
responding respectively to conditions 1, 2, 3, and 4 given above. The expression A
contains:

strings not beginning or not ending with £,

strings with no or more than one symbol of @ x X between two f#’s,
strings having more than one letter of X between two consecutive 3 and 6,
strings not having the right syntax between two consecutive #’s.

W

It is easy to see that the first conditions can be described by a language in APC(X).
We only consider the last condition. The strings meeting this condition are described
by the following APC expression of length O(p® + |M|):

Y (A) ABANB (A + 1) +
0<i,j<p,j#i+1

(A +)BT A) +
(A + 1) BR(A +) +

k<p
D (A + 1) 1A088(A + 1)
k>1

The languages B and C' can be constructed in the same way. The language D is
defined by the expression:

Z (A/ + jj)*aeﬂl—lbaﬂch’*ﬁA'*bleﬁz(Al + ﬁ)*
a,b,c/Ab

This expression says that if we are in a configuration where the i — 1**, the "
and the i + 1" cells are respectively represented by the symbols a,b and ¢, then,
after one move, the Turing machine must be in a configuration where the symbol
corresponding to the " cell is uniquely determined and is equal to b;. The ex-
pression above considers the computations that have two consecutive configurations
wj = ---alB 0B OB -+ and wjpq = ---b'OB" - - such that the letter b’ is differ-
ent from b;.

Thus, the expression R, is in APC(X) and can be constructed in time O(p®+ |M]).
Moreover, we have that R, equals (A’ + £)* if and only if = is not accepted by M.

O

An immediate consequence of the previous result is the following fact:
Corollary 1. Deciding inclusion for languages in APC is PSPACE-complete.

Let us now consider the problem of deciding whether a language is closed under a
given semi-commutation rewriting system.

Theorem 2. The following problem is PSPACE-complete:
Input: An APC expression L over X and a semi-commutation rewriting system R

Question: Does R*(L) = L hold?

Proof. The fact that this problem is in PSPACE is immediate, it suffices to check that
R(L) C L. Since the inclusion test is in PSPACE, we can decide in PSPACE whether
L is closed under R or not.

To show hardness, we reduce the universality problem to the above closure problem.

Let L be a language in APC and R the semi-commutation relation R = {(a,$) :
a € X'}. Consider the APC language K = L$X* U X*$. We show that K is closed
under R if and only if L = X*.

By definition, K is closed under R if and only if K = R*(K). It is easy to see that
R*(K) = {u$vw : wv € L} U X*$X* = X*$X*. Thus, we have K = R*(K) if and
only if L$X* U X*$ = X*$3*, if and only if L = X*. Thus, K is closed under R if and
only if L = X*, which ends the proof. O

Next, we show that the membership problem for the class APC is PSPACE-
complete when we are given a non-deterministic automaton. The same question is
NLOGSPACE-complete, hence polynomial, when the input is a deterministic automa-
ton. These two last results rely on the characterization of languages in APC by positive
varieties given in [23]. It is worth noting that the algorithm obtained in [23] has com-
plexity in O(]A|-21¥1), i.e., it is linear in the size of the automaton and exponential in
the size of the alphabet. Theorem 4 below improves the result by giving an algorithm
which is polynomial in both |A| and |X|.

Theorem 3. Deciding whether a reqular language, given by a reqular expression or a
non-deterministic automaton, is an APC language, is a PSPACE-complete problem.

Proof. Let us show the containment in PSPACE. Let L be a regular language given by a
non-deterministic automaton A. Let A be its transition relation. The characterization
given in [23] states that L is in APC if and only if for all words z,y with a(z) = a(y)
such that x satisfies the following:

Vz,w e X* i zaw € L iff zeaw € L
we have the following implication:
Yu,v € X* :uxv € L = uzyzrv € L

We now describe how to check the negation of the implication above in PSPACE.
A Turing machine M guesses the word u symbol by symbol (on-the-fly). M uses an
array to keep track of the set of states which A reaches after reading u. Let Sy be
the set of initial states and let 77 be the set of states reached after reading u, then
we have A(Sp,u) = T7. Then, M guesses sets of states T, T3 and Ty and two strings
x and y on-the-fly, verifying that a(z) = a(y), A(T1,x) = T, A(1z,y) = T3 and
A(T3,x) = Ty. Moreover, M verifies during the guess of z that zzw € L iff zzzw € L,
for all strings z,w (it’s easy to see how to verify the negation of this condition in
PSPACE, then we use the fact that PSPACE is closed under complement).

Finally, M guesses v such that A(Ty,v) N F # () and A(Ty,v) N F = (. Hence, we
have that uxv € L and uzyxv ¢ L.

The PSPACE-hardness is shown using the proof given for Theorem 1. Let M be
a polynomial-space-bounded Turing machine and = an input of M. Let Ry, be the
APC expression computed in the proof of Theorem 1. We have R, = X* if and only
if M does not accept z. Consider now the set K = (Rps;$)* with $§ ¢ X. We show
that M does not accept x if and only if K is in APC.

— If M does not accept z, then by definition of Ry, we have that Ry, = X* which
implies that K = (X' U {$})*. Thus, K is in APC.

— If M accepts x, then there exists some word y ¢ R, encoding an accepting
computation of M on x. Let z be some word with a(y) = a(z) and such that

z € Ry, does not encode an accepting computation.

We show by contradiction that K does not belong to APC. Suppose that K is in

APC, then let py,pa,...,p, be products such that K = p; +ps + -+ + pg and let

n = max; [(p;).

Let w = (2$)"*! € K, then there exists some product p; such that w € p; =
AfarAjas - - - amA;,, m < n. Since n + 1 > m, there exists some star expression
Aj in p such that some occurrence of the factor z$ of w lies completely within
Ay Hence, since a(z8$) = a(y$) C Aj we obtain that z2--- 2y28--- 28 € K =
(Rare$)*. This contradicts the fact that y ¢ Rasz. Therefore, K cannot be in
APC.

|

Theorem 4. Deciding whether a reqular language, given by a deterministic automa-
ton, is an APC language, is an NLOGSPACE-complete problem.

