Message Sequence Graphs and Decision
Problems on Mazurkiewicz Traces

Anca Muscholl'* and Doron Peled?

! Institut fiir Informatik, Universitit Stuttgart,
Breitwiesenstr. 20-22, 70565 Stuttgart, Germany
2 Department of Computer Science
Technion, Israel Institute of Technology
32000 Haifa, Israel
and
Bell Laboratories, 600 Mountain Ave.
Murray Hill, NJ 07974, USA

Abstract. Message sequence charts (MSC) are a graphical specifica-
tion language widely used for designing communication protocols. Our
starting point are two decision problems concerning the correctness and
the consistency of a design based by MSC graphs. Both problems are
shown to be undecidable, in general. Using a natural connectivity as-
sumption from Mazurkiewicz trace theory we show both problems to be
EXPSPACE-complete for locally synchronized graphs. The results are
based on new complexity results for star-connected rational trace lan-
guages.

Keywords: message sequence graphs, Mazurkiewicz semi-traces, automata
theory, universality problem

1 Introduction

A recent trend in formal methods is the use of tools and techniques that are based
on visual notation. Another trend is the use of standard methods, allowing seem-
less transfer of technology. Message sequence charts (MSCs) is a notation that
has a standard visual and textual presentation (ITU Recommendation Z.120, see
figures below). This notation is frequently used for specifying the design of com-
munication protocols. It abstracts away from e.g., the actual code, or the value
of variables, and concentrates on the messages exchanged between the different
participating processes.

Analogously to systems described using finite state automata, there are nat-
ural algorithmic problems which arise from debugging the design of communi-
cation systems using MSCs. Such problems are related to the correctness of the
design with respect to the specification, and its internal consistency. It may ini-
tially seem that MSCs are easier to analyze than automata based finite state
systems, since variables and values are abstracted away. It turns out that this

* The results were partly supported by Bell Labs and DIMACS.

is not the case: the semantics of MSCs is based on a partial order between its
events (in comparison with the total order model in the traditional interleaving
semantics). Further, it does not assume any bound on the capacity of its message
queues. In its general form, the MSC notation allows infinite computations by
using MSC graphs, in which each graph node includes an MSC.

In this paper we study two decision problems for MSC graphs, detecting race
conditions and verifying confluence. For race conditions there is a quadratic al-
gorithm for plain (finite) MSCs, which has been implemented e.g. in the tool
uBET, [1,7]. A variant of the confluence problem has been considered in [2].
Both the specification and the execution sequences of MSC graphs are captured
by the notion of rational trace language, which corresponds to the closure of
regular languages under partial commutations. This easily yields the undecid-
ability of both questions. However, we are interested in reasonable restrictions
of MSC graphs which guarantee the decidability of verification tasks. A main
result of trace theory [9,10,13] states that loop-connected automata (or star-
connected regular expressions) are equivalent to regular languages closed under
partial commutations. (For asymmetric partial commutations only the inclusion
from left to right holds, [3]). This is a very natural restriction for protocols spec-
ified by MSC graphs, too. It simply means that we disallow global synchroniza-
tion (needed for disconnected components) and unbounded message sequences
in one direction, only (without acknowledgment). This directly leads to consid-
ering decision problems on rational trace languages specified by loop-connected
automata. Surprisingly, this computational aspect of rational trace languages
has deserved little attention until now. We show for example that the universal-
ity problem for this class is EXPSPACE-complete. The same complexity bound
follows for both MSC problems. Furthermore, we show that the connectivity
property for automata is co-NP-complete.

2 Preliminaries

We first recall the notion of Mazurkiewicz (semi-) traces, [5,8]. An independence
alphabet is a pair (A, I), where A is an alphabet endowed by an irreflexive relation
I C Ax A, called independence relation (or commutation relation). Note that we
do not assume that I is symmetric. With a given independence alphabet (A, I)
we associate a rewriting relation = given as the reflexive, transitive closure
of =7, where zaby —; xbay for any contexts z,y € A* and (a,b) € I. Let
[u]r € A* be the set of all v with w = v, for v € A* then [u]; is called a
semi-trace over the independence alphabet (A,). Let D = A x A\ I denote
the complementary (dependence) relation. A semi-trace [uy - - - um]r1, 4; € A, can
be also viewed as a poset ({1,...m}, <) with i < j whenever there is some
dependence path ¢ = iy < -+ < 4 = j, i.e., (uj,,u;,) € D for all k < 1. The
set of semi-traces defines with the concatenation [u]f[v]; = [uv]; the monoid
of semi-traces M(A, I). For any set L C A* we define the I-closure of L by
[Llr = Uyer[u]r. A language [L]; with L regular is called rational semi-trace
language. For a word or trace ¢ let alph(t) denote the set of letters occurring in

t. The universality problem for rational languages over the independence relation
(A, I) is the question whether [L]; = A*, for regular languages L C A*.
By EXPSPACE we mean the complexity class DSPACE(?”O(I)).

