
Asynchronous Games over Tree Architectures

Blaise Genest1, Hugo Gimbert2, Anca Muscholl2, Igor Walukiewicz2

1 IRISA, CNRS, Rennes, France
2 LaBRI, CNRS/Universit Bordeaux, France

Abstract. We consider the distributed control problem in the setting
of Zielonka asynchronous automata. Such automata are compositions of
finite processes communicating via shared actions and evolving asyn-
chronously. Most importantly, processes participating in a shared action
can exchange complete information about their causal past. This gives
more power to controllers, and avoids simple pathological undecidable
cases as in the setting of Pnueli and Rosner. We show the decidability of
the control problem for Zielonka automata over acyclic communication
architectures. We provide also a matching lower bound, which is l-fold
exponential, l being the height of the architecture tree.

1 Introduction

Synthesis is by now well understood in the case of sequential systems. It is useful
for constructing small, yet safe, critical modules. Initially, the synthesis problem
was stated by Church, who asked for an algorithm to construct devices trans-
forming sequences of input bits into sequences of output bits in a way required
by a specification [2]. Later Ramadge and Wonham proposed the supervisory
control formulation, where a plant and a specification are given, and a controller
should be designed such that its product with the plant satisfies the specifica-
tion [19]. So control means restricting the behavior of the plant. Synthesis is the
particular case of control where the plant allows for every possible behavior.

For synthesis of distributed systems, a common belief is that the problem
is in general undecidable, referring to work by Pnueli and Rosner [18]. They
extended Church’s formulation to an architecture of synchronously communicat-
ing processes, that exchange messages through one slot communication channels.
Undecidability in this setting comes mainly from partial information: specifica-
tions permit to control the flow of information about the global state of the
system. The only decidable type of architectures is that of pipelines.

The setting we consider here is based on a by now well-established model
of distributed computation using shared actions: Zielonka’s asynchronous au-
tomata [22]. Such a device is an asynchronous product of finite-state processes
synchronizing on common actions. Asynchronicity means that processes can
progress at different speed. Similarly to [6,13] we consider the control problem
for such automata. Given a Zielonka automaton (plant), find another Zielonka
automaton (controller) such that the product of the two satisfies a given spec-
ification. In particular, the controller does not restrict the parallelism of the

system. Moreover, during synchronization the individual processes of the con-
troller can exchange all their information about the global state of the system.
This gives more power to the controller than in the Pnueli and Rosner model,
thus avoiding simple pathological scenarios leading to undecidability. It is still
open whether the control problem for Zielonka automata is decidable.

In this paper we prove decidability of the control problem for reachability
objectives on tree architectures. In such architectures every process can com-
municate with its parent, its children, and with the environment. If a controller
exists, our algorithm yields a controller that is a finite state Zielonka automa-
ton exchanging information of bounded size. We also provide the first non-trivial
lower bound for asynchronous distributed control. It matches the l-fold expo-
nential complexity of our algorithm (l being the height of the architecture).

As an example, our decidability result covers client-server architectures where
a server communicates with clients, and server and clients have their own interac-
tions with the environment (cf. Figure 1). Our algorithm providing a controller
for this architecture runs in exponential time. Moreover, each controller adds
polynomially many bits to the state space of the process. Note also that this
architecture is undecidable for [18] (each process has inputs), and is not covered
by [6] (the action alphabet is not a co-graph), nor by [13] (there is no bound on
the number of actions performed concurrently).

Related work. The setting proposed by Pnueli and Rosner [18] has been thor-
oughly investigated in past years. By now we understand that, suitably using
the interplay between specifications and an architecture, one can get undecid-
ability results for most architectures rather easily. While specifications leading
to undecidability are very artificial, no elegant solution to eliminate them exists
at present.

The paper [11] gives an automata-theoretic approach to solving pipeline ar-
chitectures and at the same time extends the decidability results to CTL∗ spec-
ifications and variations of the pipeline architecture, like one-way ring architec-
tures. The synthesis setting is investigated in [12] for local specifications, meaning
that each process has its own, linear-time specification. For such specifications,
it is shown that an architecture has a decidable synthesis problem if and only if
it is a sub-architecture of a pipeline with inputs at both endpoints. The paper [5]
proposes information forks as an uniform notion explaining the (un)decidability
results in distributed synthesis. In [16] the authors consider distributed synthesis
for knowledge-based specifications. The paper [7] studies an interesting case of
external specifications and well-connected architectures.

environment

. . .
environment

environment

Fig. 1. Server/client architecture

2

Synthesis for asynchronous systems has been strongly advocated by Pnueli
and Rosner in [17]. Their notion of asynchronicity is not exactly the same as ours:
it means roughly that system/environment interaction is not turn-based, and
processes observe the system only when scheduled. This notion of asynchronicity
appears in several subsequent works, such as [20,9] for distributed synthesis.

As mentioned above, we do not know whether the control problem in our
setting is decidable in general. Two related decidability results are known, both
of different flavor that ours. The first one [6] restricts the alphabet of actions:
control with reachability condition is decidable for co-graph alphabets. This re-
striction excludes among others client-server architectures. The second result [13]
shows decidability by restricting the plant: roughly speaking, the restriction says
that every process can have only bounded missing knowledge about the other
processes (unless they diverge). The proof of [13] goes beyond the controller
synthesis problem, by coding it into monadic second-order theory of event struc-
tures and showing that this theory is decidable when the criterion on the plant
holds. Unfortunately, very simple plants have a decidable control problem but
undecidable MSO-theory of the associated event structure. Melliès [15] relates
game semantics and asynchronous games, played on event structures. More re-
cent work [3] considers finite games on event structures and shows a determinacy
result for such games under some restrictions.

Organization of the paper. The next section presents basic definitions. The two
consecutive sections present the algorithm and the matching lower bound.

2 Basic definitions and observations

Our control problem can be formulated in the same way as the Ramadge and
Wonham control problem but using Zielonka automata instead of standard finite
automata. We start by presenting Zielonka automata and an associated notion
of concurrency. Then we briefly recall the Ramadge and Wonham formulation
and our variant of it. Finally, we give a more convenient game-based formulation
of the problem.

2.1 Zielonka automata

Zielonka automata are simple parallel devices. Such an automaton is a parallel
composition of several finite automata, denoted as processes, synchronizing on
common actions. There is no global clock, so between two synchronizations, two
processes can do a different number of actions. Because of this Zielonka automata
are also called asynchronous automata.

A distributed action alphabet on a finite set P of processes is a pair (Σ, dom),
where Σ is a finite set of actions and dom : Σ → (2P \ ∅) is a location function.
The location dom(a) of action a ∈ Σ comprises all processes that need to syn-
chronize in order to perform this action. A (deterministic) Zielonka automaton
A = 〈{Sp}p∈P, sin, {δa}a∈Σ〉 is given by

3

– for every process p a finite set Sp of (local) states,
– the initial state sin ∈

∏
p∈P Sp,

– for every action a ∈ Σ a partial transition function δa :
∏
p∈dom(a) Sp

·→∏
p∈dom(a) Sp on tuples of states of processes in dom(a).

For convenience, we abbreviate a tuple (sp)p∈P of local states by sP , where
P ⊆ P. We also talk about Sp as the set of p-states and of

∏
p∈P Sp as global

states. Actions from Σp = {a ∈ Σ | p ∈ dom(a)} are denoted as p-actions.
A Zielonka automaton can be seen as a sequential automaton with the

state set S =
∏
p∈P Sp and transitions s a−→ s′ if (sdom(a), s

′
dom(a)) ∈ δa, and

sP\dom(a) = s′P\dom(a). By L(A) we denote the set of words labeling runs of this
sequential automaton that start from the initial state.

This definition has an important consequence. The location mapping dom
defines in a natural way an independence relation I: two actions a, b ∈ Σ are
independent (written as (a, b) ∈ I) if they involve different processes, that is,
if dom(a) ∩ dom(b) = ∅. Notice that the order of execution of two independent
actions (a, b) ∈ I in a Zielonka automaton is irrelevant, they can be executed as
a, b, or b, a - or even concurrently. More generally, we can consider the congruence
∼I on Σ∗ generated by I, and observe that whenever u ∼I v, the global state
reached from the initial state on u and v, respectively, is the same. Hence, u ∈
L(A) if and only if v ∈ L(A). Notice also that if u ∼I vx and x ∈ Σ∗ involves
no p-action, then the p-state reached on u and v, respectively, is the same.

The idea of describing concurrency by an independence relation on actions
goes back to the late seventies, to Mazurkiewicz [14] and Keller [10] (see also
[4]). An equivalence class [w]I of ∼I is called a Mazurkiewicz trace, it can be
also viewed as labeled pomset of a special kind. Here, we will often refer to a
trace using just a word w instead of writing [w]I . As we have observed L(A) is
a sum of such equivalence classes. In other words it is trace-closed.