Proof. We use a second characterization for APC languages given in [23]. As shown
there (see Theorem 8.9) a deterministic, complete automaton A accepts an APC lan-
guage if and only if for all words u,v € X* and all states q1, q2, ¢3, g4 of A satisfying
the following conditions:

— w is a loop around ¢; and g2, i.e., g1 € 6(q1,u), q2 € §(q2,u),
— a2 € 0(q1,v),

— a(v) = a(u),

— q3 € 6(q1,w) and g4 € 0(q2, w)

— ¢ is reachable from an initial state,

we have that if g3 is a final state, then g4 is also a final state.! This situation is depicted
in Figure 1.

u u
U
RO
w w

Fig. 1. Characterization of DFA of an APC language.

We cannot check the above conditions directly in NLOGSPACE. However, note
that we can replace the condition a(u) = a(v) by a(v) C «a(u) (since we can use
instead of u,v the words u,uv). With this modification we can guess u,v (and w)
without storing them and verify on-the-fly that a(v) C a(u).

For the NLOGSPACE-hardness we reduce from GAP, the question whether there
exists a path from a vertex s to a vertex t in a directed graph G = (V, E). Without
restriction we assume that G is acyclic and has out-degree 2 for each vertex v # t (and
t has out-degree 0). Let X = {a,b,c,d} and let us define a deterministic, complete
automaton A over X' as follows. The set of states of A will be Q@ = {p,q,7} UV, where
p,r are the only final states. Moreover, p is the initial state. Each state from V '\ {¢}
has its two outgoing edges from F, labeled deterministically by a,b. The initial state
p has two self-loops labeled a, b, an edge to s, labeled d, and an edge to r, labeled c.
State ¢ has two self-loops labeled a, b, an edge to t, labeled d, and an edge to r, labeled
c. State r is a sink state, i.e., with self-loops labeled a, b, ¢, d. State s has a c-transition
to p, and state t has a c-transition to ¢. Finally, we complete the automaton by adding
edges to r for all vertices in V' which do not yet have 4 outgoing edges (see Figure 2).

Note that the labels of loops around s and ¢ must be labeled by words from (c(a +
b)*d)*, whereas loops around p, ¢ must be labeled by words from ((a + b)*dc)*(a+b)*.

! [23] states that this condition is necessary, provided that the automaton A is minimal. However,
the given proof does not use the minimality of A.

10

The only interesting combinations for (¢1,¢2) as in Figure 1 are (s,t) and (p,q) (the
case g2 = r never violates the conditions in Figure 1). The last two pairs are possible
if and only if there is a path from s to t in A. In this case, both pairs violate the
condition on final states: From s there is a c-transition to the final state p, whereas ¢
has a c-transition to the non-final state g (we take w = ¢). This concludes the proof.

a,b,c,d

Fig. 2. Reduction from GAP

4 Semi-Commutation Rewriting and APC

We address now the problem of closing an APC under semi-commutation rewriting.
A semi-commutation relation R defined over an alphabet X is an irreflexive binary
relation, i.e., a subset of X' x X'\ {(a,a) : a € X}. A pair (a,b) in R can also be
represented by the rule ab — ba. We associate with each semi-commutation relation
R a rewriting relation pr C X* x X* which is defined by (w,w’) € pr if there exist
wy,wy € X* and a, b € X such that (a,b) € R, w = wiabws, and w' = wibaws. As
usual, we denote by p% the reflexive, transitive closure of pr. For a language L C X*,
we denote its R-closure {v € X* : Ju € L, (u,v) € pj } by R*(L).

The notation of semi-commutations can be extended to sets by letting for each
subsets X,Y C J:

(X, Y)eRIfXxYCR.

Let R be a semi-commutation relation, then we denote by dz the value

or = ma;j({|Y| : Y C X such that (Y,a) € R}.
ag

We will assume throughout the paper that R # (), thus oz > 0.

It is not difficult to see that semi-commutation rewriting does not preserve reg-
ularity. Consider for example the set L = (ab)* and the semi-commutation system
R = {ba — ab}. Then, R*(L) is the (non-regular) set of all words having the same
number of a’s and b’s, and such that all their prefixes contain at least as many a’s as
b’s. Therefore, the relation R* cannot be represented by a finite transducer, in general.

Our main result is stated in the theorem below. The remaining of this section
consists in describing the algorithm underlying Theorem 5.

11

Theorem 5. For each APC expression L, the R-closure R*(L) belongs to APC and
can be computed effectively. Moreover, the length of the computed expression is in

O((L)dR).

Since any L € APC(Y) is a finite union of products, its closure R*(L) is the
union of closures of its products. Hence, it suffices to show how to compute effectively
R*(p) for a given product p. For this we use the R—shuffle operation defined below.
The idea is to compute R*(e; - - - ey,) recursively, i.e., computing first R*(es - - - €,,) and
using R*(e;) = e;. The recursive step means that we need to compute R*(eL), for an
R-closed APC expression L and an atomic expression e, an operation which will be
performed also recursively. For our computations we need some notations and basic
definitions:

Definition 2. Let R be a semi-commutation relation. Given two words x and y of
27, the R—shuffle of x and y, denoted by xzlLigy, is the set of words of the form
TIYL " Tpln With T =21 Tn, Y = Y1 Yn, Ti, Y € 2* for all 1 < ¢ < n and such
that (a(x;), a(y;)) € R for all j <.

The R—shuffle operation extends to sets X, Y C X* by letting

XWRY ={zlligy : z€ X,y e Y}.

Note that for all z,y € X*, we have R*(xy) = R*(z).LUgrR*(y). The next lemma
shows how to compute R*(LK) when L and K are already R-closed.

