Bounded MSC Communication

Markus Lohrey *!, Anca Muscholl ?

& Universitat Stuttgart, FMI,
Universitdtsstr. 38, 70569 Stuttgart, Germany

PLIAFA, Université Paris VII
2, place Jussieu, case 7014
75251 Paris cedex 05, France

Abstract

Message sequence charts (MSCs) and high-level message sequence charts (HMSCs)
are popular formalisms for the specification of communication protocols between
asynchronous processes. An important concept in this context is the size of the
communication buffers used between processes. Since real systems impose limita-
tions on the capacity (or speed) of communication links, we ask whether a given
HMSC can be implemented with respect to a given buffer size imposed by the en-
vironment. We introduce four different measures for buffer sizes and investigate for
each of these measures the complexity of deciding whether a given MSC (or HMSC,
or nested MSC) satisfies a given bound on the buffer size. The complexity of these
problems varies between the classes P, NP, and coNP.

Key words: Message sequence charts, channel boundedness, computational
commplexity.

1 Introduction

Message sequence charts (MSC) as well as high-level message sequence charts
(HMSC) are popular visual formalisms for the specification of communica-
tion protocols between asynchronous processes that communicate over reliable,
point-to-point channels. The big advantage of this kind of specification, com-
pared say to logics or automata, is that it emphasizes the concurrent behavior

Email addresses: lohrey@informatik.uni-stuttgart.de (Markus Lohrey),
anca@liafa. jussieu.fr (Anca Muscholl).
1" Research supported by the INRIA cooperative research action FISC.

Preprint submitted to Information and Computation 6 October 2003



of processes in form of diagrams, forgetting about implementation-specific de-
tails as variables, timing constraints, etc. This makes MSCs interesting for
describing scenarios, in form of typical positive or negative examples of be-
haviors.

When MSC specifications get to be implemented, the real system architecture
usually imposes limitations on the capacity (or speed) of communication links.
This leads to the problem of checking whether an MSC specification will meet
some given size constraints on the communication channels. A typical example
is checking process divergence [3], where divergence means that one process
can send a message an unbounded number of times ahead of the receiving
process. In this paper we refine the analysis of divergence, by considering
concrete bounds on the size of channels.

We consider four different measures for the channel requirements of (H)MSCs.
These measures result from two orthogonal dimensions: In the first dimension
we distinguish whether all linearizations of an MSC M satisfy a certain buffer
bound (V-boundedness), respectively whether at least one linearization of M
respects the bound (3-boundedness). In the second dimension we distinguish
between measuring the buffer size over all channels (global boundedness), re-
spectively on each channel separately, taking the maximum over all channels
(local boundedness).

The local version of boundedness is important for implementing an MSC spec-
ification in a distributed process environment, which imposes size restrictions
on specific channels. Global boundedness arises naturally when one simulates
MSC executions on a single-processor environment, for instance for test pur-
poses.

Universal channel boundedness is a safety requirement, expressing that any
interleaving of the MSC execution is possible within the constraints imposed
by the environment. Universal channel boundedness is met for instance by reg-
ular (or bounded) HMSCs [2,15,6,7]. This subclass has been proposed in order
to have a decidable model-checking problem. It is characterized by having a
regular set of MSC-linearizations, which means in particular that channels are
universally bounded. However, checking that an HMSC can be implemented
by a finite-state machine is undecidable, in general [6].

Existential channel boundedness can be interesting for simulation purposes,
since there it suffices to consider at least one interleaving for each MSC exe-
cution. Furthermore, an existential channel bound on an MSC M can suggest
that the specification given by M can be enhanced by timers that ensure the
bound universally, by slowing down certain processes. HMSCs are by defini-
tion existentially channel bounded, but not universally bounded in general. It
is interesting to note that an existential bound on the channels provides the



decidability of model-checking partial-order MSO properties against (compo-
sitional) HMSCs [12].

The results obtained in this paper can be seen as a more specific analysis
of channel boundedness. Indeed, we show that one is able to compute the
minimal channel bounds for which an (H)MSC is existentially (universally,
resp.) bounded. For each of our buffer measures we investigate the complexity
of deciding whether a given MSC (resp. HMSC, nested MSC [5]) satisfies a
given bound on the channel size. The complexity of these problems varies
between the classes P, NP, and coNP, see Table 1 in Section 7 for a summary
of our results. A short version of this paper appeared in [11].

2 Preliminaries

For complexity results we will use standard classes like non-deterministic log-
arithmic space (NL), polynomial time (P), non-deterministic polynomial time
(NP) and coNP (complements of NP-problems), see [17] for definitions.

A linearization of a partially ordered set (A, <) is a total order on A that
extends the partial order <. The transitive (transitive and reflexive) closure of
a binary relation F is the least transitive relation E* (transitive and reflexive
relation E*) containing E. A transitive reduction of E is a minimal relation
F C FE such that ET = F'*. For any alphabets A C B and any word w € B*
we define |w|, as the number of symbols from A in w.

A directed graph (V, E) is weakly connected, or just connected, if the undirected
graph (V, EUE ') is connected. A connected component of (V, F) is a maximal
connected subgraph of (V, E). We say that (V, E) is strongly connected if for
all vyw € V we have (v,w),(w,v) € E*. Finally, (V, E) is locally strongly
connected if every connected component of (V) E) is strongly connected.

2.1 Message sequence charts

Following the ITU norm Z.120 a message sequence chart (MSC) M is a tuple
(&, P, A\, t,m, <), where:

€ is a finite set of events.

P is a finite set of processes.

A & — P associates with each event e a process A(e) on which e is located.
t: £ — {S, R} associates with each event a type. Events in ¢~!(S) are called
send events, events in t~'(R) are called receive events.



<

\

Fig. 1. An MSC.

e m:t7'(S) — t7!(R) is a bijection. A pair (s,m(s)) with s a send event
is also called a message from process p = A(s) to process ¢ = A(m(s)).
The channel type of s (resp. m(s)) is defined as S(p, q) (resp. R(p,q)). The
channel type of e € £ is denoted ct(e).

e < is a partial order on &, also called the visual order of M. We require that
the set of events A7'(p) is totally ordered by <, for every p € P, and that
< equals the transitive closure of the acyclic relation

U <D U {(s,m(s)) [ 1(s) = S}

peEP

Note that < is uniquely determined by the function m and the total orders
< Ix-1p) (p € P). In computational problems, we may therefore represent
M by the tuple (£, P, A, t,m, (< [x-1(5))pep) Since each component in this
tuple can be represented by a data structure of size O(|€|), its is appropriate
to define the size |M| of the MSC M by |£]. We use the usual graphical
representation of MSCs, where time flows top-down and processes are drawn
as vertical lines. Figure 1 shows an MSC over three processes 0, 1, 2.

Often MSCs are further restricted to satisfy the FIFO-condition, which means
that whenever there are two send events s; and sy with ct(s1) = ct(sy) and
$1 < S then also m(s1) < m(sg). Thus message overtaking on any channel is
disallowed, where a channel is a pair (p, q) of distinct processes. For instance,
the above MSC satisfies the FIFO-restriction. The MSC definition may also
include message contents or local actions, however this is not important in
the present setting. The complexity results in this paper mostly hold inde-
pendently of the FIFO-restriction (respectively whether message contents are
allowed or not). This is due to the fact that all lower bound proofs in this paper
hold under the FIFO-restriction, whereas all upper bound proofs (excepting
those for nested MSCs in Section 5) hold without the FIFO-restriction.

Let M = (€, P, \,t,m, <) be an MSC. A linearization of M is a linearization
of the visual order (£, <). Let L be a linearization of M and let b € N. We
say that L is globally-bounded by b if |K|-1(sy — [K|;-1(r) < b for every prefix
K of L. We say that L is locally-bounded by b if for all channels (p,q) and



every prefix K of L it holds |K|e-1(spq) — K |et-1(R(pg)) < b- We say that
M is 3,,-bounded (resp. 3}, -bounded) if there exists a linearization of M
which is globally-bounded (resp. locally-bounded) by b. We say that M is Vglob—
bounded (resp. V2, .-bounded) if every linearization of M is globally-bounded

loc

(resp. locally-bounded) by b. Of course for Q € {3,V}, if M is Q¥,,-bounded,
then M is also Q). .-bounded. Vice versa, if M is Q¥ -bounded, then M is
Qgop-bounded, where ¢ = |P[- (|P| — 1) - b. The MSC in Figure 1 is for
instance 33,,-bounded, Vg,-bounded, 3f,-bounded, and V{, -bounded, and

moreover, these bounds are optimal.