Example 1. Consider the following, very simple, example with processes 1, 2, 3.
Process 1 has local actions a0, a1 and synchronization actions ci,j (i, j = 0, 1)
shared with process 2. Similarly, process 3 has local actions b0, b1 and synchro-
nization actions di,j (i, j = 0, 1) shared with process 2 (cf. Figure 2 where the
symbol ∗ denotes any value 0 or 1). Each process is a finite automaton and the
Zielonka automaton is the product of the three components synchronizing on
common actions. We have for instance (ai, bj) ∈ I and (ci,j , dk,l) /∈ I. The final
states are the rightmost states of each automaton. The automaton accepts traces
of the form aibjci,kdj,l with i = l or j = k.

Since the notion of a trace can be formulated without a reference to an
accepting device, it is natural to ask if the model of Zielonka automata is pow-
erful enough. Zielonka’s theorem says that this is indeed the case, hence these
automata are a right model for the simple view of concurrency captured by
Mazurkiewicz traces.

Theorem 1. [22] Let dom : Σ → (2P \ {∅}) be a distribution of letters. If
a language L ⊆ Σ∗ is regular and trace-closed then there is a deterministic

4

Fig. 2. A Zielonka automaton

Zielonka automaton accepting L (of size exponential in the number of processes
and polynomial in the size of the minimal automaton for L, see [8]).

One could try to use Zielonka’s theorem directly to solve a distributed control
problem. For example, one can start with the Ramadge and Wonham control
problem, solve it, and if a solution happened to respect the required indepen-
dence, then distribute it. Unfortunately, there is no reason for the solution to
respect the independence. Even worse, the following, relatively simple, result
says that it is algorithmically impossible to approximate a regular language by
a language respecting a given independence relation.

Theorem 2. [21] It is not decidable if, given a distributed alphabet and a regular
language L ⊆ Σ∗, there is a trace-closed language K ⊆ L such that every letter
from Σ appears in some word of K.

The condition on appearance of letters above is not crucial for the above
undecidability result. Observe that we need some condition in order to make the
problem nontrivial, since by definition the empty language is trace-closed.

2.2 The control problem

We can now formulate our control problem as a variant of the Ramadge and
Wonham formulation. We will then provide an equivalent description of the
problem in terms of games. While more complicated to state, this description is
easier to work with.

Recall that in Ramadge and Wonham’s control problem [19] we are given an
alphabet Σ of actions partitioned into system and environment actions: Σsys ∪
Σenv = Σ. Given a plant P we are asked to find a controller C such that
the product P × C satisfies a given specification. Here both the plant and the
controller are finite deterministic automata over Σ. Additionally, the controller
is required not to block environment actions, which in technical terms means
that from every state of the controller there should be a transition on every
action from Σenv.

Our control problem can be formulated as follows: Given a distributed alpha-
bet (Σ, dom) as above and a Zielonka automaton P , find a Zielonka automaton
C over the same distributed alphabet such that P ×C satisfies a given specifica-
tion. Additionally the controller is required not to block uncontrollable actions:

5

from every state of C every uncontrollable action should be possible. The impor-
tant point is that the controller should have the same distributed structure as
the plant. The product of the two automata, that is just the standard product,
means that plant and controller are totally synchronized, in particular commu-
nications between processes happen at the same time. Hence concurrency in the
controlled system is the same as in the plant. The major difference between the
controlled system and the plant is that the states carry the additional informa-
tion computed by the controller.

Example 2. Reconsider the automaton in Figure 2 and assume that ai, bj ∈ Σenv

are uncontrollable. So the controller needs to propose controllable actions ci,k and
dj,l, resp., in such a way that all processes reach their final state. In particular,
process 2 should not block. At first sight this may seem impossible to guarantee,
as it looks like process 1 needs to know what bj process 3 has received, or process
3 needs to know about the ai received by process 1. Nevertheless, a controller
exists. It consists of P1 proposing {cii} at state i, process P3 proposing {dj,1−j}
at state j and process P2 proposing all actions. If i = j then P2 reaches the final
state by the transition dk,∗, else by the transition d∗,i.

It will be more convenient to work with a game formulation of this problem.
Instead of talking about controller we will talk about distributed strategy in
a game between system and environment. A plant defines a game arena, with
plays corresponding to initial runs of A. Since A is deterministic, we can view a
play as a word from L(A) - or a trace, since L(A) is trace-closed. Let Plays(A)
denote the set of traces associated with words from L(A).

A strategy for the system will be a collection of individual strategies for each
process. The important notion here is the view each process has about the global
state of the system. Intuitively this is the part of the current play that the process
could see or learn about from other processes during a communication with them.
Formally, the p-view of a play u, denoted viewp(u), is the smallest trace [v]I such
that u ∼I vy and y contains no action from Σp. We write Playsp(A) for the set
of plays that are p-views:

Playsp(A) = {viewp(u) | u ∈ Plays(A)} .

A strategy for a process p is a function σp : Playsp(A)→ 2Σ
sys
p , where Σsys

p =
{a ∈ Σsys | p ∈ dom(a)}. We require in addition, for every u ∈ Playsp(A), that
σp(u) is a subset of the actions that are possible in the p-state reached on u. A
strategy is a family of strategies {σp}p∈P, one for each process.

The set of plays respecting a strategy σ = {σp}p∈P, denoted Plays(A, σ),
is the smallest set containing the empty play ε, and such that for every u ∈
Plays(A, σ):

1. if a ∈ Σenv and ua ∈ Plays(A) then ua is in Plays(A, σ);
2. if a ∈ Σsys and ua ∈ Plays(A) then ua ∈ Plays(A, σ) provided that a ∈
σp(viewp(u)) for all p ∈ dom(a).

6

Intuitively, the definition says that actions of the environment are always possi-
ble, whereas actions of the system are possible only if they are allowed by the
strategies of all involved processes. As in [13] (and unlike [6]) our strategies are
process-based. That is, a controllable action a with dom(a) = {p, q} is allowed
from (sp, sq) if it is proposed by process p in state sp and by process q in state
sq. Before defining winning strategies, we need to introduce infinite plays that
are consistent with a given strategy σ. Such plays can be seen as (infinite) traces
associated with infinite, initial runs of A satisfying the two conditions of the
definition of Plays(A, σ). We write Plays∞(A, σ) for the set of finite or infinite
such plays. A play from Plays∞(A, σ) is also denoted as σ-play.

A play u ∈ Plays∞(A, σ) is called maximal, if there is no action c such
that uc ∈ Plays∞(A, σ). In particular, u is maximal if viewp(u) is infinite for
every process p. Otherwise, if viewp(u) is finite then p cannot have enabled
local actions (either controllable or uncontrollable). Moreover there should be
no communication possible between any two processes with finite views in u.

In this paper we consider local reachability winning conditions. For this,
every process has a set of target states Fp ⊆ Sp. We assume that states in
Fp are blocking, that is they have no outgoing transitions. This means that if
(sdom(a), s

′
dom(a)) ∈ δa then sp /∈ Fp for all p ∈ dom(a).

Definition 1. The control problem for a plant A and a local reachability con-
dition (Fp)p∈P is to determine if there is a strategy σ = (σp)p∈P such that every
maximal trace u ∈ Plays∞(A, σ) ends in

∏
p∈P Fp (and is thus finite). Such

traces and strategies are called winning.

As already mentioned, we do not know if this control problem is decidable
in general. In this paper we put one restriction on possible communications
between processes. First, we impose two simplifying assumptions on the dis-
tributed alphabet (Σ, dom). The first one is that all actions are at most binary:
|dom(a)| ≤ 2, for every a ∈ Σ. The second requires that all uncontrollable ac-
tions are local: |dom(a)| = 1, for every a ∈ Σenv. So the first restriction says that
we allow only binary synchronizations. It makes the technical reasoning much
simpler. The second restriction reflects the fact that each process is modeled
with its own, local environment.

Definition 2. A distributed alphabet (Σ, dom) with unary and binary actions
defines an undirected graph CG with node set P and edges {p, q} if there exists
a ∈ Σ with dom(a) = {p, q}, p 6= q. Such a graph is called communication graph.