Definition 1. 4 message sequence chart (MSC) M = (E,<,P,{,S, R, M) is
given by a poset (E,<) of events, a set P of processes, and a mapping ¢ : E — P
that associates each event with a process (location). For each process P the set
(=(P) is totally ordered by <p. The event set is partitioned as E = SUR, where
S (R, resp.) is the set of send (receive, resp.) events. Furthermore, M C S x R
1s the graph of a bijective mapping, relating every send with a unique receive,
and conversely.

Let e <. [for every pair (e, f) € M. It is required that the relation <.
UUpep <p is acyclic. Then < is the partial order induced by <. U{Upcp <p-

The partial order < is called wvisual order and is defined according to the
syntactical representation of the chart (e.g. represented according to the standard
syntax ITU-Z 120).

In general, the visual order provides more ordering between its events than
intended by the designer. For example, in the visual order, the events of each
process (represented by a vertical line) are totally ordered, including messages
received by a process from different processes. However, enforcing such linear
ordering between receive events is in general not the intended semantics of
the system. To make this distinction, we associate with every chart a causal
structure by means of a given semantics, which depends on the system archi-
tecture. Formally, the causal structure associated with a chart M is given as
tr(M) = (FE,<,P,£,S, R, M), where < C F x F is a partial order called causal
order. The causal order < is defined as the partial order induced by an acyclic
relation <, denoted precedence relation. The precedence relation is defined by
a set of rules that state which pairs of events ordered by the visual order also
belong to the causal order. We give below the set of rules corresponding to an ar-
chitecture where the communication is asynchronous and first-in-first-out (fifo).
For this semantics we only consider charts where the visual order satisfies for
any events e, f,e’, f' and processes P, P’

e<.f, €<.f, e<pe, UN=UM=P = f[f<plf.

Let M = (E,<,P, £, S R, M) be a chart and let e<f according to the fifo

semantics if one of the following conditions holds:
e A send and some event on the same process:
{e,f1NS #0 and e <p f for some process P.

o A message pair: e <. f, i.e., (e, f) € M.
e Messages ordered by the fifo queue:

{e,f} TR, e <p [for some process P and
e’ f (e <ce, ' <. fand € <p: f' for some process P’).

Infinite behaviours can be specified using MSC graphs (or alternatively, hi-
erarchical MSC graphs, HMSC).

Definition 2. An MSC graph M = (S, —, so,¢,P) is given as a finite, directed
graph (S, —, sg) with source state sy € S and nodes labelled by the mapping c,
assigning to each state s a finite chart ¢(s) over P.

Given two charts M; = (Fy, <;, P, £, Si, Ri, M;) over a common process set
P let the concatenation of My, M3 be the chart My My = (Ey U E2, <, P, {1 Ufs,
S USQ,Rl URQ,Ml U./\/lz), where < =<1 U <9 UUPEP El_l(P) X Ez_l(P) The
infinite concatenation My Ms - - - is defined correspondingly. The concatenation of
the associated causal structures is defined as tr(My My -+ -) = tr(My)tr(Ma) - - -.

Each path (s1,s2,...) in an MSC graph M defines a (possibly infinite) MSC
by concatenation, ¢(s1)e(sz2) A maximal path is simply a path starting with
the source and having no proper extension in M. We denote the causal structure
associated with a path x by tr(x).

Both partial orders of MSCs, the visual and the causal order (under the fifo
semantics), correspond exactly to semi-traces. With each set P = {Py,..., Py}
of processes, we associate a set A = {s;;,7; | 1 < 1 # j < n} of actions.
Letters in A express the type (send/receive) and the location of each event e,
together with the location of the event f such that (e, f) € M or (f,e) € M.
Let (e, f) € M be a message from P; to P;, ie.,e € S, f € R, {(¢) = P; and
£(f) = P;. We define a labelling A : E— A by letting A(e) = s;; and A(f) = rij,
respectively. For a chart M with event set F let msg(M) = {\(e) | e € E}.

Consider a chart M and its causal structure tr(M). The visual orderis easily
seen to be induced by the dependence alphabet (A, D,) given by the dependence
relation

Dy = {(sij,riz) | 4,5y U {555, i), (855, ki), (Phiy 5i5), (Fig, m5k) | 4,7, k-

The causal order under the fifo semantics is induced by the dependence alphabet

(A, De):

De = {(si5,75) | 1,5} UL (15, 5ik)s (Sij, Thi)s (Tris Sij)s (i, 75) | 4,4, k)

Note that the reflexivity of the dependence relation D, (for receives) is provided
by the fifo rule. Moreover, we have D, C D,, reflecting that the causal order is
less restrictive than the visual order. We denote in the following by 1., I, the
complementary relations A x A\ D., A x A\ D,.