For Q € {3,V} and Y € {loc,glob}, we define QQy-MSC-BOUNDED as the
following decision problem.

INPUT: MSC M and positive integer b.
QUESTION: Is M @Q%-bounded?

Instead of speaking about prefixes of linearizations of MSCs, it is sometimes
more convenient to consider configurations of MSCs. A configuration C of M
is a downward-closed subset C' C & of events, i.e., if ¢ < f € C then also
e € C. A prefix of a linearization of M defines in the obvious way a unique
configuration of M. Vice versa, for every configuration C' of M there exists at
least one prefix K of a linearization of M such that K defines C.

Let C' be a configuration of the MSC M. The number of messages (s,r) in
M with s € C and r ¢ C is denoted by gus(C, M) (globally unmatched
sends). The maximum over all channels (p, ¢) of the number of messages (s, r)
in M with ct(s) = S(p,q), ct(r) = R(p,q), s € C, and r ¢ C is denoted
by lus(C, M) (locally unmatched sends). By definition, M is ¥, -bounded
(resp. V2 -bounded) if and only if gus(C, M) < b (resp. lus(C, M) < b) for
every configuration C' of M.

In the remainder of this section we define high-level message sequence charts.
For this we need first to define the (sequential) product of two MSCs. Let
M; = (&, P, A\, t;,m;,<;), i = 1,2, be two MSCs over the same set P of
processes, where furthermore £ N &, = (). Then the concatenation of M; and
My is the MSC MMy = (£, U &y, P, Ay U g, t1 U ty, my Umgy, <), where

< = (‘<1 U <y U{(el,eg) | e € 51,62 € (‘:2, )\1(61) = )\2(62)})+.

Intuitively, MM, results from appending My at M; by gluing them together
at corresponding process lines.

The standard ITU definition Z.120 defines a high-level message sequence chart
(HMSC) as a finite transition system with nodes labeled by finite MSCs.
Formally, let an HMSC H be given as H = (V,—, P, ,v), where (V,—) is



21140 &)
-

Fig. 2. Three HMSCs

a finite transition system with initial node v, P is the set of processes and p
maps every node u € V to a finite MSC p(u) over the set of processes P. The
MSC-language msc(H) defined by H is the set of all MSCs p(uy)p(us) - - -,
where u; = v and u; — uy — --- is a (finite or infinite) maximal path in
(V, =) (formally, for infinite paths we have to define the limit of the sequence
p(uy - - - ug)k>1). We impose the restriction that every node u is accessible from
the initial node v. Figure 2 shows three simple examples for HMSCs, where
the initial node v is marked with an incoming arrow.

Let Q € {3,V}, Y € {loc,glob}, and b € N. We say that an HMSC H is Q-
bounded, if all M € msc(H) are Q%-bounded. Finally, we define the decision
problem Qy-HMSC-BOUNDED as follows:

INPUT: HMSC H and positive integer b.
QUESTION: Is H Q%-bounded?

The first HMSC in Figure 2 is Qj,.-bounded and QZ,,-bounded for both @ = 3
and Q = V. The second HMSC is Qi--bounded for all Y € {loc,glob} and
Q € {3,V}. Finally, the third HMSC is 3}-bounded for both ¥ = loc and
Y = glob but it is neither V}, .-bounded nor ¥, -bounded for any b € N.

loc

2.2 Pebble games

As we will see in Section 3 there is a tight connection between the existential-
global boundedness problem and pebble games on directed graphs. In this
section we recall the definition of pebble games and related results.

Let G = (V, E) be a finite directed acyclic graph (dag) with node set V' and
edge set £ C V xV. A game-configuration is a subset of V' (which corresponds
to the set of nodes that are currently pebbled). For two game-configurations
C1,Cy CV and anode v € V we write Co = C;U{v} whenever Cy = C; U {v}
and v ¢ C4, i.e., Cy is the disjoint union of C; and {v}. A move in G is a
pair (C4, Cy) of game-configurations such that one of the following three cases
holds:

(1) There exists w € C; with Cy = C;\{w} (remove the pebble from node



w).

(2) There exists a node v € Cy such that Cy = C1U{v} and for all uw € V' with
(u,v) € E it holds u € Cy (put a pebble on node v provided that each
direct predecessor has a pebble).

(3) There exist nodes w € Cy, v € Cy with (w,v) € E, Cy = (C;\{w})U{v},
and for all u € V' with (u,v) € E it holds u € Cy (move the pebble from
node w to node v, provided that all direct predecessors of v have a pebble).
This last rule is referred to as the move rule.

More precisely we say that (C, Cs) is an i-move, i € {1,2,3}, if case (i) above
holds. Let b € N. We say that the dag G can be b-pebbled if there exists a
sequence C1,Cy,...,C, C V of game-configurations such that the following
holds:

(a) C;=C, =0and |C;| <bfor 1 <i<n,

(b) For every node v € V there exists ezactly one i € {1,...,n— 1} such that
v ¢ C; and v € C;;1. That is, each node is pebbled exactly once.

(c) (C;,Ciy1) is amove for 1 < i < n.

If instead of (c¢) we require that (C;,C;11) is a 1-move or a 2-move for all
1 <1 < n, then we say that the dag G can be b-pebbled without the mowve
rule. It is important to note that by condition (b) every node of G has to be
pebbled exactly once, i.e., re-pebbling is not allowed. This fact is crucial for
the NP-upper bound in the following result due to R. Sethi.

Theorem 2.1 ([18]). The following problem is NP-complete:
INPUT: Finite dag G with only one node of out-degree 0, positive integer b.
QUESTION: Can G be b-pebbled?

For the further consideration we need the variant of the theorem above where
the move rule is not allowed.

Corollary 2.2. The following problem is NP-complete:
INPUT: Finite dag G, positive integer b.

QUESTION: Can G be b-pebbled without the move rule?

Proof. Membership in NP is obvious. We prove NP-hardness by showing that
a finite dag GG with exactly one node of out-degree 0 can be b-pebbled if and
only if G can be (b + 1)-pebbled without the move rule.

First, any dag G that can be b-pebbled with the move rule, can be (b + 1)-
pebbled without the move rule. Now assume that G can be (b + 1)-pebbled



without the move rule and let ) = C,,Cs,...,C, = 0 be a play such that
|IC;| < b+1for 1 < i < n, every C; results from C;_; by a l-move or
a 2-move, and finally every node is pebbled exactly once. We show that G
can be b-pebbled by successively eliminating all C; with |C;| = b+ 1. The
following arguments are similar to those in the proof of Theorem A in [21].
Let |C;] = b+ 1. Then we must have 2 < i < n — 1. Moreover, C; must be
obtained from the preceding game configuration by pebbling some node v,
and the successor configuration of C; is obtained by removing a pebble from
some node w. Formally, we have C; = C;_1U{v}, and C;,; = C;\{w} for some
nodes v,w € C; such that u € C; ; for all v € V with (u,v) € E. We can
distinguish the following three cases:

Case 1. If (w,v) € E then we replace the play Cy,Cs,...,C, by
Cla AR Ci—h Ci+17 RS Cn
Note that (C;_1,Ci;1) is a move according to the move rule.

Case 2. If (w,v) ¢ F and w # v then we can remove the pebble from w before
pebbling v, i.e., we replace the play by Cy,...,C; 1,C; 1\{w},Ciyq,...,C,.

Case 3. If w = v then v must be the unique node with out-degree 0, because
otherwise we would have to pebble all direct successors of v before removing
the pebble from v (recall that re-pebbling is not allowed). Thus v is the last
node that is pebbled. So we can choose any v € V with (u,v) € E and replace
the move (C;_1,C;) by the 3-move (C; 1, C;\{u}). O

Remark 2.3. Note that if a dag G contains more than one node of out-degree
0, then it is no longer the case that G can be b-pebbled if and only if G can
be (b + 1)-pebbled without the move rule. A counterezample for this would be
the dag with node set {a,b,c,d} and edges (a,c), (a,d), (b,c), and (b,d). It can
be 3-pebbled without the move rule but it cannot be 2-pebbled by allowing the
move rule.