Lemma 1. Let L and K be two R-closed sets, i.e., we suppose that we have both
R*(L) =L and R*(K) = K. Then we have R*(LK) = LLLIR K.

Since any atomic expression is R-closed we can state the following:

Lemma 2. Leteqy,eo,...,e, be atomic expressions and let p = ejes - - - e, be a product,
then we have:

R*(p) = e1llg (ealIR (- - - (ep—_1lligey) - -+)).

By the preceding lemma we can compute R*(p) recursively. Lemma 3 and Propo-
sition 2 below are the basic cases of our algorithm.

Lemma 3. Let E be a subset of X and let a € X be a letter, then we have:
E*llga = R*(E*a) = E*aE" ,a LUx E* = R*(aE*) = E"aE*,
where B' ={x € E : (z,a) € R}, and E" ={x € E : (a,z) € R}.
Proof. The first equality can be inferred from Lemma 1, since E* and a are closed by
R. The second equality is straightforward since the symbols of E’ are precisely the

letters of E that are able to cross the letter a.
Od

12

Ezample 1. Consider the product p = (e+ f+g)*d, and the semi-commutation relation
Ri1={(f,d),(g,d)}. Then the previous lemma yields

Rilp)=(e+ f+g)"Ld=(e+ f+g)df+g).

The next proposition is the main technical result needed for the proof of Theorem
5. It shows that the R-closure of the product of two star expressions is an APC.
In particular, note that the length of the products in the expression given below is
bounded above by a constant n which is polynomial in |X| and |R|. More precisely,

Proposition 2. Let E and F be two subsets of X, then
E*LWLRF* =R*(E*F*) =Y E*(Ey + Fy)* -+ (En + F,) F",

where n < dr, and the sum is taken over all subsets E; and F; of X satisfying the
following conditions:

-0#E,C---C B CE,
—0£ARC--CFCF,
— (B, Fj) €R forall1 <j<i<n.

Proof. The first equality can be inferred as previously from Lemma 1 since E* and
F* are closed under R.

Let us consider now the second equality. It is obvious that E*(Ey + Fy)*--- (E, +
F,)*F* C R*(E*F*), whenever E; and F; satisfy (E;, Fj) € R for all j <.

Conversely, let w € E*LLIg F* = R*(E*F*). We can write w = ujv1ugvs -+ » UV,
with u; € E*,v; € F*, and such that (a(u;),a(v;)) € R holds for all j < i. Clearly,
we can assume that u;, v; # € for all ¢ # 1 and j # m.

We define inductively the sequences (ki)lgigna (Ei)lgign and (Fi)lgign:

— k=1, ki:Hlin{j s kil <j<m,vj &/Flz*—l} (i> 1),
= Ei = a(up;q1- - um),
- F,={yeF : (E,y) € R}

By definition we have E;1; C E; C E, and F; € F;11 C F for all . Moreover,
(Es, F;) € R holds for all 4, therefore (£, F;) € R for all j < i. These two facts imply of
course that n < dg. Finally, we note that ug, 11~ uk,,, € E} and vy, -~ vg,,, 1 € F,

which yields the result.

i+1

a

Remark 2. In the expression given for R*(E*F™), it suffices to list only the star ex-
pressions (F; + F;)* such that both E; and F; are maximal, in the sense that:

— there is no letter b € F\F; such that (E;,b) € R,
— there is no letter a € E;_;\E; such that (a, F;) € R, where Ey = E.

Remark 3. Note that the length of the products in the expression for R*(E*F*) is at
most or + 2.

13

Ezample 2. Consider the product p = (a+b+c)*(e+f+g¢)*, and the semi-commutation
relation Ro = {(a,¢€), (c,9), (b,e), (b, f)}. From the proposition above it follows that
R3(p) = (a+b+c)'Wpy(e+ f+9) = (a+b+c)(c+g)le+f+9)" +(a+b+
o) (a+b+e)*(b+e+ e+ f+9)"

We show now how to compute effectively R*(p) = R*(ejez - - - e,) and obtain that
it is an APC. By Lemma 3 and Proposition 2 we have shown the result for n = 2.
Suppose now that R*(es---e,) =Y. fife- - fr, with f; denoting atomic expressions,
and let us show that R*(ejes---ey,), which equals > ejLLig(fifo- - fx), also belongs
to APC. Thus, we only need to compute e;LLIg(f1f2--- fn) and to show that it is of
the required form. To do this we will distinguish two cases, depending on e; being a
letter or a star expression. The first case is straightforward:

Lemma 4. Let a € X and f1,..., fn be atomic expressions, then

allg(fufa-+ fn) = g1+ gjahifisa - fn
J

such that, for all i < j we have:

—if fi=E*, thengi={z € E : (a,z) € R},
—if fi=be X and (a,b) € R, then g; =b.

Moreover, h; = € when f; € X, and hj = f;, otherwise.

Ezample 3. Let R3 be the semi-commutation relation R3 = {(h,a), (h,e)}. Then the
previous lemma implies that hLlig,(a +b+c)*(a+b+e)*(b+e+ f)" =a*h(a+b+
o)*(a+b+e)(b+e+ f)*+(a+e)*hla+b+e) (b+e+ f)*.

The next proposition generalizes Lemma 3 and Proposition 2.

Proposition 3. Let E and F' be two subsets of X, a € X, and L C X*, then we have:

1. E*Ug(al) = (E*Wga)(E" LR L), where E' = {b€ E : (b,a) € R}.
2. E*LIJR(F*L) = Z (E*LIJRF,*)(E/*LURL).
(B, FleR
E'CE ,F/CF
Proof. The first identity is straightforward, since E’ are precisely the letters of E that
can cross a and then commute with L.
We show now the second identity. The inclusion from right to left is clear.
Conversely, let w € E*LLIgF*L, with w € xllIpyz such that r € E*)y € F*
and z € L. Assume that w = wv and z = z129 with v € xRy, v € x2lligz. Let
F' = a(y) and E' = a(x2), then obviously (E', F’) € R, which ends the proof. O

Corollary 2. Let E and F' be two subsets of X, and let L C X*, then
E*LUR(F*L) =Y E*(Ey+ F1)*(By + o) -+ (B + Fi)*(EjfLUg L)

where the union is taken over all subsets E; and F; of X satisfying:

14

k C
FM G- CFCF,
— (B, Fj) €R foralll1 <j<i<k.