3 The upper bound for acyclic communication graphs

We fix in this section a distributed alphabet (Σ, dom). According to Definition 2
the alphabet determines a communication graph CG. We assume that CG is
acyclic and has at least one edge. This allows us to choose a leaf r ∈ P in CG,
with {q, r} an edge in CG. Throughout this section, r denotes this fixed leaf
process and q its parent process. Starting from a control problem with input

7

A, (Fp)p∈P we define below a control problem over the smaller (acyclic) graph
CG′ = CGP\{r}. The construction will be an exponential-time reduction from the
control problem over CG to a control problem over CG′. If we represent CG as a
tree of depth l then applying this construction iteratively we will get an l-fold
exponential algorithm to solve the control problem for CG architecture.

The main idea of the reduction is simple: process q simulates the behavior
of process r. The reason why a simulation can work is that after each synchro-
nization between q and r, the views of both processes are identical, and between
two such synchronizations r evolves locally. But the construction is more delicate
than this simple description suggests, and needs some preliminary considerations
about winning strategies.

We start with a lemma showing how to restrict the winning strategies. For
p, p′ ∈ P let Σp,p′ = {a ∈ Σ | dom(a) = {p, p′}}. So Σp,p′ is the set of synchro-
nization actions between p and p′. Moreover Σp,p is just the set of local actions
of p. We write Σloc

p instead of Σp,p and Σcom
p = Σp \ Σloc

p . Recall that in the
lemma below r is the fixed leaf process, and q its parent.

Lemma 1. If there exists some winning strategy for A, then there is one, say
σ, such that for every u ∈ Plays(A, σ) the following hold:

1. If an uncontrolable action is possible from a state sr of process r then for
every play u with stater(u) = sr we have σr(viewr(u)) = ∅.

2. For every process p and X = σp(viewp(u)), we have either X = {a} for
some a ∈ Σloc

p or X ⊆ Σcom
p .

3. Let X = σq(viewq(u)) with X ⊆ Σcom
q . Then either X ⊆ Σq,r or X ⊆

Σcom
q \Σq,r holds.

Proof. The first item is immediate, since uncontrollable actions are alwyas
possible. For the second item we modify σ into σ′ as follows. If σp(u) contains
some local action, then we choose one, say a, and put σ′p(u) = {a}. We do this
for every process p and show that the resulting strategy σ′ is winning. Suppose
that v ∈ Plays(A, σ′) is maximal, but not winning. Clearly v is a σ-play, but
not a maximal one, since σ is winning. Thus, there is vc ∈ Plays(A, σ) for some
processes p 6= p′ and some c ∈ Σp,p′ . By definition of σ′ it means that either
σp(viewp(v)) or σp′(viewp′(v)) contains some local action, say a ∈ σp(viewp(v))
and σ′p(viewp(v)) = {a}. But then va is a σ′-play, a contradiction with the
maximality of v.

For the last item we can assume that σq and σr always propose either a local
action or a set of communication actions. Now given a winning strategy σ we
will produce a winning strategy σ′ satisfying the condition of the lemma, by
modifying only σr.

Assume that u ∈ Playsq(A, σ) with sq = stateq(u), and σq(u) = B ∪ C,
where B ⊆ Σq,r and C ⊆ Σcom

q \Σq,r with both B,C non-empty. We define σ′q
by cases:

σ′q(u) =

{
C there exists (sr, A) ∈ Syncσr (u) with (sr, A) ./ (sq, B) = ∅,
B otherwise.

8

The idea behind the definition above is simple: if there is a possible local future
for r that makes synchronization with q impossible (first case), then q’s strategy
can as well propose only communication with other processes than r – since
such communication leads to winning as well. If not, q’s strategy can offer only
communication with r, since this choice will never block.

We show now that σ′ is winning. Assume by contradiction that v is a maximal
σ′-play, but not winning. It is then a σ-play, but not a maximal one. So there
must be some a ∈ Σcom

q such that va ∈ Plays(A, σ). In particular, q’s state
after v is not final. Let u = viewq(v), sq = stateq(u), and σq(u) = B ∪ C with
B ⊆ Σq,r and C ⊆ Σcom

q \Σq,r. We have two cases.
Suppose σ′q(u) = C, so we are in the first case of the above above. Thus

there exists (sr, A) ∈ Syncσr (u) such that (sr, A) ./ (sq, B) = ∅. By definition of
Syncσr we find x ∈ (Σloc

r)∗ such that u′ = ux is a σ-play and σr(viewr(u′)) = A.
Since u = viewq(u′), we have σq(viewq(u′)) = B ∪ C. This means that no
communication between q and r is possible after u′. No local action of q is
possible after u′ since u = viewq(v), and we have assumed that v is a maximal
σ′-play. Finally, by the choice of x, no local action of process r is possible from
u′. To obtain a contradiction it suffices to show that u′ can be extended to a
maximal σ-play by adding a sequence of actions w of processes other than q and
r. This will do as stateq(u′) is not accepting by assumption, and we will get a
maximal σ-play that is not winning. To find the desired w observe that v ∼ uwy
where w ∈ (Σ \ (Σq ∪ Σr))∗ and y ∈ Σ∗r . So y represents the actions of r after
the last action of q in v, and w represents the actions of other processes. Taking
v′ = uwx we observe that v′ ∼ u′w and that v′ is a maximal σ-play. So we have
found the desired w.

The second case is when σ′q(u) = B. This means that for all (sr, A) ∈
Syncσ` (u), we have (sr, A) ./ (sr, B) 6= ∅. Since v is a maximal σ′-play, no local
action of r is possible. This means that (sr, A) := (stater(v), σr(viewr(v))) ∈
Syncσr (u). But then (sr, A) ./ (sq, B) 6= ∅. Since σ′q(u) = B there is some pos-
sible communication between q and r after v, so v is not maximal w.r.t. σ′.

�
The following definition associates with a strategy σ and the leaf process r all

the outcomes of local plays of r such that r is either waiting for a synchronization
with q or is in a final (hence blocking) state. For an initial run u of A we denote
by statep(u) the p-state reached by A on u.

Definition 3. Given a strategy σ and a σ-play u, let Syncσr (u) ⊆ Sr ×P(Σq,r)
be the set:

Syncσr (u) = {(sr, A) | ∃x ∈ (Σloc
r)∗ . ux is a σ-play,

stater(ux) = sr, σr(viewr(ux)) = A ⊆ Σq,r, and
sr final or A 6= ∅} .

Observe that if σ allows r to reach a final state sr from u without communication,
then (sr, ∅) ∈ Syncσr (u). This is so, since final states are assumed to be blocking.

For the game reduction we need to precalculate all possible sets Syncσr . These
sets will be actually of the special form described below.

9

Definition 4. Let sr be a state of r. We say that T ⊆ Sr × P(Σqr) is an
admissible plan in sr if there is a play u with stater(u) = sr, and a strategy σ
such that (i) T = Syncσr (u), (ii) every σ-play of r from sr reaches a final state
or a state where σ proposes some communication action, and (iii) one of the
following holds:

– A 6= ∅ for every (tr, A) ∈ T , or
– tr ∈ Fr and A = ∅ for every (tr, A) ∈ T .

In the second case T is called a final plan.

It is not difficult to see that we can compute the set of all admissible plans. In
the above definition we do not ask that σ is winning in the global game, but just
that it can locally bring r to one of the situations described by T . So verifying
if T is an admisible plan simply amounts to solve a 2-players reachability game
on process r against the (local) environment.

Lemma 2 below allows to deduce that the sets Syncσr are admissible plans
whenever σ is winning. For (sr, A), (sq, B) with sq ∈ Sq, sr ∈ Sr, A,B ⊆ Σq,r
let (sr, A) ./ (sq, B) := {a ∈ A ∩ B | δa(sq, sr) is defined}. So (sr, A) ./ (sq, B)
contains all actions belonging to both A and B, that are enabled in the state
(sq, sr).

Lemma 2. If σ is a winning strategy satisfying Lemma 1 then for every σ-play
u in A we have:

1. if there is some σ-play uy with y ∈ (Σ \ Σr)∗ and stateq(uy) ∈ Fq then
Syncσr (u) is a final plan;

2. if there is some σ-play uy with y ∈ (Σ \ Σr)∗, sq = stateq(uy), σq(uy) =
B ⊆ Σq,r, and B 6= ∅ then for every (tr, A) ∈ Syncσr (u) we have (sq, B) ./
(tr, A) 6= ∅.

In particular, Syncσr (u) is always an admissible plan.

Proof. Take y as in the statement of the lemma and suppose stateq(uy) ∈ Fq.
Take (tr, A) ∈ Syncσr (u). By definition this means that there is x ∈ (Σloc

r)∗ such
that ux is a σ-play, stater(ux) = tr, and σr(viewr(ux)) = A with A ⊆ Σq,r.
Observe that uyx is also a σ-play. Hence tr should be final because after uyx
process r can do at most communication with q, but this is impossible since q is
in a final state. Since tr is final, it cannot propose an action, hence A = ∅. This
shows the first item of the lemma.