For a finite dag G = (V, E) let V = {7 | v € V'} be a disjoint copy of the node
set V' and let E = {(uv,v), (v,7) | (u,v) € E} U{(u,u) | u € V}. Note that
the graph G = (V UV, F) is again a finite dag.

Lemma 2.4. A finite dag G = (V, E) can be b-pebbled without the move rule
if and only if there exists a linearization ¢ of the dag G such that for every
prefic k of  we have |k|y — |kly < b.

Proof. The idea is to associate with a linearization ¢ of G a pebbling strategy
and vice versa as follows: The occurrence of v € V in £ corresponds to the
instant where we put a pebble on v, whereas 7 € V' corresponds to the instant



where we remove the pebble from v. Then edges (v,%) € E with (u,v) € E
express the fact that before we remove a pebble from wu, all direct successors of
u have to be pebbled. By this observation the lemma follows immediately. [

3 Bounded communication in finite M SCs

In this section we will determine the complexity of the four decision problems
Qy-MSC-BOUNDED for @ € {3,V} and Y € {loc, glob}.

For local boundedness we can argue by considering some additional ordering
on events. Let us fix a bound b and an MSC M = (&, P, \,t,m,<). With
M and b we associate a binary relation ~, on £ as follows. We let r ~~, s
whenever for some channel (p, ¢) and some 7 > 1 we have that s is the (i + b)-
th send of channel type S(p, q), whereas r is the i-th receive of channel type
R(p,q). In case we deal with a fixed buffer size b, we also write r ~> s instead
of r ~y s.

Lemma 3.1. Let M be an MSC and b € N. Let < be the visual order of M
and ~y, be the relation associated with M and b. Then the following holds:
(1) M is 3 -bounded if and only if the relation < U ~, is acyclic.

loc

(2) M is NP -bounded if and only if ~, is contained in <.

Proof. M is 3 -bounded if and only if there exists a linearization L of M such
that for every i and every channel (p, ¢) the i-th receive of channel type R(p, q)
precedes the (i + b)-th send of channel type S(p, ¢). But this is equivalent to
saying that there exists a linearization of M such that for all r, s with r ~» s,
r precedes s in the linearization.

Similarly, M is V2 -bounded if and only if for every i and every channel (p, q)
the i-th receive r of channel type R(p,q) precedes the (i 4+ b)-th send s of
channel type S(p,q) in every linearization of M. But this is equivalent to

r < s for all r, s with r ~+ s. O

Since it can be checked in linear time whether a directed graph is acyclic and
the size of the relation ~», is in O(|M]), we obtain the following result from
Lemma 3.1(1):

Proposition 3.2. 4,,.-MSC-BOUNDED can be solved in linear time.

Moreover, since by [1] the visual order < of an MSC M = (&, P, \,t,m, <)
can be calculated from m and (< [y-1(y))pep in time O(|M|?), the following
proposition follows from Lemma 3.1(2):



Proposition 3.3. V),.-MSC-BOUNDED can be solved in time O(n?).

Surprisingly, if we consider global boundedness instead of local boundedness,
the existential variant of the problem becomes NP-complete:

Theorem 3.4. J,,,-MSC-BOUNDED s NP-complete.

Proof. Membership in NP is obvious. In order to prove NP-hardness, we con-
struct for a finite dag G = (V, E) a finite MSC M(G) = (&, P, \,t,m, <)
such that G can be b-pebbled without the move rule if and only if M(G)
is Elgf(;l)—bounded. With each node v € V' we associate the set of processes
P, = {pin(v), p(v), pout(v) } U {p(v,w) | (v,w) € E}, the set of all processes is
then P = U,cy P, The set € of events consists of VUV (where V = {v | v €
V'}) plus some additional events (see Figure 3). We have \(v) = pi,(v) and
A(T) = pous(v). For each node v there is a message (v,7) from process pi,(v)
to process poys(v). This messages crosses the chain of the two messages from
Pin(v) to p(v) and from p(v) t0 pout (v). The basic idea is that a pebble on node
v corresponds to the fact that the send event v was already executed, whereas
the corresponding receive ¥ wasn’t yet executed. Furthermore for each edge
(u,v) € E we have exactly one message from process p(u, v) to pin(v) and back
from pi,(v) to p(u,v). Finally if (v,w,),..., (v, w,) are all outgoing edges of
node v (listed in an arbitrary order) then there is exactly one message from
process Pout(v) to p(v,w;) and back and exactly one message from process
p(v, w;) to p(v,w;y1) and back (1 < i < n — 1). The order of the events on
the processes in P, is shown in Figure 3, where we show an example where
(u1,v), (ug,v), (v, wy), (v, ws), and (v, ws) are the adjacent edges of v. The pro-
cess names labeling message arrows specify the source, resp. target process of
the message. Note that the resulting visual order < is indeed acyclic: Mes-
sages from pi, (v) t0 Pout (v), from py, (w) to p(v, w), from p(v, w;i1) to p(v, w;),
and from p(v, w;) to pout(v), respectively, cannot be involved in a cycle (going
along these edges, one finally arrives at the maximal event 7). If the remaining
messages yield a cycle, then this cycle would result from a cycle in the dag G
(for instance the send of the message from process p(u,v) to py,(v) must pre-
cede the send of the message from process p(v, w) to py,(w), with (u,v), (v, w)
edges of the dag G). Moreover, M(G) respects the FIFO-restriction, in fact
this was the only reason for introducing process p(v). The crucial point of our
construction is that the restriction < [, of the visual order < of M(G) to
the set of events V UV C & is precisely the transitive closure of the relation
E from Lemma 2.4.

Claim 1: If G can be b-pebbled without the move rule then M(G) is Hélf:bl)—
bounded.

Assume that G can be b-pebbled without the move rule by a sequence of moves.
We translate each move into a sequence of events, such that the resulting

10



\»v

Fig. 3. Communication between the processes in P, in the MSC M (G)

sequence of events is a linearization of M which is globally-bounded by b + 1.
Consider a move (Cy, Cy). If Cy = C1U{v}, i.e., node v is pebbled in the move,
then we execute the following sequence of events:

(1) Send and immediately receive the message from process p(u;, v) to pi(v)
for 1 < i <k, where (uy,v),..., (ug,v) are all incoming edges of node wv.

(2) Execute send event v on process pi,(v).

(3) Send and immediately receive the message from process pi,(v) to p(u;, v)
for 1 <i<k.

(4) Send and immediately receive the message from process pi,(v) to p(v),
followed by the message from p(v) to pous(v).

(5) Send and immediately receive the message from process pout(v) to p(v, wy)
followed by the messages from p(v, w;) to p(v, w;y1) for 1 < i < n, where
(v,wy), ..., (v,w,) are all outgoing edges of node v.

11



Of course if v has in-degree 0 (resp. out-degree 0) then (1) and (3) (resp. (5))
disappear. On the other hand if Cy = C\{v}, i.e., a pebble is taken from node
v in the move, then we execute the following sequence of events:

(1) Send and immediately receive the message from process p(v,w;1) to
p(v,w;) for n > i > 1, where (v,w),..., (v, w,) are all outgoing edges
of node v.

(2) Send and immediately receive the message from process p(v, w;) t0 pout (V).

(3) Execute the receive event T on process pous(v).

Claim 2:1f M(G) is Elgf;rbl)—bounded then G can be b-pebbled without the move
rule.

Let L be a linearization of M (G), which is globally-bounded by b+ 1 such that
furthermore the number of prefixes K of L that satisfy |K|;-1(g) — |K|-1(r) =
b+ 1 is minimal among all linearizations of M (G) that are globally-bounded
by b+ 1. Clearly such an L exists. Let (L) be the projection of the word L
onto V UV C &. Since of course m(L) is a linearization of < ||, and hence
a linearization of the dag G, by Lemma 2.4 it suffices to prove the following
claim:

Claim 3: For every prefix k of w(L) it holds |k|y — |k|5 < b.