Proof. The inclusion from right to left is straightforward. By Proposition 3 it remains
to show that

(E* LR F™) (B WrL) C Y E*(Ey + F)* - (Bg + Fy)*(BfLUg L),

where E' C F and F’ C F are subsets satisfying (E’, F’) € R. Proposition 2 implies
that:

(E*LWrF"™)(E"WRL) = Y E*(Ey + F})* -+ (B, + F,)*F™(E"" LR L)

where the sum is taken over all subsets E; and F] of X satisfying:

~0#B,C- CECE,
_0#FCCECF
—(Ei,ij)eRforalllgjgign.

It remains then to show that for such subsets Ej, F]’ , there exist two sequences

(E)l and (Fj); satisfying the above conditions such that:
B* (B + F)* - (By + F)) F™ (E" LU L) € E*(By + Fi)* - (B + Fo)"(Bx L L)
These sequences can be defined inductively as follows:

— E,=E +F,and F} = F}, where j = max{i : (E; + E') = (E1 + E')},
— If F; = F} then:
o If] < n, thenE\:l = E;1 + F', and li:l = Fj, where j :m?,x{l—i—l <1<
ne (B4 E)= (Bt B,
o lfi=nand F' #£F, By = E, and Fjpy = F'.

Then obviously, B, C---C E, CE, 0 # F, C--- C F, C F', and (E,E)eRfor
all 1 < j <i<ksince (E',F') € R and (Ei,F;)ERforalllgjgign.
Od

Ezample 4. Let Ry = {(a,e€),(c,9), (b,e), (b, f), (a,d)}. Then from the last proposition
and from example 2 it follows that

(@+b+ o) llr,(e+ f+9)'d(f +9)" = (a+b+) (c+g)(e+ [+ 9)"df +9)"+
(a+b+e)*(atbte) (btetf) (et f+9)"d(f+9)"+ (a+b+c)*(a+bte) da”(f+g)".

Summarizing the previous computations, Proposition 3 and Corollary 2 yield the
recursive step for computing E*LUg (f1fo--+ fn):

Proposition 4. Let E C X and let f1,..., fn be atomic expressions. Then, E* LLg(f1fa--

s equal to one of the following expressions:

15

fn)

1. For a star expression f1 = F*:
ZE*(E1 + F)* - (B + Fp)*(EplUg fa - - fa),

where the union is taken over all subsets E;, F; satisfying E;v1 C E; C E, () #
F;, C Fi11 CF and (E;, Fj) € R for all j <.
2. For a single letter f1 = a:

E*a(E" R f2- - fn),
where E' = {zx € E : (x,a) € R}.

The algorithm for computing the closure of an APC expression) ej - -- e, under
a semi-commutation rewriting relation R is the following: We compute recursively
R*(ex---en) = >, f1--- fr- The recursive step is given by Lemma 4, if e; is a letter.
Otherwise, for ey = E* we apply Proposition 4, which is itself a recursive step. It is
easily seen that each step preserves containment in APC. This shows Theorem 5.

Corollary 3. Letp be a product of length n, then [(R*(p)) € O(ndr), and size(R*(p)) €
20(|Zndr)

Proof. Tt can be easily seen that each recursive step adds at most dr atomic expres-
sions. Since there are n recursive steps, then the length of the products of the expres-
sion computed for R*(p) is at most O(ndgr). Moreover, since there exist 2% + | 3|
different atomic expressions, it follows that the size of R*(p) is at most 20(0¥"=) O

We conclude this section with an example that illustrates the computation of the
closure of a product under a semi-commutation relation.

Ezample 5. Consider the product p = h(a + b + ¢)*(e + f + ¢g)*d, and the semi-
commutation relation R = {(a,e), (h,a), (h,e),(c,g),(b,e), (b, f),(f,d),(g,d), (a,d)}.
Then R*(p) = hllig((a + b+ ¢)*LLgr((e + f + ¢)"LLIrd)). Hence using the previous
examples we have

R*(p) =a*h(a+b+c)(c+g)(e+ f+9)"df+9)" +

a*h(a+b+c)(a+b+e) (b+e+ f)(e+ f+g)df+9)*" +

a*h(a+b+c)* (a+b+e)*da*(f +g)" +

(a+e)hle+ f+g)*d(f +9)* +

(a+e)*hla+b+e)*(b+e+ f)(e+ f+g)*d(f +9)" +

(a+e)*h(a+b+e)da*(f +g)*.

Remark 4. We observe that APC is the largest level in both Straubing-Thérien’s hi-
erarchy and the X, -hierarchy that is closed under semi-commutations. Indeed, (ab)*
is the complement of a language in APC. Thus, it belongs to level 2 of Straubing-
Thérien’s hierarchy and it can be described by a Xs-formula. The closure of (ab)* by
the semi-commutation relation {(a,b), (b,a)} is of course not regular (it equals the set
fwe @by i [wl = wl}).

Moreover, let us note that APC is also the largest level of both hierarchies with
the following property: if the closure under semi-commutation of a language is reg-
ular, then it belongs to the same level. Take as an example L = (abcbac)* and
R = {(a,b),(b,a)}. Then R*(L) = ((ab + ba)c)* is regular, but not star-free any-
more.

16

5 Circular Rewriting

We consider in this section the problem of computing R*(L) when L consists of circular
words. This amounts to assume that L is closed under conjugacy, L = Conj(L). Recall
that Conj(L) = {vu : wuv € L} denotes the closure of L under conjugacy. The
question of computing the R-closure in this framework arises naturally in regular
model checking when processes are ordered circularly in a ring.