For the second item of the lemma take y, sq, B, and (tr, A) as in the assump-
tion. Once again we get x ∈ (Σloc

r)∗ such that ux is a σ-play, stater(ux) = tr,
and σr(viewr(ux)) = A with A ⊆ Σq,r. Once again uyx is a σ-play. We have
that sq is not final since B 6= ∅. As σ is winning, the play uyx can be extended
by an action of q. But the only such action that is possible is a communication
between q and r. Since A and B are the communication sets proposed by σr and
σq, respectively, we must have (sq, B) ./ (tr, A) 6= ∅. �

The new plant A′. We are now ready to define the reduced plant A′ that is the
result of eliminating process r. Let P′ = P\{r}. We haveA′ = 〈{S′p}p∈P′ , s

′
in, {δ′a}a∈Σ′〉

where the components will be defined below.

10

The states of process q in A′ are of one of the following types:

〈sq, sr〉 , 〈sq, T 〉 , 〈sq, T, B〉 ,

where sq ∈ Sq, sr ∈ Sr, T ⊆ Sr × P(Σq,r) is an admissible plan, B ⊆ Σq,r. The
new initial state for q is 〈(sin)q, (sin)r〉.

For every p 6= q, we let S′p = Sp and F ′p = Fp. The local winning condition
for q becomes F ′q = Fq × Fr ∪ {〈sq, T 〉 | sq ∈ Fq, and T is a final plan}.

The set of actions Σ′ is Σ \Σr, plus additional local q-actions that we intro-
duce below. All transitions δa with dom(a) ∩ {q, r} = ∅ are as in A. Regarding
q we have the following transitions:

1. If not in a final state then process q chooses an admissible plan:

〈sq, sr〉
ch(T)−→ 〈sq, T 〉,

where T is an admissible plan in sr, and 〈sq, sr〉 /∈ Fq × Fr.
2. Local action of q:

〈sq, T 〉
a−→ 〈s′q, T 〉, if sq

a−→ s′q in A .

3. Synchronization between q and p 6= r:

(〈sq, T 〉, sp)
b−→ (〈s′q, T 〉, s′p), if (sq, sp)

b−→ (s′q, s
′
p) .

4. Synchronization between q and r. Process q declares the communication
actions with r:

〈sq, T 〉
ch(B)−→ 〈sq, T, B〉, if B ⊆ Σq,r

when sq is not final, T is not a final plan, and for every (tr, A) ∈ T we have
(tr, A) ./ (sq, B) 6= ∅.
Then the environment can choose the target state of r and a synchronization
action a ∈ Σq,r:

〈sq, T, B〉
(a,tr)−→ 〈s′q, s′r〉 if (sq, tr)

a−→ (s′q, s
′
r) in A

for every (a, tr) such that (tr, A) ∈ T for some A, and a ∈ A ∩ B. Notice
that the complicated name of the action (a, tr) is needed to ensure that the
transition is deterministic.

To summarize the new actions of process q in plant A′ are:

– ch(T) ∈ Σsys, for every admissible plan T ,
– ch(B) ∈ Σsys, for each B ⊆ Σq,r,
– (a, tr) ∈ Σenv for each a ∈ Σq,r, tr ∈ Sr.

11

The proof showing that this construction is correct provides a translation
from winning strategies in A to winning strategies in A′, and back. To this
purpose we rely on a translation from plays in A to plays in A′. A (finite or
infinite) play u in A is a trace that will be convenient to view as a word of the
form

u = y0x0a1 · · · aiyixi ai+1 . . .

where for i ∈ N we have that: ai ∈ Σq,r is communication between q and r;
xi ∈ (Σloc

r)∗ is a sequence of local actions of r; and yi ∈ (Σ \Σr)∗ is a sequence
of actions of other processes than r. Note that xi, yi are concurrent, for each i.
We will write u|ai for the prefix of u ending in ai. Similarly u|yi for the prefix
ending with yi; analogously for xi.

Fix a strategy σ in A. With a word u as above we will associate the word

χ(u) = ch(T0)y0 ch(B0)(a1, t
1
r) · · · (ai, tir) ch(Ti) yi ch(Bi)(ai+1, t

i+1
r) . . .

where for every i = 0, 1, . . . :

– Ti = Syncσr (u|ai) and T0 = Syncσr (ε);
– Bi = σq(viewq(u|yi));
– tir = stater(u|xi).

We then construct a strategy that plays χ(u) in A′ instead of u in A. In Figure 3
we have pictorially represented which parts of u determine which parts of χ(u).

u = y0 x0 a1 y1 x1 a2

χ(u) = ch(T0) y0 ch(B0) (a1, t
1
r) ch(T1) y1 ch(A1) (a2, t

2
r) ch(T2)

Fig. 3. Definition of χ(u)

The next lemma follows directly from the definition of the reduction from A
to A′.

Lemma 3. If u ends in a letter from Σq,r then we have the following

– stateq(χ(u)) = 〈stateq(u), stater(u)〉.
– statep(χ(u)y) = statep(uy) for every p 6= q and y ∈ (Σ \Σq,r)∗.
– stateq(χ(u) ch(T)y) = 〈stateq(uy), T 〉 for every y ∈ (Σ \Σq,r)∗.
– stateq(χ(u) ch(T)y ch(B)) = 〈stateq(uy), T, B〉 for every y ∈ (Σ \Σq,r)∗.

From σ in A to σ′ in A′. We are now ready to define σ′ from a winning strategy
σ. We assume that σ satisfies the property stated in Lemma 1. We will define σ′

only for certain plays and then show that this is sufficient.
Consider u′ such that u′ = χ(u) for some σ-play u ending in a letter from

Σq,r. We have:

12

– If stateq(u′) /∈ Fq then σ′q(viewq(u′)) = {ch(T)} where T = Syncσr (u).
– For every process p 6= q we put σ′p(viewp(u′ ch(T)y)) = σp(viewp(uy)) for
y ∈ (Σ \Σq,r)∗.

– For y ∈ (Σ \Σq,r)∗ and B = σq(viewq(uy)) we define

σ′q(viewq(u′ ch(T)y)) =

{
B if B ∩Σq,r = ∅
{ch(B)} if B ⊆ Σq,r

– σ′q(viewq(u′ ch(T)y ch(B))) = ∅.

Observe that in the last case the strategy proposes no move as there are only
moves of the environment from a position reached on a play of this form.

The next lemma states the correctness of the construction.

Lemma 4. If σ is a winning strategy for A, (Fp)p∈P then σ′ is a winning strategy
for A′, (F ′p)p∈P′ .

Proof. We will show inductively that for every σ′-play u′ ending in a letter
of the form (a′, t′r) there is a σ-play u such that u′ = χ(u). Then we will show
that every maximal σ′-play is winning.

We start with the induction step, later we will explain how to do the induction
base. Let us take u′ = χ(u) as in the induction hypothesis. By Lemma 3 we have
stateq(u′) = 〈stateq(u), stater(u)〉.

Consider a possible, σ′-compatible, extension of u′ till the next letter (a, tr).
It is of the form u′ ch(T)y ch(B)(a, tr) where y ∈ (Σ \Σr)∗. We will show that
it is of the form χ(uyxa) for some x ∈ (Σloc

r)∗, and that uyxa is a σ-play.

– By definition of the automaton A′ and the strategy σ′ we have σ′(u′) =
{ch(T)} with T = Syncσr (u).

– Since σ′ is the same as σ on actions from Σ \Σr, we get that uy is a σ-play.
– Concerning ch(B), by the definition of σ′ we have that B = σq(viewq(uy)).

Then by the definition of A′ we get some A such that (tr, A) ∈ T , and
a ∈ (tr, A) ./ (sq, B) with sq = stateq(uy). As T = Syncσr (u) we can find
x ∈ (Σloc

r)∗ such that ux is a σ-play, stater(ux) = tr and σr(ux) = A. We
get that uyxa is a σ-play with χ(uyxa) = u′ ch(T)y ch(B)(a, tr), and we are
done.

The induction base is exactly the same as the induction step taking u′ and u to
be the empty sequence.

To finish the lemma we need to show that every maximal σ′-play is win-
ning. For this we examine all possible situations where such a play can end. We
consider plays u′ and u as at the beginning of the lemma.

If u′ itself is maximal then stateq(u′) is final because otherwise ch(T) would
be possible. Hence, by Lemma 3 stateq(u) and stater(u) are final. Since σ and σ′

are the same on processes other than q and r, no action a with dom(a)∩{q, r} = ∅
is possible from u. It follows that u is a maximal σ-play. Since σ is winning,
statep(u) is final for every process p. By Lemma 3, u′ is winning too.