Clearly we have |k|y — |k|;z < b+1 for every prefix £ of 7(L). In order to prove
the claim let us assume that |7(Lyv)|y — |7(Liv)|s7 = b+ 1, where v € V and
L = LyvLy. Let Ly = eL3, where e € £ (note that we must have Ly # ¢€), thus
L = LyveLs. If e would be a send event then | L ve|-1(s) — |Live|i-1(p) > b+2,
a contradiction. Thus e must be a receive event. If e ¢ V' then, since the cor-
responding send event belongs to L;, we would have |Liv|;-1(g) — | L1v]i-1(r) >
b+ 2 (note that already |7(L1v)|;-1(sy — |7(L1v)|-1(ry = b+ 1). Thus e =@
for some u € V. We cannot have v < @, since by the construction of M(G)
this would imply that a non-empty sequence of events occurs between v and
w. It follows that L' = LyuvLs is also a linearization of M (G) that is globally-
bounded by b+ 1. Since furthermore the number of prefixes K of L' such that
|K|¢-1(s) — |K|i=1(ry = b+ 1 is smaller than for L, we have a contradiction.
This proves claim 3 and the theorem. O

For universal-global-boundedness we can obtain a polynomial time solution
using flow theory:

Theorem 3.5. Vg ,,-MSC-BOUNDED can be solved in time O(n*log(n)).

Proof. In order to check universal-global-boundedness we consider the com-
plementary problem, namely whether given a finite MSC M and b € N there
exists a configuration C' of M such that gus(C, M) > b. This question can be

12



answered in polynomial time using the min-flow max-cut theorem, see e.g. [9].
More precisely we construct from M a dag as follows: View M as a dag, where
the nodes are the events of M, and the edges are the messages of M plus pairs
of events (e, f) such that e immediately precedes f on some process. To this
dag we add two nodes o and 7. We add an edge from o to each minimal event
of M, and similarly we add an edge from each maximal event of M to 7. Let
us call the resulting dag G' and let E be its edge set. Note that G contains
precisely |M| nodes of degree 3 and two nodes of degree |P| (namely o and
7). Thus, |E| = 2-|M|+ |P| € O(|M]). To each edge (v, w) of G we assign an
upper capacity c,,, and a lower capacity ¢, ,, as follows: All edges receive the
upper capacity oo. For all messages (s, m(s)) of M we let £, ,,(sy = 1, whereas
for all other edges (v,w) of G we let ¢,, = 0. By the min-flow max-cut the-
orem the minimum value of a (o, 7)-flow of G is equal to the maximum of
X (w,w)eBnSxT bow — X(vw)eEnT xS Cow, Where the maximum is taken over all
partitions {S,T} of the nodes of G with ¢ € S and 7 € T. By the choice
of the capacities this is precisely the maximum of gus(C, M), taken over all
configurations C' of M. Finally, since all upper capacities are oo, we can use
[19] in order to compute max(3, wycrnsxT low — 2 (vw)eEATxS Cow) N time
O(nlog(n)r), where n = | M|+ 2 is the number of nodes of G and r € O(|M|)
is the number of edges in a transitive reduction of G. O

We note also that before computing the minimal flow in the previous proof,
we may reduce the graph G as follows: If two nodes v and w are such that v
immediately precedes w on some process and either v has out-degree one, or
w has in-degree one, then the edge (v, w) can be contracted to a single node.
This reduction step can be iterated as long as possible. The resulting graph
may be considerably smaller than G.

4 Bounded communication in HMSCs

The following result follows easily from Theorem 3.4.

Proposition 4.1. dy,,-HMSC-BOUNDED s NP-complete.

Proof. The lower bound follows directly from Theorem 3.4. For the upper
bound note that an HMSC H = (V, —, P, u, v) is Elglob—bounded if and only if

for every node u € V' the MSC p(u) is 3%,,-bounded. O

Analogously to Proposition 4.1 it follows that 3,,.-HMSC-BOUNDED can be
solved in linear time.

13



For the universal-boundedness question for HMSCs we need the concept of
the communication graph G(M) of a finite MSC M = (&, P, A\, t,m,<). It
is defined as G(M) = (P,~), where p — ¢ if and only if there exists a
message (s,m(s)) in M with A(s) = p and A(m(s)) = q. We say that M is
locally strongly connected if G(M) is locally strongly connected (i.e., G(M)
is a disjoint union of strongly connected subgraphs). Finally an HMSC H =
(V, =, P, 1, v) is locally strongly connected if for every cycle v; — vy — -+ —
vp, — vy of (V,—) the MSC p(vy)p(vy) - - - pu(vy,) is locally strongly connected.
The notion of a locally strongly connected HMSC should not be confused
with the related notion of a bounded HMSC [2] (called locally synchronized
in [15]): an HMSC H = (&, P, A, t,m, <) is called bounded if for every cycle
v = vy — -+ = v, — vy of (V,—), the restriction of the communication
graph G = G(u(v1)p(va) - - - u(vy,)) to the non-isolated nodes of G is strongly
connected. The first example from Figure 2 is not bounded but locally strongly
connected. The second one is both bounded and locally strongly connected.
Finally, the third HMSC is neither bounded nor locally strongly connected.

It is easy to see that H is locally strongly connected if and only if for all
simple cycles v; = vy — -+ = v, — vy (i.e, v; # v; for i # j) the MSC
p(vr)p(ve) - - - u(vy) is locally strongly connected. For this just note that if
we have cycles vy — -+ —- v, — vy and wy — -+ — w,, — w; with
vy = wy then G = G(p(v1) -+ p(vn)p(ws) - - - p(wp,)p(vy)) is the union of the
two communication graphs G (u(vy) - - - (vy,)) and G(p(wy) - - - p(wyy,)). Thus if
both of them are locally strongly connected then the same holds for G. It was
shown in [13] that an HMSC H is V? -bounded for some b if and only if H is
locally strongly connected. The fact that H is locally strongly connected if H
is Vp. .-bounded by some b is quite easy to see. Lemma 4.2 below allows us to
present a simpler proof of the other direction of the result of [13]. Moreover,
it allows to consider paths of polynomial length for establishing the existence
of configurations of a given buffer size.

Proposition 4.2. Let the HMSC H = (V,—, P, u,v) be locally strongly con-
nected. Let uy — ug — + -+ — uy, be a path in (V,—) and let C' be a configu-
ration of the MSC M = p(uq) - - - u(u,y,). Then there exists a path vy — vy —

- = v, in (V,—) and a configuration D of the MSC N = u(vy) --- p(vy)
such that n < |P|-|V], gus(C, M) = gus(D, N), and lus(C, M) = lus(D, N).

Proof. Let uy — us — .-+ — wuy, be a path in (V,—) and let C be a
configuration of M = p(uy) - u(uy). If m < |P|-|V], then we are ready.
Thus, assume that m > |P| - |V]. The idea is to find a loop within the path
Uy — Uy — -+ — U, such that all send events s € C' produced in this loop
are matched within C'. Then we may shorten the path by this loop. This can
be iterated until the length of the path is at most |P| - |V].

Formally, assume that P = {1,...,|P|}. For each i € P let e; be the maximal

14



event of M which is located on process ¢ and which belongs to C', if this
event exists. Otherwise e; is undefined. By reordering the processes suitably,

we may assume that e;,...,er ; are undefined and event e; belongs to the
MSC ji(t,) for & < i < |P|, where 1 < my < myyy < --- < mypp < m.
Let mg = my = -+ = my_y = 0. Since m > |P| - |V| either m > myp|, or

mer1 —myg > |V| for some 0 < ¢ < |P|. In the first case we may take the path
Uy — Uy —> =+ » —> Upy_q for v; — -+ — v,. Now assume that mpy —my > |V|
for some 0 < ¢ < |P|. Then there exist my < i < j < myy; such that
u; = uj. Note that p(u;)p(uitr) - - - p(uj—1) NC contains precisely the events of
p(wi) (i) - - - po(wj—1) that are located on some process p € {{+1,...,|P|}.
Let G be the communication graph of the factor p(w;)u(wit1) - p(uj—1) of
M. Then G must be locally strongly connected. Assume that there exists a
message (s,7) in go(u;)p(wisr) - - - p(uj—1) such that s € C and r ¢ C. Since
¢t > my and 7 — 1 < myyq, the send s is located on some process p > £ + 1
and the receive r is located on some process ¢ < /. Since G is locally strongly
connected, there exists a directed path from process ¢ < £ to process p > /+1
in G. Thus there exists a message (s',7’) in p(w;)p(wig1) - - - p(u;—1) such that
s’ is located on some process ¢’ < £ and 7’ is located on some process p’ > (+1.
It follows that ' € C' and s’ ¢ C'. But this is a contradiction to the fact that C
is a configuration of M. Thus the message (s, ) cannot exist. It follows that in
the shortened MSC N = p(uq) - - - pu(wi—1)po(wj) - - - (), the set of all events
that belong to C' form a configuration D such that gus(C, M) = gus(D, N)
and lus(C, M) = lus(D, N). Moreover, uy — -+ —> Uj_1 —> Uj —> **+ —> Uy, 1S
a path in (V, —). O

For an HMSC H = (V,—, P, 1,v) let o(H) = max{%l | 4 € V}, which is
the maximal number of send events in one of the finite MSCs u(u), u € V.