Let R C XY x X be a semi-commutation relation over Y. We associate with R the
circular rewriting relation R, C X* x 1* defined as follows. For any pair of words z
and y in X, we define (x,y) € R, if we can write

uv € R*(x) and y € R*(vu),

for some u,v € X*. Note that the circular rewriting relation R, is the composition of
the (rewriting) relations R* o Conjo R*. As usual, R denotes the reflexive, transitive
closure of R.. For a language L we denote by R%(L) the circular R-closure of L,
defined as the set:

Ri(L)={ve X* : Jue L such that (u,v) € R.}.

We show that the circular R-closure R%(L) of any language L (not necessarily reg-
ular) can be obtained by applying alternatively conjugation and permutation rewriting
a finite number of times. The main result of this section can be stated as follows:

Theorem 6. Let L C X*, then R(L) = RZ*\(L).
As a first corollary, we obtain the closure of the class APC under circular rewriting,.

Corollary 4. Let L be a APC expression, then R%(L) is in APC and is effectively
computable.

Proof. This follows directly from R} (L) = Rg‘xl(L) = (R* o Conj o R*)4¥I(L), to-
gether with the fact that APC(X) is closed under semi-commutation rewriting and
conjugacy (Theorem 5 and Proposition 1). O

In the remaining of the section we prove Theorem 6. The proof uses ideas from
[8][Ch. 3]. It generalizes (and simplifies) the proof given there for the case where R is
a symmetric relation. As in [8] we need a second relation Cr, called conjugacy relation,
which is defined as follows for z,y € X*:

(xz,y) € Cr if 3z € X such that zy € R*(xz).
Lemma 5. R, C Cr and Cr is reflexive and transitive.

Proof. For the first claim let x,y € X* be such that (z,y) € R.. By definition, there
exist v and v € X* such that uv € R*(x) and y € R*(vu), then uy € R*(uvu) C

For the second claim it is easy to see that Cr is reflexive. Let now z,y,z € X*
be such that (r,y) € Cr and (y,z) € Cr. Let then w and ¢ € X* be such that

17

wy € R*(zw) and tz € R*(yt). Then, (wt)z € R*(wyt) C R*(x(wt)), which shows
that (z, z) € Cr. O

The theorem below is used in showing a kind of converse of Lemma 5:

Theorem 7. Let x,y € X*. Suppose that z € X* is such that zy € R*(xz). Then
there exist m < 2|X|, and words to, ..., ty, € X* satisfying the following properties:

-ty -ty € R*(z),
— Yy € R (tm - 1o),
— (a(tj),a(t;)) € R for all j > i+ 1.

Proof. Let x,y,z € X* be such that zy € R*(xz). We show that there exist m < 2|X,
to, ..., tm € X* satisfying the properties above and such that a(ty---ty,—1) C a(z).
We proceed by induction on |z| + |z|. If |z| 4+ |z| = 1 then z = y = a for some letter
a € ¥ and z = e. We may thus assume that |z|+ |z| > 1. Levi’s lemma for semi-traces
[8][Ch. 12] implies that there exist words u,v,p,q € X* such that:

— up € R*(x) and qv € R*(z),
— z € R*(uq) and y € R*(pv),
= (alp);a(g)) € R.

Since qu € R*(z) € R*(uq) and |u|+|q| = (|z|+|2]) — |=|, by the induction hypothesis
applied to qu € R*(uq) we obtain that there exist m < 2|X, t;,...,t,, € X* such
that:

— ty---th, € R*(u) and v € R*(t],--- (),
- (a(t;),a(t;)) € Rforall j >1i+1,
=ty t_1) € alq)-

From the above conditions it follows that:

-ty thp € R*(up) C R*(z) and y € R*(pv) C R*(pt],---t}),
— (a(p),a(t))) € R for all 0 < i < m — 1, since (a(p),a(q)) € R,
— a(ty---t,) € az) since afty---t,) = a(u).

It then suffices to set t; =t} for i = 0,...,m and t,, 1 = p. [t remains to show that
m < 2|X|. This is due to the fact that for each i < m — 2, a(tp---t;) T alty---tir2)
since ((t;), a(t;)) € R for all j > i+ 1. O

Remark 5. The converse of this theorem also holds, it suffices to take
z=tg---ty 1to---ty o---totito.

Corollary 5. R} = 221,

18

Proof. First, we show that Cr C RZ¥. Let (x,y) € Cr with zy € R*(xz) for some z.
Let to,...,t, be as stated in the Theorem 7. It suffices to show that (to---t,,t,---to) €

Re"". This is due to the fact that (tot,---t1,t,---t9) € R. and that for each i €

{1,...,p—1}
(to---titp - tit1,to - ti—ity - ti) € Re

since
to-tiqty -t € R*(tp"'tiJrltO"'ti)-

Indeed, to obtain the word tqg---t;_1t,---t; from t,---t;11to---t; by applying R, we
start by moving ¢;1 from left to right, then t;,2, etc.

From Lemma 5 we obtain that R} C Cg. Since Cr C RE‘E', we conclude finally
that RE = R2 . O

6 Applications

We illustrate in this section the use of our results in two examples of applications. The
first one concerns the verification problem of partial-order models (such as message
sequence charts), and the second one concerns the verification problem of parametrized
networks of processes.

6.1 Verification of partial-order models: message sequence charts

Let us call a partial-order model a model M such that its set of behaviors (execution
paths) can be characterized as the closure of the a regular set of behaviors corre-
sponding to a finite-state transition systems 7y under a semi-commutation system
Ras. Typically, Ty and Ry can be easily extracted from the “syntactical” description
of the model M, and are polynomial in the size of M, Ts corresponding to the un-
derlying control structure of M and Rj; defining the independence relation between
the actions of M. An example of partial-order models are Petri nets and the semi-
commutation system R captures the independence of transitions (e.g., transitions
that have no common place in their pre/post domain are called independent). We
consider in this section another example of such models, High-level Message Sequence
Charts (HMSCs for short).