13

Suppose now that u′ ch(T)y is maximal for some y ∈ (Σ \Σr)∗. By the same
reasoning as above there is no σ-play extending uy by an action from Σ \ Σr.
We have two cases

– If stateq(uy) is final then T is a final plan by Lemma 2. So there is x ∈ (Σloc
r)∗

such that stater(uyx) is final. Then uyx is a maximal σ-play. Since σ is
winning, after uyx all processes are in the final state. By Lemma 3, u′ ch(T)y
is winning too.

– If stateq(uy) is not final then σ(uy) ⊆ Σq,r 6= ∅ since σ is assumed to satisfy
Lemma 1, and communication with other processes than r is not possible.
By Lemma 2 T cannot be final and action ch(B) for B = σ(uy) is possible
according to σ′. A contradiction.

A play of the form u′ch(T)y ch(B) cannot be maximal since some local ac-
tions of the form (a, tr) are always possible. This covers all the cases and com-
pletes the proof. �

From σ′ in A′ to σ in A. From a strategy σ′ = (σ′p)p∈P′ for A′ we define a
strategy σ = (σp)p∈P for A. We assume that σ′ satisfies Lemma 1. We consider
u ending in an action from Σq,r such that χ(u) is a σ′-play. First, for every
p 6= q, r and every y ∈ (Σ \Σr)∗ we set

σp(viewp(uy)) = σ′p(viewp(χ(u)y)).

If stateq(χ(u)) is not final then σ′(χ(u)) = {ch(T)} for some admissible plan T
in state stater(χ(u)). This means that T = Syncρr(u) for some strategy ρ. In this
case:

– for every x ∈ (Σloc
r)∗ we set σr(ux) = ρr(ux);

– for every y ∈ (Σ \Σr)∗ we consider X = σ′q(viewq(χ(u) ch(T)y)) and set

σq(viewq(uy)) =

{
B if X = {ch(B)}
X otherwise

Lemma 5. If σ′ is a winning strategy for A′, (F ′p)p∈P′ then σ is a winning strat-
egy for A, (Fp)p∈P.

Proof. Suppose that u is σ-play ending in an action from Σq,r and such that
χ(u) is a σ′-play. We first show that for every extension of u to a σ-play uyxa
with y ∈ (Σ \ Σr)∗, x ∈ (Σloc

r)∗, and a ∈ Σq,r, its image χ(uyxa) is a σ′-play.
Then we will show that every maximal σ-play is winning.

Take uyxa. By Lemma 3 stateq(χ(u)) is not final, so we have σ′(χ(u)) =
{ch(T)}. Then T = Syncσr (u) by the definition of σ. Again directly from the
definition we have that χ(u) ch(T)y is a σ′-play. By definition of σ we have then
that χ(u) ch(T)y ch(B) is a σ′-play for B = σq(viewq(uy)). Finally, we need to
see why (a, tr) with tr = stater(ux) is possible. Since T = Syncσr (u) we get

14

that (tr, σr(viewr(ux))) ∈ T . Then a ∈ σr(viewr(ux)) ∩ B, and in consequence
χ(u) ch(T)y ch(B)(a, tr) is possible by Lemma 3 and the definition of A′.

It remains to verify that every maximal σ-play is winning. Consider a max-
imal σ-play uyx where u ends in an action from Σq,r, x ∈ (Σloc

r)∗, and y ∈
(Σ \Σr)∗ (this includes the cases when x, or y are empty). We look at χ(u) and
consider two situations:

– If no ch(T) is possible from χ(u) then stateq(χ(u)) is final. This means that
x is empty and stateq(u) and stater(u) are both final. It is then clear that
χ(u)y is a maximal σ′-play. Since σ′ is winning, every process is in a final
state. So uy is a winning play in A.

– If χ(u) ch(T) is a σ′-play for some T then again we have two cases:
• If sr = stater(uyx) is final then (sr, ∅) ∈ T by the definition of σ. As T

is an admissible plan, T is final. After χ(u)y no action other than ch(B)
is possible. But ch(B) is not possible either since T is final. Hence χ(u)y
is a maximal σ′-play. So all the states reached on χ(u)y are final. By
Lemma 3 we deduce the same for uyx, hence uyx is winning.

• If sr is not final then σr(viewr(uyx)) = A ⊆ Σq,r for A 6= ∅ (local actions
of r are not possible, since uyx is maximal). Hence (sr, A) ∈ T , and T
is not final. This means that sq = stateq(χ(u) ch(T)y) is not final. So it
is possible to extend the σ′-play with an action of the form ch(B). But
by the definition of A′ we have (sq, B) ./ (sr, A) 6= ∅. Hence uyx can be
extended by a communication between q and r on a letter from B ∩ A;
a contradiction.

�

Together, Lemmas 4 and 5 show Theorem 3.

Theorem 3. Let r be the fixed leaf process with P′ = P \ {r} and q its par-
ent. Then the system has a winning strategy for A, (Fp)p∈P iff it has one for
A′, (F ′p)p∈P′ . All the components of A′ are identical to those of A, apart that for
the process q. The size of q in A′ is O(Mq2Mr|Σqr|), where Mq and Mr are the
sizes of processes q and r in A, respectively.

Remark 1. Note that the bound on |A′| is better than |A| + O(Mr2M`2
|Σr`|)

obtained by simply counting all possible states in the description above. The
reason is that we can restrict admissible plans to be (partial) functions from S`
into P(Σr,`). That is, we do not need to consider different sets of communication
actions for the same state in S`.

Let us reconsider the example from Figure 1 of a server with k clients. Ap-
plying our reduction k times we reduce out all the clients and obtain the single
process plant whose size is Ms2(M1+···+Mk)c where Ms is the size of the server,
Mi is the size of client i, and c is the maximal number of communication actions
between a client and the server.

15

Theorem 4. The control problem for distributed alphabets with acyclic commu-
nication graph is decidable. There is an algorithm for solving the problem (and
computing a finite-state controller, if it exists) whose working time is bounded
by a tower of exponentials of height equal to half of the diameter of the graph.

Our reduction algorithm can be actually used to compute a (finite-state)
distributed controller:

Corollary 1. There is an algorithm which solves the control problem for dis-
tributed alphabets whose communication graph is acyclic and if the answer is
positive, the algorithm outputs a controller satisfying the following property: For
every process p and every state s of the controller Ac, the set of actions allowed
for process p in state s is the set of all uncontrollable local actions plus:

– either a unique controllable local action,
– or a set of controllable actions shared with a unique neighbour q of p.

4 The lower bound

We show in this section that in the simplest non-trivial case of acyclic commu-
nication graphs, consisting of a line of three processes, the control problem is
already Exptime-complete. In the general case the complexity of the control
problem grows as a tower of exponentials function with respect to the size of the
diameter of the communication graph.

4.1 Height one

Proposition 1. The control problem for the communication graph 1−−−−−2−−−−−3
is Exptime-complete.

Proof. The EXPTIME upper bound follows from Theorem 3, as the height
of the tree is 1. So the reduction is applied twice from process 2, first simulating
process 1, then simulating process 3. Finally, a reachability game is solved on an
exponential size arena.

For the lower bound we simulate an alternating polynomial space Turing
machine M on input w. We assume that M has a unique accepting, blocking
configuration (say with blank tape, head leftmost). The goal now is to let pro-
cesses 1, 3 guess an accepting computation tree of M on w. The environment
will be able to choose a branch in this tree and challenge each proposed config-
uration. Process 2 will be used to validate tests initiated by the environment. If
a test reveals an inconsistency, process 2 blocks and the environment wins. To
summarize the idea of the construction: processes 1 and 3 generate sequences of
configurations (encoded by local actions), separated by action $ and $, respec-
tively, shared with process 2. Both start with the initial configuration of M on
w. Transitions from existential states are chosen by the plant, and those from
universal ones by the environment. At a given time, process 1 has generated

16

the same number of configurations is process 3, or process 3 is about generating
one configuration more. In the first case, the environment can check that it is
the same configuration; and in the second, it can check that it is the successor
configuration. In this way, 1 and 3 need to generate the same branch of the run
tree.

A computation of M with space bound n is a sequence C0 ` C1 ` · · · ` CN ,
where each configuration Ci is encoded as a word from Γ ∗(Q× Γ)Γ ∗ of length
n. Since M is alternating, its acceptance is expressed by the existence of a tree
of accepting computations.