Corollary 4.3. Let the HMSC H = (V,—, P, u,v) be locally strongly con-
nected. Then H is Vglob—bounded (and hence also YV}, -bounded) for some b <
|P|-|V|-0(H). Furthermore if b € N is minimal such that H is ¥}, -bounded
(resp. Vo .-bounded) then there exist a path vy — vy — -+ — v, in (V,—) and

a configuration C' of the MSC M = p(vy) - - - u(vy,) such that n < |P|-|V| and
gus(C, M) =b (resp. lus(C, M) =b).

Proof. For the first statement assume that there exist a path v = u; — uy —
-+ = u, in (V,—) and a configuration C' in the MSC M = pu(uy)--- p(uy,)
such that gus(C, M) > |P|-|V|-o(H). Furthermore let n be minimal with
the properties above. Since each of the MSCs p(u;) can only contribute o(H)
messages (s,7) with s € C and r ¢ C, it follows that n > |P|- |V, which by
Proposition 4.2 gives us a contradiction to the minimality of n. The second
statement follows immediately from Proposition 4.2. O

We should remark that Theorem 2.8 of [13], which corresponds to the first

15



statement of Corollary 4.3, is formulated in terms of regular MSC-expressions
instead of HMSCs. Using the notation of [13], we can prove the following
statement in the same fashion as Corollary 4.3.

Lemma 4.4. Let L be a set of finite MSCs over some fized set of processes

P. Assume that each M € L is locally strongly connected and Vglob-bounded

(resp. V2. .-bounded). Then every MSC in L* is Vg:-bounded (resp. Viopc"b—
bounded).

Theorem 4.5. V,,-HMSC-BOUNDED is coNP-complete.

Proof. We show that the complementary problem is NP-complete:
INPUT: HMSC H and positive integer b.

QUESTION: Is there an MSC M € msc(H) which is not V,,-bounded?

An NP-algorithm that solves this problem proceeds as follows: Let us fix H =
(V, =, P, i, v). First we guess in (V,—) a simple cycle u; — ug — -+ —
Um — up and a path v1 — v — -+ — v, with n < |P| - |V]| together
with a configuration C' in the MSC M = p(vy) - - - 1(vy,). Then the algorithm
outputs “yes” if and only if either the communication graph of the MSC
p(u ) p(ug) - - - p(ugm,) is not locally strongly connected or gus(C, M) > b+ 1.
We claim that this NP-algorithm is correct. Clearly if the algorithm outputs
“yes” then there exists an MSC in msc(H) which is not V%, -bounded (recall
that we assume that every u € V is accessible from the initial node v). On the
other hand assume that there exists an MSC in msc(H) which is not V5,
bounded. Either H is not locally strongly connected, which can be detected by
the algorithm, or there exists some 0’ > b such that H is Vg’lob—bounded, but not

Vglgbl—bounded. By Corollary 4.3 there exists a path v; = v = -+ —= v, with
n < |P|-|V| together with a configuration C' in the MSC M = u(vy) - - - pu(vy)
such that gus(C, M) = b" > b+ 1. Again both this path and the configuration
can be detected by the algorithm.

In order to prove NP-hardness, we reduce SAT to our problem. A construction
similar to the following one was also used in [16]. Let {z1,...,x,} be a set of
propositional variables, and let C' = {C1,...,C),} be a set of clauses, where
each clause C; consists of variables and negated variables. We construct an
HMSC H = (V,—, P, u,v) such that C is satisfiable if and only if there exists
M € msc(H) which is not Vgﬁl—bounded. Let V = {v,v1,T1,...,0,,0,} and
— = {(v,v1), (v, 01)} U {(vi, vit1), (03, Vi), (i vig), (0, Digr) | 1 < 0 < n}
The set of processes is P = {¢;, ¢, | 1 < i < m}. It remains to define the MSCs
p(u) for uw € V. The MSC p(v) is empty. The MSC pu(v;) contains a message
from process ¢; to process ¢ and back from ¢} to ¢; if z; € Cj. Similarly the

J

MSC pu(7;) contains a message from process ¢; to process c;. and back from c;.

16



to ¢; if 7; € C;. No other messages are present. It follows that C' is satisfiable
if and only if there exists an MSC M € msc(H) such that for every 1 < j < m
the projection of M onto the processes c; and ¢} is a non-empty iteration of
the MSC that sends a message from ¢; to ¢ and back. This holds if and only
if there exists an MSC M € msc(H) that is not Vy},'-bounded. O

It should be noted that Theorem 4.5 holds no matter whether the buffer bound
b € N is represented in unary or binary. Our lower bound proof holds also for
the unary representation, whereas the upper bound proof holds for the binary
representation. Furthermore note that the HMSC H used for the lower-bound
proof is based on an acyclic graph (V, —), thus H defines a finite set of MSCs.

Theorem 4.6. V,,.-HMSC-BOUNDED s coNP-complete. Moreover this prob-
lem is coNP-complete even if the input parameter b is fixed to b = 1.

Proof. Membership in coNP follows in exactly the same way as in Theorem 4.5.
In order to show coNP-hardness we will reduce NAE-SAT (not-all-equal-SAT),
see e.g. [4, p-259], to the complement of our problem. We consider a collection
of m clauses C = {C},...,Cp} each of size three, over variables {z,...,z,}
and we want to find out whether there is a variable assignment such that
for each clause Cj, the literals of C; do not all have the same value. We will
construct an HMSC H such that for some fixed channel (A, B) of H there
is an execution with more than one send in the corresponding buffer if and
only if there is an assignment as above for C'. For every channel different from
(A, B) each execution of H will contain at most one message for that buffer,
so channels different from (A, B) will be universally bounded by 1.

The graph underlying H is similar to the one from Theorem 4.5. The node
setis V = {v,v1,T1, ..., 0, Tp,v'}, and — = {(v, v1), (v,T1), (v, V), (Tp, V") }U
{(vi, vit1), (vi, Tiv1), (Ui, viz1), (Ti, Uiz1) | 1 < i < n}. Again, vertex v; stands
for x; true, whereas v; stands for z; false. The HMSC H uses processes A, B
and processes f)j,la Pj,2; Pj,g, Pj,4, Nj,la Nj,g, N]’,g, Nj,4 fOI'j S {]_, cey ’ITL} ranging
over the clauses. We denote as Pj-group the processes in P; 1, P », Pj 3, P;j 4, and
as Nj-group the processes in N; 1, Nj2, N;3, N;4. The initial node v contains a
message from A to B, followed by one message from B to each of P;; and N ;.
Each node v; contains a message in the Pj-group for every clause C; where
x; occurs positively, and a message in the /V;-group for every clause C; where
x; occurs negatively. Precisely, v; contains a message from Pj; to Pjg1, if z;
is the k-th literal of C}, k € {1,2,3}, and it contains a message from N,, to
Nj o1 if 77 is the (-th literal of C;, ¢ € {1,2,3}. Here, it is important that
the ordering of the literals in each clause respects the order zy,...,z, of the
variables that is determined by the graph (V,—). For the nodes T; we switch
the roles of P; and N;. The final node v’ is labeled by messages from each of
Pj 4, Nj4 to A, followed by a message from A to B.