Given a property (i.e., a set of behaviors) ¢, the verification problem of M against ¢,
i.e., checking whether M satisfies ¢, consists in deciding whether the set of behaviors of
M is included in ¢. However, since the set of behaviors of M corresponds to R}, (1),
the verification problem is hard or even impossible to solve by computing precisely
this set.

The idea of partial-order based verification methods is to reduce the verification
problem of M against ¢ to the problem of checking whether the set of behaviors in T}y
is included in ¢ (i.e., solving the verification problem without computing the closure
of Thr), provided that ¢ is closed under the semi-commutation system Rjs. Indeed,
since ¢ is closed under Ry, this is also the case for =¢, and then it is easy to see that
Ty N —=¢ = 0 if and only if M N—¢ = 0.

19

This approach is interesting in practice since it uses directly the system T3, and
therefore it avoids the computation of its closure under semi-commutation rewriting
which is an expensive operation, and even impossible in general (since closure of
regular sets are not regular). On the other hand, this approach is crucially based on the
fact that the property ¢ must be closed under R ;. However, it is often more convenient
to express properties regardless of all possible interleavings of independent actions in
the considered model. Therefore, it is important to have algorithms for computing
closures of properties under semi-commutation rewriting. We advocate here to define
properties to check or their negations as APC expressions, and to use our algorithm
(Theorem 5) in this context in order to close them under semi-commutation systems.
In fact, typical properties to check are safety properties expressing for instance that
some “bad” patterns never appear in the computations. It is quite natural to express
the negations of such properties by enumerating the bad patterns, and this can be
done using APC expressions. Therefore, depending whether the property ¢ or its
negation —¢ is definable as an APC expressions, we can use our techniques to close
this expression and use it either positively (i.e., by checking that Thy C R}, (¢) # 0)
or negatively (i.e. by checking that Th "R}, (—¢) # 0) in order to decide whether T,
satisfies ¢.

Let us present a concrete example of this approach. We consider the verification
problem of scenarios described by High-Level Message Sequence Charts (HMSC).
MSCs are a graphical specification language for communications protocols, standard-
ized by the ITU and integrated in UML. An MSC scenario is a partial-order model for
asynchronous FIFO message exchange of concurrent processes. It depicts a sequence
of totally ordered events on each process, relating every send event with a receive
event by message arrows. For simplicity we assume that arrows are drawn in such a
way that they do not cross. An HMSC is a finite transition system with nodes labeled
by MSCs. Consider now a system HMSC S including two processes p and ¢ for which
we want to verify that p cannot send two consecutive messages to ¢q. Let us denote
the set of possible actions by X', the send action of p to g by s, the receive action of ¢
from p by r and let X, (resp. X;) denote events on p (resp. on q).

The set of behaviors of the system S can be seen as the closure of the transition sys-
tem Ts underlying its description, and which is polynomial in the size of S, under the
commutation system Rg containing all pairs of actions (e, f) that belong to different
processes and such that they do not represent a send-receive pair on the same channel.
Then, a bad scenario contains for example an occurrence of the sequence srsr, which
means two consecutive messages from p to q. So, suppose that we want to verify that
the HMSC S satisfies ¢ where =¢p = Y*srsrX™ (i.e., the set of sequences containing
the bad pattern). Clearly, —¢ is not closed under Rg since there might be some ac-
tions on other processes happening, e.g. the sequences sarbsr, asrsbr, srsrab with a, b
happening on some process t # p,q are all equivalent. We can use our algorithm to
close =¢ under Rg and we obtain the property R&(—¢):

Z*5(5\ 5p) (S (5, U 5,) (5 \ Zp)

Now, as explained above, checking the fact that S satisfies ¢ it is equivalent to check
that Ts N Rg(—¢) is empty.

20

6.2 Regular Model Checking

Regular model checking is a uniform framework based on automata/regular languages
for the verification of infinite state systems, and in particular parametrized networks
of identical processes [3,12,6,25,28]. In this context, configurations of systems are
encoded as words, regular languages (finite-state automata) are used to represent and
manipulate potentially infinite sets of configurations, and actions of the systems are
modeled as regular relations between words (or as word rewrite systems).

Therefore, let us represent a system by a pair (¢, R), where ¢y is a regular language
corresponding to the initial configurations, and R is a regular relation representing
the different actions of the system. The verification of such systems is reduced to
reachability analysis, i.e., to computing, when possible, the regular language R*(¢q)
representing the set of all reachable configurations. It turns out that the reachability
sets of many infinite-state systems and parameterized systems, including communi-
cation protocols like the alternating bit and the sliding window, and parameterized
mutual exclusion protocols such as the token ring, Szymanski’s, or Dijkstra’s protocols,
are all expressible as APCs (see [2, 1,3, 12,6, 28)).

However, it is easy to see that computing the closure of regular languages (or even
APC langauges) by regular relations is impossible in general (the transition relation
of any Turing machine can be straightforwardly encoded as a regular relation). Then,
the main issue in regural model checking is the design of powerful techniques which
help the termination of the computation of the reachable configurations in practical
cases (without guarantee of termination in general).

Results such as Theorem 5 and 6 can be used in this context to compute the
effect of meta-transitions in order to accelerate the iterative process of computing the
set of reachable configurations. Let us explain this approach. Let C be a subclass
of regular languages, and assume that the system R can be decomposed into R =
RiU---UR, UR where,

— for every i € {1,...,n}, the relation R; is in some class such that for every set
L € C, the set R;(L) is again in C and it is effectively constructible,

— R’ is a regular relation such that, for every set L € C, the set R'(L) is an effectively
constructible C set.