Processes 1 starts by generating the initial configuration on w, followed by
a synchronization symbol $ with process 2. After this, process 1 generates a
sequence of configurations separated by $. When generating a configuration,
process 1 remembers M ’s state q and the symbol A under the head. All transi-
tions so far are controllable. After generating $ process 1 goes into a state where
the outgoing transitions are labeled by M ’s transitions on (q, A) (if the config-
uration was not blocking). These transitions are controllable if q is existential,
and uncontrollable if q is universal. The transition chosen, either by the plant or
the environment, is stored in the state up to the next synchronization symbol.
Finally, if the current configuration is final then process 1 synchronizes with 2
on $F (instead of $) and goes into an accepting state.

The description is similar for process 3, with Γ ,Q, $, $F instead of Γ,Q, $, $F .

Finally, process 2 has two main states, eq and succ, with transitions eq $−→ succ
and succ $−→ eq . From state eq it can go to an accepting state after reading $F
followed by $F .

C0

C0

C1

C1

C2

C2

(i, α)

(j, β)
$

$

$

$
1

3

2

Fig. 4. Environment chooses positions i, j in CP , CP with P = 2. System wins
iff α = β or i 6= j.

The environment can initiate 2 kinds of tests: equality and successor test.
The equality test checks that CP = CP and the successor test checks that
CP ` CP+1.

For the equality test, the environment can choose a position i within CP
and a position j in CP . Formally, for each (controllable) outgoing transition

s
α−→ of process 1 with α ∈ Γ ∪ (Q × Γ) there is a transition s

(↓,α)−→ (↓, i, α)
with (↓, α) uncontrollable. The target state (↓, i, α) records the tape position i
(known from s) and the tape symbol α. In state (↓, i, α) process 1 synchronizes
with 2 on action (↓, i, α), and then stops (accepting). The same for process 3
with uncontrollable actions (↓, β), and synchronization action (↓, j, β).

17

From state eq process 2 can perform a synchronization (↓, j, β) with process
3 and then one with process 1 on any (↓, i, α), provided i 6= j or α = β, and
then accept. This is the case where the environment has chosen positions on
both lines 1 and 3 (see Figure 4). If the environment has chosen a test transition
in CP but not in CP (or vice-versa), process 2 will accept (and stop), too.The
successor test is similar.

The successor test is similar, it consists in choosing a position within CP and
one within CP+1. The information checked by process 2 includes the symbols
α−, α, α+ of CP at positions i− 1, i, i+ 1 resp., so process 1 goes on transition
(↘, α) into a state of the form (i, α, α−, α+). In state t process 2 can perform a
synchronization on (↘, i, α, α−, α+) with process 1, and then one with process
3 on (↘, j, β), provided i 6= j or the symbols α−, α, α+ are inconsistent with the
new middle symbol β according to M ’s transition relation.

The reader may notice that we need to guarantee that the universal tran-
sitions chosen by the environment are the same, for processes 1 and 3. This
can be enforced by communicating the transitions with actions $, $ to process
2, who is in charge of checking. Moreover, note that the action alphabet above
is not constant, in particular it depends on n. This can be fixed by replacing
each action of type (↓, i, α) (or alike) by a sequence of synchronization actions
where i is transmitted bitwise. By alternating the bits transmitted by 1 and 3,
respectively, process 2 can still compare indices i, j.

Note also that configurations CP , CP are generated in parallel, and so are
CP and CP+1. This is crucial for the correctness. �

Lemma 6. The control problem defined in Proposition 1 has a winning strategy
if and only if M accepts w.

Proof. We assume that there is a winning strategy in the control game. Let
us consider a maximal winning play without tests, where process 1 generates
C0$C1$ · · ·CN$F and process 3 generates C0$C1$ · · ·CN ′$F . By construction,
each of the Cp and Cq are configurations of length n, C0 = C0 is the initial
configuration of M on w, and CN = CN ′ is the accepting configuration. Suppose
by contradiction that C0, . . . , CN is not a run of M . Assume first that Cp = Cp
for all 0 ≤ p < P , but CP−1 6` CP . In this case the environment could have
chosen the first position i where CP does not correspond to a successor of CP−1,
and process 2 would have rejected after the synchronization (↘, i, α, α−, α+)
followed by (↘, i, β), contradicting the fact that the strategy is winning. The
second case is where Cp = Cp for all 0 ≤ p < P , but CP 6= CP . Then the
environment could have chosen the first position i where CP and CP differ,
and process 2 would have rejected after the synchronization (↓, i, β) followed by
(↓, i, α) with α 6= β, again a contradiction. This means that C0 ` C1 ` · · ·CN .
Moreover, CN = CN is final since process 1 is in a final state (thus also N = N ′).

For the converse, we assume that M accepts w. Let the strategy of processes
1 and 3 consist of generating an accepting run tree of M on w. For existential
configurations, say that both 1 and 3 choose the first winning transition among
all possibilities. Every maximal play without environment test corresponds to

18

an accepting run C0 ` C1 ` · · ·CN , hence the play reaches a final state on
every process. Every maximal play with test is of one of the following forms: (1)
C0C0$$ · · ·CP−1CP−1$$xy, where x and y are prefixes of CP and CP , followed
by ↓-actions, or (2) C0C0$$ · · ·CP−1$xy, where x is prefix of CP−1 and y a
prefix of CP , followed by ↘-actions. In both cases, the environment’s challenge
fails, since CP = CP and CP−1 ` CP . �

4.2 Lower bound: general case

Our main objective now is to show how using a communication architecture of
diameter l one can code a counter able to represent numbers of size Tower(2, l)
(with Tower(n, l) = 2Tower(n,l−1) and Tower(n, 1) = n). Then an easy adap-
tation of the construction will allow to code computations of Turing machines
with the same space bound as the capabilities of counters.

We fix n and will be first interested to define n-counters. Let Σi = {ai, bi}
for i = 1, . . . , n. We will think of ai as 0 and bi as 1, mnemonically: 0 is round
and 1 is tall. Let Σ#

i = Σi∪{#i} be the alphabet extended with an end marker.
A 1-counter is just a letter from Σ1 followed by #1. The value of a1 is 0, and

the one of b1 is 1. Following this intuition we write (1 − c) to denote b if c = a
and vice versa.

An (l + 1)-counter is a word

x0u0x1u1 · · ·xk−1uk−1#l+1 (1)

where k = Tower(2, l) and for every i, letter xi ∈ Σl+1 and ui is an l-counter
with value i. The value of the above (l + 1)-counter is

∑
i=0,...,k xi2

i. The end
marker #l+1 will be convenient in the construction that follows. An iterated
(l + 1)-counter is a nonempty sequence of (l + 1)-counters.

For every l we will define a plant Cl such that the winning strategy for the
system in Cl will need to produce an iterated l-counter.

For l = 1 this is very easy, we have only one process in C1 and all transitions
are controllable.

�nalinitial

This automaton can repeatedly produce a 1-counter and eventually go to the
accepting state. The letter on which it goes to accepting state will be not im-
portant, so we put >1. Recall that our acceptance condition is that all processes
reach a final state from which no actions are possible.

Suppose that we have already constructed Cl. We want now to define Cl+1, a
plant producing an iterated (l+1)-counter, i.e., a sequence of l-counters with val-
ues 0, 1, . . . , (Tower(2, l)−1), 0, 1, We assume that the communication graph
of Cl has the distinguished root process rl. Process rl is in charge of generating an
iterated l-counter. From Cl we will construct two plants Dl and Dl, over disjoint
sets of processes. The plant Dl is obtained by adding a new root process rl+1

19

that communicates with rl, similarly for the plant Dl with root process rl+1. The
plant Cl+1 will be the composition of Dl and Dl with a new verifier process that
we name Vl+1. The root process of the communication graph of Cl+1 will be rl+1.
The schema of the construction is presented in Figure 5. Process rl+1, as well as
rl+1, are in charge of generating an iterated (l + 1)-counter. That they behave
indeed this way is guaranteed by a construction similar to the one of Propo-
sition 1, with the help of the verifier Vl+1: the environment gets a chance of
challenging each l-counter of the sequence of rl+1 (and similarly for rl+1). These
challenges correspond to two types of tests, equality and successor. If there is
an error in one of these sequences then the environment can place a challenge
and win. Conversely, if there is no error no challenge of the environment can be
successful; this means then that the sequences of l-counters have correct values
0, 1, . . . , (Tower(2, l)− 1), 0, 1,

... ...

...

Fig. 5. Architecture of the plant Cl+1

Construction of Dl. The construction of the automaton of the new root rl+1 is
presented in Figure 6.

Zero

Main loop

Test

Σ

Fig. 6. Automaton for process rl+1

We start by modifying the automaton for process rl, given by Cl. Actions of
rl from Σ#

l , that were previously local for rl, become shared actions with rl+1.