17



Note that paths from v to v’ correspond precisely to variable assignments. For
instance, let C1 =77V 2o V x5 and Cy = 21 V 23 V 3. Node v; will be labeled
by a message from N;; to N;o and a message from Po; to Py, whereas o7
will be labeled by a message from P, ; to P, » and a message from Ny ; to Ny .

For a given assignment/path from the initial node v to v’ we note that the
first receive of channel type R(A, B) precedes in the visual order the second
send of channel type S(A, B) if and only if there is some j and a <-path either
from Pj; to P;4, or from N;; to N; 4 (notice that there is no message between
N-processes and P-processes). For instance, the assignment corresponding to
the path v, vy, ve, vs, Uy, vs, v yields for the second clause a message from P, ;
to P»9 in node vy, a message from P 5 to P 3 in node v3, and a message from
P, 3 to P54 in node 7y. For the first clause the path yields a message from N, ;
to Nio (node v;), a message from P 5 to P 3 (node vy), and a message from
P, 5 to Py 4 (node v3).

Hence, the first receive r of type R(A, B) precedes in the visual order the
second send s of type S(A, B) if and only if there is a clause C; in which all
literals have the same value under the variable assignment corresponding to the
chosen path from v to v'. But this is exactly the case where C' is not satisfied
as an NAE-SAT instance. Moreover, r precedes s in a given execution of H if
and only if the MSC corresponding to this execution is YV}, .-bounded. O

Let us remark that a simple extension of the construction from the previous
proof also shows that it is coNP-complete, whether a given HMSC is Vi -
bounded for some b, i.e., whether it is locally strongly connected. For this
we have to add an edge from the final node v' back to the initial node v.
Furthermore we have to add confirm messages that ensure that only the buffer
(A, B) may contain an arbitrary number of undelivered messages. For this we
simply confirm each message from a process p to ¢ where (p,q) # (A, B)
directly by a message from ¢ back to p.

5 Local boundedness and nested MSCs

A nested MSC (nMSC) is a sequence M = (M})1<k<m of modules M;. Each
module M}, is defined as an MSC to which we add references to modules M;
with £ < i < m, by specifying the start and end of each reference to M; on
the process lines belonging to M;. We use the definition of [5], where messages
are restricted to be matched on the same hierarchy level , i.e., within the same
module (in particular, we don’t consider ports), but they can cross references
to submodules, see Figure 4.

In principle, a message may also cross a module in the other direction, i.e., the

18



- J

Fig. 4. An nested MSC, where a message crosses a submodule

send event succeeds the end of the module on the sending process, whereas
the receive precedes the start of the module on the receiving process. It has to
be only guaranteed that the overall picture is acyclic, which can be checked in
polynomial time using standard techniques for hierarchically defined graphs
[10].

Each module M, of M can be expanded to a finite MSC flat(M}) by replacing
inductively in My each reference to a module M; (i > k) by the MSC flat(M;).
Finally we define flat(M) = flat(M;). Every reference to some module M;
(i > 1) contributes events to flat(M), and we say that these events result from
a reference to M;. The events of flat(M) that are defined directly in the main
module M are called top level events. For instance, the two events of channel
type S(1,4) and R(1,4), respectively, in the above nMSC are top level events.
Let P(M;) be the set of processes of flat(M;). Note that flat(A) may be of
exponential size in the description of M.

The definition above is analogous to the notion of straight-line expressions,
where any expression may use in its definition sub-expressions that were previ-
ously defined. In fact, it is easy to calculate from M a straight-line expression
for every p € P that represents the projection m,(M) of flat(A) to process
p. Moreover, any event e of flat(M) can be represented by its (binary coded)
position pos(e) in Ty (M) (here A refers to flat(M)).

Lemma 5.1. The following computations can be done in polynomial time:

e Compute pos(m(e)) from pos(e), where e is a send event.
e Given pos(e) and a channel type ct, compute pos(f), where f is the smallest

19



event with A(f) = A(e), pos(f) > pos(e), and ct(f) = ct (if existing).
o Given i and a channel type ct, calculate the position of the i-th event of
channel type ct (if existing).

All computations in the previous lemma can be reduced to simple arithmetic.

If a module Mj, contains a reference to a module M;, k < i, then P(M;) C
P(Mjy). Thus, if M}, contains a message (s,r) from p to ¢ that crosses a ref-
erence to module M;, i > k, (i.e., p,q are processes of M; and s precedes the
beginning of M; on p, whereas r succeeds the end of M; on ¢), then M; cannot
contain any message from p to ¢, unless the FIFO-restriction is violated. For
instance, the nMSC above does not satisfy the FIFO-restriction. Checking the
FIFO-restriction is feasible in polynomial time.

We show in this section that both versions (existential and universal) of the
local-boundedness problem for nMSCs can be solved in polynomial time, pro-
vided that the nMSC M satisfies the FIFO-restriction, i.e., flat(M) satisfies
the FIFO-restriction. Of course, the algorithms must exploit the hierarchy,
since nMSCs can be exponentially more succinct than the MSCs they define
(i.e., a module M of M may have exponentially many copies in the MSC
flat(M)).

For our further considerations let us fix a channel bound b and an nMSC M =
(Mk)1<k<m. For 1 <k < m let & (resp. <¥) be the ~-relation (resp. visual
order) associated with flat(My). Recall that r ~», s was defined in Section 3
for r the j-th receive of type R(p, q), and s the (j + b)-th send of type S(p, q).
Furthermore let < = <!, ~» = ~5, and P = P(M;). Note that given pos(r)
we can calculate pos(s) with 7 ~» s (in case s exists) in polynomial time. The
following lemma is easy to show.

Lemma 5.2. Let the nMSC M = (My,)1<k<m satisfy the FIFO-restriction. Let
E be the set of events of flat(M) that result from a reference to some module

My, k> 1. Then ~ N (E X E) = 5.

Note that Lemma 5.2 does not hold for the case where the nMSC violates
the FIFO-restriction. In this case different occurrences of the MSC flat(Mj)
in flat(M) may have different local ~-+-relations depending on their context.
Consider for instance the nMSC from the above example and let b = 2. In
the first occurrence of flat(My) there is a Z-edge from the first receive of
type R(2,3) to the second send of type S(2,3), which is due to the crossing
message in M;. On the other hand, in the second occurrence of flat(My) there

is a ~>-edge from the first receive of type R(2,3) to the third send of type
S(2,3).

20



Lemma 5.3. Suppose that the relation ~» U < contains a cycle. Then for
some k < |P| there exists a cycle of the form ri ~» s1 < Ty ~> $3 < -+ < T ~>
S < T7.

The proof of the previous lemma is simple: we consider a cycle of ~» U < that
uses a minimal number of ~+-edges r; ~» s;. Then A(s;) # A(s;), for any i # j,
because otherwise we could shorten the cycle.

For the rest of this section it is useful to add for every reference A in some
module M; and every process p that is used by A a new local event before
(resp. after) the beginning (resp. end) of A. These local events do not have a
corresponding send or receive. Note that the new events that we have added
to the main module M, are top level events.

Theorem 5.4. The following problem can be solved in polynomial time:
INPUT: nMSC M satisfying the FIFO-restriction and positive integer b.

QUESTION: Is flat(M) 3 -bounded?

loc

Proof. By Lemma 3.1(1) it suffices to verify that the transitive closure of
the relation < U ~~ associated with the MSC flat(M) is acyclic. Of course, we
cannot explicitly generate the ~»-edges, since there can be exponentially many
~-edges leading out of a copy of M; within M, or vice versa. More precisely,
there may be b ~--edges leading out of a reference, which is an exponential
number due to the binary coding of b. By Lemma 5.3 it suffices to look for a
cycle containing at most |P| new ~~-edges.