Then, the reachability set R*(¢p) can be computed as the limit of the increasing
sequence (X;);>o defined by:

Xo = ¢o
Vi > 0. Xj1 = X3 U RT(Xz) y---u R:L(Xz) U R,(Xl)

We present below an example illustrating this approach using our results about the
class of APC languages.

Actually, we could consider an alternative principle where we relax the requirement
that images of C languages by the R}’s and by R’ are effectively constructible C sets,
and require only that these sets should be effectively regular. However, if Rj images
can be computed only C languages, we need to be able to check if a given regular
language is effectively representable in the class C. Then, the principle we can adopt is

21

to compute at each step i+ 1, and for each relation R;, either (1) the R;‘ image of X;
if X; is an effectively C definable language, or (2) the R; image of X; otherwise. This
principle can be applied for instance in the case of the class of APC languages due
to Theorems 3 and 4. However, checking at each iteration if the obtained language
is in C could be expensive (as shown for instance by Theorems 3 and 4 for the case
of APC). Therefore, we prefer to adopt the previous schema whenever possible, and
thus, we are in general more interested in having effective closure results of classes of
languages under classes of relations than in having results showing only the regularity
of the closures.

Let us present now a simple example illustrating our approach. We consider a lift
controller which has the following behavior: People can arrive at any time to any floor
and declare their intention to move up or down. The lift is initially at the lowest floor,
and it keeps moving from the lowest floor to the uppermost one, and back. In its
ascending (resp. descending) phase, it takes everyone who is waiting for moving up
(resp. down) and ignores the others (they are taken into account in the next phase).
The problem we address is to analyzing the set of possible behaviors of this system
for an arbitrary number of floors.

For every number of floors n, a configuration of this system can be represented
by a word of the form #x1---xjyzq1---x,#, where y € {L1,L|}, and z; € {L,p]
,pl,p1l}, for i € {1,...,n}. The symbol corresponding to xz; represents the state of
the it" floor: z; = p1| if there are people waiting for moving up and down at floor
i, x; = pl (resp. x; = p|) means that at floor i people waiting only want to move
up (resp. down), and x; = L means that nobody is waiting at floor i. The symbol
corresponding to y gives the position of the lift: in the configuration given above, if
y = L] (resp. y = L]) then the lift is at floor j+ 1 (resp. j), and it is moving up (resp.
down).

The set of all initial configurations (for an arbitrary number of floors) is the set
oo = # L1 L*#, which means that the lift is initially at the lowest floor and there is
no request at any floor. The dynamics of the system can be modeled by the rewriting
rules (1)-(14).

Rules 1, 2, 3, and 4 are symbol substitutions modeling the arrival of users. Let us
call request their corresponding action. Rules 5 and 6 (resp. 10 and 11) are semi-
commutations modeling the moves of the lift upward (resp. downward). They cor-
respond to the action move-up (resp. move-down). Rules 7 and 8 (resp. 12 and 13)
represent the action of taking at some floor the people who want to move up (resp.
down). We call the corresponding actions take-up (resp. take-down). Finally, rules 9
and 14 represent the actions of switching from the ascending to the descending phase
(action up2down), and vice-versa (action down2up).

Rules 7, 8, 9, and 14 are simple word substitutions rewrite rules (i.e., rules of
the form v — v where u and v are words). It is easy to see that APC languages are
effectively closed under the application of word substitutions. Therefore, the images of
APC languages by the transitions take-up, take-down, up2down and down2up are APC
computable languages. Moreover, it is quite obvious that APC are effectively closed
under iterative symbol substitution rewriting, i.e., under iterative application of rules
of the form a — b. Therefore, the effect of applying the meta-transition request® is

22

computable. Finally, using our algorithm behind Theorem 5, the images by move-up*
and move-down™ can be computed.

L —-pT (1)

1L —pl (2)

pl —pll (3)

pl —pll (4)

LT 1L — 107 (5)
Lt pl —pl LT (6)
LT pl— LL7 (7)
LT pll —pl LT (8)
LT# — Ll # (9)
1Ll — L] L (10)
pl Ll — L] pT (11)
pl Ll —L| L (12)
pll Ll — L] p1 (13)
#L| — #L] (14)

Table 1 shows the computations of the reachable configurations of the lift controller.
In the first column we give the set of configurations to which we apply the action given
in column 2. The obtained sets are shown in columns 3 and 4.

$o| request” #L1 (L +pt +pl +pl)"# $1
¢1| move-up” #(L +p) LT (L +pt +pl +pl)"# P2
$2| request” #(L +pt +pl +p1) L (L +pt +p) +pl)"# $3
¢3| take-up |#(L +pt +pl +p)" (L + pl) LT (L + pt +p) +pN)"#|C ¢s
¢3| up2down #(L +pt +pl +pl) Ll # P4
¢4|move-down™ #(L +pt +pl +pN) LI (L +p1)"# ¢s
$5| request” #(L +pt +pl +p) L (L +pt +p) +pl)"# Ps
¢ps| take-down |#(L + pt +pl +pt)"Li (L +pt) (L +pt +pl +pN)"#|C ¢
¢6| down2up #L1 (L +pt +pl +pl)"# =¢1

Table 1. Reachability Analysis of the Lift Controller

As shown in Table 1, the use of acceleration based on meta-transition computations
allows to compute the reachability set of the lift controller in a finite number of
iterations. We can also provide a finite abstraction of this infinite-state model. Indeed,
Table 1 defines an abstract reachability graph of the lift controller (see Figure 3).

7 Conclusion

We considered the class of regular expressions called APC which appears naturally in
many contexts such as modeling and verifying concurrent systems, and regular model

23

request™ move-up* take-up

=

* Cin* * *
@ request @ move-up @ request s D request)

move-up

down2up up2down

request* C o6 @5\ P4
move-down* U request* Umove—down

) Q)

take-down move-down* request*

Fig. 3. Abstract reachability graph of the lift controller

checking. We have considered several closure properties and complexity issues of this
class.