20

Process rl+1 has new local actions Σ#
l+1 and an action $l, shared with process

Vl+1. The action $l is executed after each l-counter, that is, after each #l.
The automaton for rl+1 has two main tasks: it “copies” the sequence of l-

counters generated by rl (actually only the projection onto Σl) and it interacts
with Vl+1 towards the verification of this sequence. This automaton is composed
of three parts that synchronize with rl, forcing it to behave in some specific way.
The first part called “zero” enforces that rl starts with an l-counter with value 0
(otherwise rl+1 would block). When we read #l we know that the first l-counter
has ended and the control is passed to the second, main part of rl+1.

The main part of rl+1 gives a possibility for the environment to enter into
a test part. That is, after each transition on cl ∈ Σl (that is al or bl) the
environment chooses between action skip (that continues the main part) or a
test action from {(↓, cl), (↘, cl)} that leads into the test part. The main part
also outputs a local action #l+1 when needed, i.e., whenever the last seen l-
counter was maximal. (Technically it means that there has been no al since the
last #l.) The transition on #l+1 gives a possibility to go to the accepting state.

The test part of rl+1 simply receives the Σl-actions of rl and sends them to
process Vl+1 (cf. loop ala0

l and blb0l). It does so until it receives #l signaling the
end of the counter. Then it sends $l to process Vl+1 to inform it that the counter
has finished. After this rl+1 enters in a state where it can do any controllable
action. From this state at any moment it can enter the accepting state on a
dummy letter >l+1.

Plant Dl. This one is constructed in almost the same way as Dl. Most impor-
tantly all processes (and actions) in Dl are made disjoint from Dl. We will write
a for the letter of Dl corresponding to a in Dl.

The other difference between Dl and Dl is that in the latter every transition
(↘, c) is changed into (↘, 1− c) if since the last $l there have been only ll. This
is done to accommodate for the carry needed for the successor test. Recall that
(1− c) stands for a if c is b and vice versa.
Process Vl+1. This process will have two main states eq and succ, the first one
being initial. From eq there is a transition on $l to succ, and from succ there is a
transition on $l back to eq . Moreover from eq it is possible to go to the accepting
state.

Additionally, from eq there is a transition on (↓, c)0 to the state (eq, c) for
every c ∈ Σl. Similar to the construction of Proposition 1, process Vl+1 should
accept if either the two bits from Σl challenged by the environment are compat-
ible with the test, or their positions are unequal. So, from state (eq, c) on letter
(↓, 1− c)0 there is a transition to a state called neqtest ; on all other letters there
is a transition to a looping state (see also Figure 7). Similarly from succ, but
now with (↘, c) letters, and the order of reading from the components reversed.

From state neqtest process Vl+1 verifies that the sequence of actions Σ0
l

initiated by rl+1 has not the same length as the sequence over Σ
0

l initiated by
rl+1 (up to the moment where $0

l and $
0

l are executed). This is done simply
by interleaving the two sequences of actions a0

l , b
0
l , shared with rl+1 and rl+1,

21

loop

els
eelse

Fig. 7. Process Vl+1.

respectively. Notice that the symbols a0
l , b

0
l by themselves are not important, one

could as well replace them by a single symbol. If this is the case, then process
Vl+1 gets to an accepting state, otherwise it rejects. In state loop process Vl+1

can perform any controllable action and then enter the accepting state.

Putting together Cl+1. The plant Cl+1 is the composition of Dl, Dl and the new
process Vl+1. The actions of Cl+1 are the ones of Cl, plus X∪X where X consists
of:

– Σ#
l+1 ⊆ Σsys with domain {rl+1},

– Σ#
l ⊆ Σsys with domain {rl, rl+1},

– skip ∈ Σenv and (↓, c), (↘, c) ∈ Σenv with domain {rl+1} (c ∈ Σl),
– c0, $l, (↓, c)0, and (↘, c)0, all in Σsys with domain {rl+1,Vl+1} (c ∈ Σl).

The set X is defined similarly, by replacing every action c by c, and rl, rl+1 by
rl, rl+1 in the domain of the action.

First we show that the system can indeed win every control instance Cl.
Moreover he can win and produce at the same time any iterated l-counter.

Lemma 7. For every level l and every iterated l-counter c there is a win-
ning strategy σ in Cl such that for every σ-play the projection of this play on⋃
i=1,...,lΣ

#
i is c.

Proof. The proof is by induction on l. For l = 1 this is obvious since there
are no environment moves and all possible behaviours leading to the accepting
state are iterated 1-counters.

Let us consider level l + 1. Recall that Cl+1 is constructed from Cl, Cl, and
three new processes: rl+1, rl+1, Vl+1. Fix an iterated (l + 1)-counter c. Observe
that the projection of c on the alphabet of l-counters, namely

⋃
i=1,...,lΣ

#
i , is

22

an iterated l-counter. By induction we have a winning strategy producing this
counter in Cl. We play this winning strategy in the Cl and Cl parts of Cl+1. It
remains to say what the new processes should do.

Process rl+1 should just produce c. By induction assumption we know that
the letters this process reads from rl are the projection of c on the alphabet of the
l-counter; and it is so no matter if there are environment questions in Cl or not.
So process rl+1 has to just fill in missing Σl+1 letters. If the environment asks
no questions to rl+1 then at the end of c, this process will do #l+1, then >l+1

and enter the accepting state. Analogously for rl+1. At the same time process
Vl+1 will be at state eq and it can enter the accepting state, too, since it can
count how many $l symbols he has received.

Let us suppose now that the environment chooses a question action in rl+1

or rl+1. Let i be the index of an l-counter ui within c at which the first question
is asked. We will consider two cases: (i) the question is asked in rl+1, (ii) the
question is asked in rl+1 but not in rl+1.

If a question is asked in rl+1 then the play has the following form:

rl+1: . . . ui−1 $l u d

Vl+1:

rl+1: . . . ui−1 $l v e

with u, v being prefixes of ui; e being a question, and d a synchronization action
of rl+1 with Vl+1. So d can be a question or $l. Observe that after reading
ll process Vl+1 is in the state eq . It means that if the sequence ed is not
(↓, c)(↓, 1 − c) for some c ∈ Σl then Vl+1 enters state loop. From there it can
calculate how many inputs from rl+1 and rl+1 it is going to receive. It receives
them and then enters the accepting state. If ed is (↓, c)(↓, 1− c) then Vl+1 enters
state neqtest . Since rl+1 and rl+1 output the same iterated counter it must be
that the questions are placed in different positions of the two counters. But then
Vl+1 will receive from the two processes a different number of Σl letters. Hence
it will enter eventually into the accepting state also in this case.

Process rl+1 after receiving a question moves to a test component where it
transmits the remaining part of the l-counter to Vl+1 followed by $l. Then it
enters into the loop state of the test copy and can continue to generate c since it
can do any transition in this state. As for process rl+1, if d is a question, then it
does the same thing as rl+1. If d is $l then rl+1 can continue to produce c, and
both Vl+1 and rl+1 can simulate their behaviour as if no question has occurred.
If the environment asks a question to rl+1 at some moment, it too will enter into
accepting state and continue to produce c.

If the first counter with a question is in rl+1 but not in rl+1 then the play
has the form:

23

rl+1: . . . ui−1 $l u d

Vl+1:

rl+1: . . . ui−1 $l ui $l v e

where u is a prefix of ui, v a prefix of ui+1, d is a question, and e a synchronization
of rl+1 with Vl+1. Observe that after reading ll process Vl+1 is in state succ. As
before our first goal is to show that Vl+1 gets to an accepting state. If the sequence
de is not (↘, cl)(↘, 1− cl) then we reason as in the previous case. Otherwise
Vl+1 gets to state neqtest . As before we can deduce that the two questions are
asked at different positions of the respective counters. Which means that Vl+1

will receive a different number of Σl letters from rl+1 and rl+1 so it will get to
state loop. The rest of the argument is exactly the same as in the previous case.

�
We will show that in order to win in Cl the system has no other choice than

to generate an iterated l-counter. Before this we present a general useful lemma:

Lemma 8. Consider a plant C consisting of two plants C1 and C2 over process
set P1 and P2, respectively. We assume that there exist r1 ∈ P1 and r2 ∈ P2 such
that each action a in C is such that either dom(a) ⊆ P1 or dom(a) ⊆ P2, or
dom(a) ⊆ {r1, r2}. Then every winning strategy in C gives a winning strategy in
C1.

Proof. Just fix the behaviour of the environment in C2 and play the strategy
in C. �

With this at hand we can now prove the main lemma.

Lemma 9. If σ is a winning strategy in Cl+1 and x is a σ-play with no question
then the projection of x on

⋃
i=1,...,l+1Σ

#
i is an iterated (l + 1)-counter.

Proof. By the construction of Cl+1, if there is no question during a σ-play,
then the play is uniquely determined by the strategy. We will show that this
unique play is an iterated (l + 1)-counter.