Our algorithm will first check recursively, whether for some module M;, i > 2,
there exists a cycle in the relation <’ U ~». By Lemma 5.2 this would result
in a cycle in < U ~». Thus assume that for every submodule M;, < U ~~ is
acyclic. Now, if < U ~» contains a cycle nevertheless, then this cycle has to
visit a top level event of M (this is due to the new local events marking the
beginning and end of references). Hence it suffices to show how to calculate a
suitable representation of the set Succzu..)+(e) = {f | (e, f) € (X U~)"} in
polynomial time for every top level event e. Then we just have to check whether
e € Succ(zu-)+(e). Our representation of Succisy..y+(e) cannot consist in an
enumeration of this set, because it may be of exponential size. Instead, we
represent Succ(<y..)+(e) by a tuple (¢,),cp of positions, one for each process
p. The position ¢, corresponds to the first event on process p that belongs to
the set Succ(sy..)+(e) (if this event does not exist, then £, = c0).

Let us first describe how we can compute the set Succ.(e) = {f | e < f} of
<-successors of e for any given (not necessarily top level) event e of flat(M),
which is represented by pos(e). Note that if e < f, then there exists a chain

21



e =¢€e f1 < ey < f2 < e =< ft < e X ft+1 = f with )\(61) = )\(fl),
m(f;) = €41, and t < |P|. Here < denotes the reflexive closure of the visual
order <. The computation of Succ<(e) can be performed by induction on t.
We start by setting fx.) = pos(f), where f is the direct successor of e on
process A(e), and Cx(me)) = pos(m(e)) in case e is a send event. All ¢, that
are not defined in this way are set to oco. For the inductive step we determine
for all ¢, < oo and all processes g # p the first send s of type S(p,q) with
pos(s) > ¢,, and we compute the minimum between pos(m(s)) and ¢,.

In order to compute Succisy..)+(e) for a top level event e, we start with
Succ(u-)+ (e) = Succ(e), represented by the tuple of positions (¢,),cp. For
the inductive step we determine for all £, < oo and all processes p # ¢ the
first receive r of type R(p, ¢) with pos(r) > ¢,, and we compute the send s of
type S(p,q) with 7 ~» s. Then we compute for each such s the set Succ.(s)
and we build the minima with (¢,),cp on every process. By Lemma 5.3 this
step has to be repeated only |P| times.

The above computation of the set Succisy..y+(e) relies heavily on the FIFO-
restriction: We use the fact that in order to get a better approximation for ¢, it
suffices to consider the earliest message from p to ¢, where the corresponding
send succeeds position ¢,, and similarly for ~~-edges. Finally, note that by
Lemma 5.1 all computations can be done in polynomial time. O

Theorem 5.5. The following problem can be solved in polynomial time:
INPUT: nMSC M satisfying the FIFO-restriction and positive integer b.

QUESTION: Is flat(M) V?..-bounded?

loc

Proof. We apply Lemma 3.1(2), that is, we check whether ~~ C <. First we
check this property inductively for every flat(M;) with ¢ > 2. Assume that for

all i > 2 we have ~» C <! (otherwise we can conclude with Lemma 5.2 that
~» C < does not hold). Now we calculate for every top level event e the future
Succ<(e) and past Preds(e) = {f | f < e}, see the proof of Theorem 5.4.
Recall that Succ.(e) is represented as a tuple (£;),cp of minimal positions.
Analogously, Pred(e) is represented as a tuple of maximal positions (kj),cp
(i.e., k& = pos(f), where f is the maximal event in A="(p) NPred(e)). Due to
the local events that mark the beginning and end of every reference, we have
e < f for events e and f if and only if e € Pred.(¢) and f € Suc(t) for some

top level event t.

Since we already know that ks C < for every i > 2, it follows that ~» C < if
and only if the following three conditions hold:

22



(1) For every top level receive r of M we have s € SuccL(r) for the unique
send s with r ~~ s.

(2) For every top level send s of M we have r € Pred(s) for the unique
receive r with r ~» s.

(3) Let A, B be two different references in M;. For all r, s with 7 ~» s and r
resulting from A (s resulting from B, resp.) there exists a top level event
e with 7 € Pred(e) and s € Succ<(e) (hence, r < s).

(1) and (2) can be easily verified using Lemma 5.1. For (3) let us fix different
references A and B in M; and a channel (p,q) such that A and B both use
p and g. For every top level event e let oy be the position on process g of
the smallest receive of channel type R(p,q) that results from reference A and
that is larger than position k¢ (i.e., this receive does not belong to Pred_(e)).
If this receive does not exist, then we set aj = oco. Similarly let 57 be the
position on process p of the largest send of channel type S(p,q) that results
from reference B and that is smaller than position £; (i.e., this send does not
belong to Succ<(e)). We set 3, = —oo, if this send does not exist. Next let
o, (resp. B,) be the position of the last receive (resp. first send) of channel
type R(p,q) (resp. S(p,q)) that results from reference A (resp. B). All these
positions can be computed in polynomial time. What we have to check is
whether there exist r ~» s such that

i )‘(S) =D )‘(T) =4,
e pos(r) < ay, pos(s) > B, and
e for every top level event e, either pos(r) > ag or pos(s) < ;.

Then not r < s, but 7 (resp. s) results from reference A (resp. B). To check
this we calculate the number of receives of channel type R(p, ¢) up to position
oy and ag, respectively, on process g. Let us denote these numbers by m, and
my, respectively. Similarly let n, and n; denote the number sends of channel
type S(p, ¢) up to position 3, and 3¢, respectively, on process p. Now it suffices
to check whether there exists x such that x < my,  +b > n,, and for all top

level-events e, either x > mg or  + b < ng, which is of course easy to do. []

6 Fixed number of processes

In practice, the set of processes of an MSC can be much smaller than the
number of messages. Hence we are interested in the complexity of our problems
when the number of processes is fixed. The main result of this section states
that for a fixed number of processes all the variants of the channel boundedness
problem can be solved in polynomial time (more precisely in nondeterministic
logspace).

23



Theorem 6.1. Let P be a fized set of processes. The following problem is in
NL:

INPUT: MSC M over the set of processes P and positive integer b.

QUESTION: Is M 3),-bounded?

Proof. Let M = (€, P, \,t,m,<). Our NL-algorithm guesses a sequence () =
C1,Cs,...,C, = & of configurations of M which forms an execution of M.
Note that each configuration C; can be stored using | P| pointers, one for each
process in P. Since P is fixed we need only logarithmic space for this. Each
time, a new configuration C; is computed non-deterministically from C;_;, we
calculate gus(C;, M) from gus(C;_y, M), check whether gus(C;, M) < b, and
forget the old configuration C;_;. Since we may assume that b < |£| (which
we can check at the beginning) we can write down gus(C;, M) in logarithmic
space. U

Theorem 6.2. Let P be a fized set of processes. The following problem is in
NL:

INPUT: HMSC H owver the set of processes P and positive integer b.

QUESTION: Is H V%,-bounded (resp. Y, -bounded)?

Proof. Since NL is closed under complement [8,20], it suffices to check in
NL whether an HMSC H = (V,—, P, j1,v) is not V{,-bounded (resp. ¥y, -
bounded). First we show that it can be verified in NL whether H is not locally
strongly connected. For this we guess a node v € V and a cycle u; — uy —
coo = Uy — uyp in (V) —) with u; = u. While guessing this cycle, only the
current node u; and the communication graph of the MSC pu(uq)p(uz) - + - p(u;)
are stored. Since P is fixed, we need only constant space in order to store this
graph. The communication graph of the MSC p(uy)p(us) - - - pu(u;p1) can be
easily constructed in logspace from the graph for the MSC p(uq)p(uz) - - - p(u;).
At the end we just have to check whether the communication graph of the
whole cycle is not locally strongly connected.

Now in order to check whether H is not Vglob—bounded, we first nondetermin-
istically branch into two cases. In the first case we check in NL whether H is
not locally strongly connected, which is possible by the preceding paragraph.
In the second case we first test whether b < |P|-|V|-o(H) (recall that o(H)
is the maximal number of sends in an MSC p(u), u € V). If not we reject,
otherwise we have to check whether there exists a path v;y = v, — --- = v, in
(V,—) together with a configuration C' in the MSC M = u(vy) - - - p(v,) such
that gus(C, M) > b. The correctness of this procedure follows from Corol-
lary 4.3. It remains to prove that it can be implemented in NL. Assume that

24



P={1,...,|P|}. We will guess the path v; — vy — - -+ — v, where only the
current node v; will be stored. While guessing this path, we will also guess the
configuration C' and thereby accumulate gus(C, M) in a variable g. As soon as
g reaches a value larger than b < |P|- |V|-o(H) we can immediately accept,
thus the binary coding of g can be stored in logspace. Of course we cannot
store the whole configuration C' in logspace, thus we have to guess C'in a “local
way”. For this we use a variable ) which stores a subset of P = {1,...,|P|}
(thus @ only needs constant space). The set @) will store the processes p on

which the maximal event in A™'(p) N C was already executed (here \ refers to
the MSC M).