In particular, we have shown that the class of APCs is effectively closed under semi-
commutation rewriting (for any such rewriting system). As far as we know, this is the
first time that a non-trivial subclass of regular properties has been shown to enjoy
this property. As mentioned previously, APCs correspond to level 3/2 in Straubing’s
concatenation hierarchy, and to level X5 in the quantifier-alternation hierarchy of first-
order logic. We have shown that this is the largest class in both hierarchies which is
closed under semi-commutation rewriting. However, this raises the question of finding
other subclasses of regular languages with similar closure and decision properties as
APC. A minimal requirement on such classes is that Parikh images of their languages
should correspond to Presburger formulas where linear constraints do not involve more
than one free variable. It can be seen for instance that this property does not hold for
(ab)* whereas it holds for all APC languages.

Another novel contribution of our paper is to show that APCs are also closed under
circular semi-commutation rewriting. Actually, our proof holds for any class of lan-
guages which is effectively closed under semi-commutation rewriting and conjugacy,
since we show that for any system R, computing the circular R-closure reduces to a
finite iteration (twice the size of the alphabet) of the computation of the R-closure in
alternation with conjugacy. Our result on the closure of APC under semi-commutation
rewriting can be applied in modeling and verifying automatically parametrized net-
works having a ring topology, where information is exchanged between neighbors.
Then, an interesting problem is to extend this work to systems with other kinds of
topologies, such as trees and grids.

References

1. P. Abdulla, A. Annichini, and A. Bouajjani. Symbolic Verification of Lossy Channel Systems:
Application to the Bounded Retransmission Protocol. In TACAS’99. LNCS 1579, 1999.

2. P. Abdulla, A. Bouajjani, and B. Jonsson. On-the-fly analysis of systems with unbounded, lossy
fifo channels. In Proc. of CAV’98, LNCS 1427, pp. 305-318, 1998.

24

®

10.

11.

12.

13.

14.

15.
16.

17.
18.

19.

20.

21.

22,

23.

24.

25.

26.

27.

28.

29.

30.

31.

P. Abdulla, A. Bouajjani, B. Jonsson, and M. Nilsson. Handling global conditions in parametrized
system verification. In Proc. of CAV’99, LNCS 1633, pp. 134-145, 1999.

B. Boigelot and P. Godefroid. Symbolic verification of communication protocols with infinite
state spaces using QDDs. In Proc. of CAV’96, LNCS 1102, pp. 1-12, 1996.

A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata: Application
to model checking. In Proc. of CONCUR’97, LNCS 1243, pp. 135-150, 1997.

A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Liveness and acceleration in parametrized
verification. In Proc. of CAV’00, LNCS 1855, pp. 403—418, 2000.

E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.

V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific, Singapore, 1995.
V. Diekert and Y. Métivier. Partial Commutation and Traces. In Handbook of Formal Languages
(Eds. G. Rozenberg and A. Salomaa), volume 3, pp. 457-533. Springer, 1997.

L. Fribourg and H. Olsén. Reachability sets of parametrized rings as regular languages. Electronic
Notes in Theoretical Computer Science, pp. 1-12, 1997.

P. Godefroid and P. Wolper. A partial approach to model checking. Information and Computation,
110(2):305-326, 1994.

B. Jonsson and M. Nilsson. Transitive closures of regular relations for verifying infinite-state
systems. In Proc. of TACAS 2000, LNCS 1785, pp. 220-234, 2000.

Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar. Symbolic model checking with rich
assertional languages. In Proc. of CAV’97, LNCS 1254, pp. 424-435, 1997.

A. Mazurkiewicz. Concurrent program schemes and their interpretations. DAIMI Rep. PB 78,
Aarhus University, Aarhus, 1977.

Metivier. Title. Reference, year.

A. Muscholl and D. Peled. Message sequence graphs and decision problems on Mazurkiewicz
traces. In Proc. of MFCS’99, LNCS 1672, pp. 81-91, 1999.

Z. Manna and A. Pnueli. The temporal logic of reactive and concurrent systems. Springer, 1991.
Y. Métivier. On recognizable subsets of free partially comutative monoids. In Theoretical Com-
puter Science, 58:201-208, 1988.

A. Muscholl, D. Peled, and Z. Su. Deciding properties of message sequence charts. In Proc. of
FoS5S5aCS’98, LNCS 1378, pp. 226242, 1998.

A. Muscholl. Uber die Erkennbarkeit unendlicher Spuren. Teubner Verlag, Stuttgart-Leipzig,
1996.

Edward Ochmariski. Regular behaviour of concurrent systems. Bulletin of EATCS, 27:56-67,
1985.

D. Peled. All from one, one from all: on model checking using representatives. In Proc. of CAV’93,
LNCS 697, pp. 409423, 1993.

J.-E. Pin and P. Weil. Polynomial closure and unambiguous product. Theory of Computing
Systems, 30:383-422, 1997.

7. Manna, A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems. Springer-Verlag,
1992.

A. Pnueli and E. Shahar. Liveness and acceleration in parametrized verification. In Proc. of
CAV’00, LNCS 1855, pp. 328-343, 2000.

D. A. Peled, T. Wilke, and P. Wolper. An algorithmic approach for checking closure properties
of temporal logic specifications and omega-regular languages. Theoretical Computer Science,
195(2):183-203, 1998.

W. Thomas. Classifying regular events in symbolic logic. Journal of Computer and System
Sciences, 25:360-376, 1982.

T. Touili. Widening Techniques for Regular Model Checking. In Vepas Workshop. Volume 50 of
Electronic Notes in TCS, 2001.

A. Valmari. A stubborn attack on state explosion. Formal Methods in System Design, 1:297-322,
1992.

M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification.
In Proc. of LICS 86, pp. 332-344, 1986.

P. Wolper and B. Boigelot. Verifying systems with infinite but regular state spaces. In Proc. of
CAV’98, LNCS 1427, pp. 88-97,1998.

25