By applying Lemma 8 twice we obtain from σ a winning strategy in Cl. By
induction assumption the projection of x on

⋃
i=1,...,lΣ

#
i is an iterated l-counter.

Thus, between every two consecutive $l we have a letter from Σl+1, followed by
an l-counter and #l (as long as we stay in the main part). The same holds for
the rl+1 part. It remains to show that the sequence u0, u1, . . . of these l-counters
represents the values 0, 1, . . . modulo Tower(2, l), and the same for the sequence
u0, u1, . . .

Assume that this is not the case and let i be the index where the first error
occurs. We will construct a play winning for the environment.

Let us first assume that the value of ui is correct but the one of ui is not.
Let k be the first position where the error occurs in the ui counter. After the

24

k-th letter of ui is transmitted to rl+1 the environment can execute action (↓
, c). Similarly, in process rl+1 after the k-th letter the environment can execute
(↓, 1− c). Notice that these two questions are concurrent and happen after the
letters of the corresponding counters are generated. Process Vl+1 goes to neqtest
since it receives (↓, c), and (↓, 1− c). On the other levels the environment does
not choose test actions. By induction, processes rl and rl will continue to generate
iterated l-counters, since there are no questions in Cl and Cl. As the environment
has chosen the same position k in both counters, process Vl+1 will receive the
same number of letters from rl+1 and rl+1 thus entering into a rejecting state.
This contradicts the assumption that the strategy in Cl+1 was winning.

The second case is where the value of ui equals i (mod Tower(2, l)), but the
one of ui+1 is different from (i + 1) (mod Tower(2, l)). Let k be the position
of the first error. In this case the environment can execute actions (↘, c), and
(↘, c) or (↘, 1−c), depending on whether or not there is some al before position
k in ui. As in the case above, these two questions are concurrent because process
Vl+1 first synchronizes with rl+1 and then with rl+1. The same argument as
above shows that in this case we could find a play consistent with σ and winning
for the environment. �

Putting Lemmas 7 and 9 together we obtain:

Proposition 2. For every l, the system has a winning strategy in Cl. For every
such winning strategy σ, if we consider the unique σ-play without questions then
its projection on

⋃
i=1,...,lΣ

#
i is an iterated l-counter.

Theorem 5. Let l > 0. There is an acyclic architecture of diameter 2l + 1 and
with (2l+3 − 3) processes such that the space complexity of the control problem
for it is Ω(Tower(n, l))-complete.

Proof. First observe that the plant Cl has (2l+2− 3) processes and diameter
2l− 1. It is straightforward to make the l-counter count till Tower(n, l) and not
to Tower(2, l) as we have done in the above construction. For this it is enough
to make the 1-counter count to n instead of just to 2.

We will simulate space bounded Turing machines. Take a machine M and a
word w of length n. We want to reduce the problem of deciding if w is accepted
by M to the problem of deciding if the system has a winning strategy for a plant
C(M,w) of size polynomial in the sizes of M and w.

A Tower(n, l) size configuration can be encoded by an (l + 1)-counter. In
an iterated (l + 1)-counter we can encode a sequence of such configurations.
The plant C(M,w) is obtained by a rather straightforward modification of the
construction of Cl+1. Instead of ensuring that the value of the first counter is 0,
it needs to ensure that it represents the initial configuration. Instead of ensuring
that the two successive counters represent two successive numbers, it needs to
ensure that they represent two successive configurations. Using Proposition 2, the
problem of deciding if a Tower(n, l)-space bounded Turing machine M accepts w

25

is polynomially reducible to the problem of deciding if the system has a winning
strategy in the so obtained C(M,w). The size of C(M,w) is exponential in l and
polynomial in M,w, n. The game can be constructed in the time proportional
to its size. �

5 Conclusions

Distributed synthesis is a difficult and at the same time promising problem, since
distributed systems are intrinsically complex to construct. We have considered a
simple, yet powerful model based on synchronization using shared memory – as
used in multithreaded programs or by hardware primitives such as compare-and-
swap. Under some restrictions we have shown that the resulting control problem
is decidable. Since every process is allowed to interact with the environment, our
tree architectures are quite rich and allow to model hierarchical situations, like
server/clients. Such cases are undecidable in the setting of Pnueli and Rosner.

Already Pnueli and Rosner in [17] strongly argue in favour of asynchronous
distributed synthesis. The choice of transmitting additional information while
synchronizing is a consequence of the model we have adopted. We think that it
is interesting from a practical point of view. It is also interesting theoretically,
since it allows to avoid simple (and unrealistic) reasons for undecidability. Our
lower bound result is somehow surprising. Since we have full information sharing,
all the complexity must be hidden in the uncertainty about other processes
peforming in parallel.

Important problems remain open, in particular the decidability without the
acyclic restriction. A more immediate task is to consider non-blocking winning
conditions and Büchi specifications. A further interesting research venue is syn-
thesis of open, concurrent recursive programs, as considered e.g. in [1].

References

1. B. Bollig, M.-L. Grindei, and P. Habermehl. Realizability of concurrent recursive
programs. In FOSSACS, volume 5504 of LNCS, pages 410–424, 2009.

2. A. Church. Logic, arithmetics, and automata. In Proceedings of the International
Congress of Mathematicians, pages 23–35, 1962.

3. P. Clairambault, J. Gutierrez, and G. Winskel. The winning ways of concurrent
games. In LICS, pages 235–244. IEEE, 2012.

4. V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific, 1995.
5. B. Finkbeiner and S. Schewe. Uniform distributed synthesis. In LICS, pages 321–

330. IEEE, 2005.
6. P. Gastin, B. Lerman, and M. Zeitoun. Distributed games with causal memory

are decidable for series-parallel systems. In FSTTCS, volume 3328 of LNCS, pages
275–286, 2004.

7. P. Gastin, N. Sznajder, and M. Zeitoun. Distributed synthesis for well-connected
architectures. Formal Methods in System Design, 34(3):215–237, 2009.

8. B. Genest, H. Gimbert, A. Muscholl, and I. Walukiewicz. Optimal Zielonka-type
construction of deterministic asynchronous automata. In ICALP, volume 6199 of
LNCS, 2010.

26

9. G. Katz, D. Peled, and S. Schewe. Synthesis of distributed control through knowl-
edge accumulation. In CAV, volume 6806 of LNCS, pages 510–525. 2011.

10. R. M. Keller. Parallel program schemata and maximal parallelism I. Fundamental
results. Journal of the Association of Computing Machinery, 20(3):514–537, 1973.

11. O. Kupferman and M. Vardi. Synthesizing distributed systems. In LICS, 2001.
12. P. Madhusudan and P. Thiagarajan. Distributed control and synthesis for local

specifications. In ICALP, volume 2076 of LNCS, pages 396–407, 2001.
13. P. Madhusudan, P. S. Thiagarajan, and S. Yang. The MSO theory of connectedly

communicating processes. In FSTTCS, volume 3821 of LNCS, 2005.
14. A. Mazurkiewicz. Concurrent program schemes and their interpretations. DAIMI

Rep. PB 78, Aarhus University, Aarhus, 1977.
15. P.-A. Melliès. Asynchronous games 2: The true concurrency of innocence. TCS,

358(2-3):200–228, 2006.
16. R. V. D. Meyden and T. Wilke. Synthesis of distributed systems from knowledge-

based specifications. In CONCUR, volume 3653 of LNCS, pages 562–576, 2005.
17. A. Pnueli and R. Rosner. On the synthesis of an asynchronous reactive module.

In ICALP, volume 372, pages 652–671, 1989.
18. A. Pnueli and R. Rosner. Distributed reactive systems are hard to synthesize. In

FOCS, pages 746–757, 1990.
19. P. J. G. Ramadge and W. M. Wonham. The control of discrete event systems.

Proceedings of the IEEE, 77(2):81–98, 1989.
20. S. Schewe and B. Finkbeiner. Synthesis of asynchronous systems. In LOPSTR,

number 4407 in LNCS, pages 127–142. 2006.
21. A. Stefanescu, J. Esparza, and A. Muscholl. Synthesis of distributed algorithms

using asynchronous automata. In CONCUR, number 2761 in LNCS, pages 27–41,
2003.

22. W. Zielonka. Notes on finite asynchronous automata. RAIRO–Theoretical Infor-
matics and Applications, 21:99–135, 1987.

27

	Asynchronous Games over Tree Architectures
	Blaise Genest1, Hugo Gimbert2, Anca Muscholl2, Igor Walukiewicz2