Assume that during the execution of our NL-algorithm we go from node v;_;
to node v;. We update the variables () and g as follows: First we guess an
arbitrary set P’ C P\(Q such that for every p € P’ the MSC p(v;) contains an
event on process p. We set ) := @ U P’ and guess for each process p € P' an
event e, of u(v;) which is located on process p. Let C; be the set of all events e
of pu(v;) that are either located on some process in P\@ (here @ refers already
to the updated value), or such that e is located on some process p € P’ and
lies in the past of e,. We can easily check in deterministic logspace whether Cj
is a configuration of u(v;), for this it is not necessary to construct C; explicitly
(which would not be possible in logspace). If C; is not a configuration of
1(v;) then we reject. Otherwise we can easily compute in logspace the value
gus(Cy, pu(vy)). If g + gus(Cy, u(v;)) > b we immediately accept, otherwise we
update g by ¢ := g + gus(Cy, u(v;)) and proceed to the next node v .

Using Corollary 4.3, we see that H is not Vglob—bounded if and only if some
execution of our NL-algorithm accepts. In order to check whether an HMSC

H is not V? -bounded we can proceed similarly. O

7 Summary and open problems

Table 1 summarizes our results for boundedness problems for finite MSCs and
HMSCs, for which we precisely determined the tractable boundedness prob-
lems. Concerning nested MSCs we have shown that the two local-boundedness
problems can be decided in polynomial time. The precise complexity of the
two global-boundedness problems remains open for nested MSCs. An NP-lower
bound for existential-global-boundedness follows trivially from the NP-lower
bound for finite MSCs. Concerning the upper bound we can only prove mem-
bership in PSPACE. For universal-global-boundedness we can prove member-
ship in coNP for nMSCs, but the existence of a polynomial time algorithm
remains open. Another interesting problem might be to investigate the com-
plexity of boundedness problems for a fixed buffer-bound b, which means that
b does not contribute to the input size. One might expect that the complexity

25



finite 3
MSCs HMSCs | 3 v
global coNPiete lobal NP- coNP-

mp & complete| complete
local P

local P coNP-
local b complete
(nMSC)
Table 1

of boundedness problems decreases under this restriction.

Acknowledgment: We thank the anonymous referees for their useful comments
and suggestions for improvement.

References

1]

2]

R. Alur, G. J. Holzmann, and D. Peled. An analyzer for message sequence
charts. Software - Concepts and Tools, 17(2):70-77, 1996.

R. Alur and M. Yannakakis. Model checking of message sequence
charts. In J. C. M. Baeten and S. Mauw, editors, Proceedings of the 9th
International Conference on Concurrency Theory (CONCUR 99), Eindhoven
(The Netherlands), number 1664 in Lecture Notes in Computer Science, pages
114-129. Springer, 1999.

H. Ben-Abdallah and S. Leue. Syntactic detection of process divergence and
non-local choice in message sequence charts. In E. Brinksma, editor, Proceedings
of the 3rd International Workshop on Tools and Algorithms for Construction
and Analysis of Systems (TACAS ’97), Enschede (The Netherlands), number
1217 in Lecture Notes in Computer Science, pages 259-274, 1997.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-completeness. Freeman, 1979.

B. Genest and A. Muscholl. Pattern matching and membership for hierarchical
message sequence charts. In S. Rajsbaum, editor, In Proceedings of the 5th
Latin American Symposium on Theoretical Informatics (LATIN 2002), Cancun
(Mezico), number 2286 in Lecture Notes in Computer Science, pages 326-340.
Springer, 2002.

J. G. Henriksen, M. Mukund, K. N. Kumar, and P. Thiagarajan. On message
sequence graphs and finitely generated regular MSC languages. In M. Nielsen
and B. Rovan, editors, Proceedings of the 27th International Colloguium on

26



Automata, Languages and Programming (ICALP 2000), Geneva (Switzerland),
number 1853 in Lecture Notes in Computer Science, pages 675—-686. Springer,
2000.

[7] J. G. Henriksen, M. Mukund, K. N. Kumar, and P. Thiagarajan. Regular
collections of message sequence charts. In U. Montanari, J. D. P. Rolim,
and E. Welzl, editors, Proceedings of the 25th International Symposium on
Mathematical Foundations of Computer Science (MFCS’2000), Bratislava
(Slovakia), number 1893 in Lecture Notes in Computer Science, pages 675-686.
Springer, 2000.

[8] N.Immerman. Nondeterministic space is closed under complementation. STAM
Journal on Computing, 17(5):935-938, 1988.

9] E. L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt,
Rinehart and Winston, 1976.

[10] T. Lengauer and E. Wanke. The correlation between the complexities of
the nonhierarchical and hierarchical versions of graph problems. Journal of
Computer and System Sciences, 44:63-93, 1992.

[11] M. Lohrey and A. Muscholl. Bounded MSC communication. In M. Nielsen
and U. Engberg, editors, Proceedings of the 5th International Conference
on Foundations of Software Science and Computation Structures (FOSSACS
2002), Grenoble (France), number 2303 in Lecture Notes in Computer Science,
pages 295-309. Springer, 2002.

[12] P. Madhusudan and B. Meenakshi. Beyond Message Sequence Graphs.
In R. Hariharan et al., eds., Proceedings of FST TCS 2001: Foundations
of Software Technology and Theoretical Computer Science, 21st Conference,

Bangalore (India), number 2245 in Lecture Notes in Computer Science, pages
256-267. Springer, 2001.

[13] R. Morin. On regular message sequence chart languages and relationships to
Mazurkiewicz trace theory. In F. Honsell and M. Miculan, editors, Proceedings
of the 4th International Conference on Foundations of Software Science and
Computation Structures (FoSSaCS 2001), Genova (ltaly), number 2030 in
Lecture Notes in Computer Science, pages 332-346. Springer, 2001.

[14] M. Mukund, K. N. Kumar, and M. A. Sohoni. Synthesizing distributed finite-
state systems from MSCs. In C. Palamidessi, editor, Proceedings of the 11th
International Conference on Concurrency Theory (CONCUR 2000), University
Park, PA (USA), number 1877 in Lecture Notes in Computer Science, pages
521-535. Springer, 2000.

[15] A. Muscholl and D. Peled. Message sequence graphs and decision problems
on Mazurkiewicz traces. In M. Kutylowski, L. Pacholski, and T. Wierzbicki,
editors, Proceedings of the 24th International Symposium on Mathematical
Foundations of Computer Science (MFCS’99), Szklarska Poreba (Poland),
number 1672 in Lecture Notes in Computer Science, pages 81-91. Springer,
1999.

27



[16] A. Muscholl, D. Peled, and Z. Su. Deciding properties for message sequence
charts. In M. Nivat, editor, Proceedings of the 4th International Conference on
Foundations of Software Science and Computation Structures (FoSSaCS’98),
Lisbon (Portugal), number 1378 in Lecture Notes in Computer Science, pages
226—242. Springer, 1998.

[17] C. H. Papadimitriou. Computational Complezxity. Addison Wesley, 1994.

[18] R. Sethi. Complete register allocation problems. SIAM Journal on Computing,
4(3):226-248, 1975.

[19] K. Simon. On minimum flow and transitive reduction. In Proceedings of the 15th
International Colloquium on Automata, Languages and Programming (ICALP
88), Tampere (Finland), number 317 in Lecture Notes in Computer Science,
pages 535-546. Springer, 1988.

[20] R. Szelepcsényi. The method of forced enumeration for nondeterministic
automata. Acta Informatica, 26(3):279-284, 1988.

[21] P. van Emde Boas and J. van Leeuwen. Move rules and trade-offs in the pebble
game. In Proceedings of the Jth GI Conference, number 67 in Lecture Notes in
Computer Science, pages 101-112. Springer, 1979.

28