In the trace setting, an MSC graph M = (S, —, so, ¢, P) is just a transition
system with nodes labeled by some partial order over the set of events. An
equivalent (non-deterministic) edge-labeled transition system over A can be eas-
ily defined. We choose for each state s € S some linearization @ € A* of the
(visual order) ¢(s) such that [a]r, = A(e(s)), i.e., « is a representative of the
semi-trace A(c(s)). The language L(.A) in the proposition below is defined as the
language of finite and infinite words accepted by A (i.e., all maximal paths in A

due to F' = Q).

Proposition 1. Let M = (S, =, s0,¢,P) be an MSC graph over the process set
P=AP,...,P}. Let A={s;5,ri | 1 <i#j<n}andlet D,,D, CAxA
be defined as above. Then an automaton Ay = (Q, A, 0, qo, Q) with transition
relation § C QQ x A x @ and initial state qo €) can be constructed such that:

i) [L(Ax)]1, = {A(c(€)) | € is a maximal path in M}.
i) [L(Ap)]1, = {Mtr(€)) | € is a mazimal path in M}.

Moreover, |Anr| € O(m), where m is the number of events and processes occur-
ring in M.

3 Detecting Race Conditions and Testing Confluence

3.1 Race conditions

An MSC M means just a specification of some scenario. By definition, its causal
structure tr(M) possibly allows more executions than the specification. In this
case we speak about race conditions. Clearly, race conditions should be avoided
and verifying the absence of races belongs to the correctness check of the design.
The next figure shows races on the process C' (between the receive events from
A resp. B):

A ¢

: C B
service req —(shutdown —(

data

Definition 3. The set of all linearizations of the visual order of an MSC M is
denoted by lin(M). The set of linearizations lin(M) C E*° of an MSC graph M
15 the collection of all linearizations of maximal paths in M.

Definition 4. The set of executions of an MSC M, denoted exec(M), is the
set of all linearizations of the causal order of tr(M). The set of executions
exec(M) C E* of an MSC graph is the collection of all executions of mawxi-
mal paths in M.

By definition we have lin(M) C exec(M) for every MSC M. If the inclusion
is strict, then the specification is in some sense incomplete and 1t possibly allows
some undesired behavior (race conditions).

Definition 5 (Race problem). An MSC graph M contains race conditions if
lin(M) is strictly included in the set of executions exec(M) of M.

The problem of checking whether an MSC graph contains races is naturally
related to a question on closures of regular languages. This closure problem will
be shown below to be undecidable. Later, we will obtain that the race problem
itself is undecidable.

Definition 6 (Closure problem over A, Iy, I5). Let I}, I, C A x A be two
commutation relations on A, with I C I>. Given a reqular language L C A*, we
want to decide whether [L]1, = [L1]r,.

Proposition 2. The closure problem over A, I, I, with (A, I1) = a
and Iy = A?\ idy 1s undecidable.

C

Proof. By areduction from the universality problem for rational trace languages
over (A, I1), which was shown to be undecidable in [14].

Let L C A* be regular. Then [L];, = A* if and only if [L];, = A* and
[L]r, = [L]1,- Since I5 is the total commutation relation, [L];, = A* is an equality
test between two semilinear sets, hence decidable by [6]. Thus, [L];, = [L]r, is
undecidable.

Remark 1. We can state the above result more precisely. The universality prob-
lem for rational trace languages over (A, I) is decidable if and only if TUidy4 is
transitive, [14]. Moreover, rational sets over a transitive independence relation
form a boolean algebra and are recognized by a particular kind of automata.
Using this characterization we can show that the closure problem over A, I, I,
with I, = A2 \ id4 is decidable if and only if I; is transitive.

Theorem 1. The race problem for MSC graphs under the fifo semantics 1s un-
decidable.

Proof. (sketch) The proof is a simple application of the above result, using the
messages depicted in Figure 1. Note that the receive events a,b are ordered in
the visual order, but not in the causal order. Between a,c¢ and b, ¢ there 1s no
visual order.

Fig. 1. Messages used in Thm. 1.

b

3.2 Checking confluence

An MSC graph uses non-deterministic branching to express alternative behav-
iors. This might be a problem for the implementation, since each computation
should correspond to a single flow of control. A possible solution is to synchronize
processes. However, global synchronization is not desirable and it can be avoided
if we require that the execution of the MSC graph is confluent, as defined below.
Intuitively, confluence corresponds to the following property: suppose that two
finite prefixes of computations are consistent in the sense that they can be com-
pleted into a single computation. Then, there exists in the system’s description a
complete computation that indeed includes both prefixes. For example, consider
the case where two different protocols are initiated by different processes, e.g.,
in the first protocol (but not in the second), process P, sends a message to Pa,
and in the second protocol (but not in the first), process Ps sends a message
to Pa. Since the two protocols, so far, are compatible, then confluence imposes
that there is an execution that contains both messages, possibly leading to the
need to resolve the conflict between future behavior of the protocol. Failing to
have the latter execution would mean that there is some additional way that
the processes might have learned which of the two protocols to execute (perhaps
by presetting some values). Thus, although this might not be a mistake, the
confluence test that we discuss in this section is intended to alert the designer
of such a possible problem. The next figure shows a confluent MSC graph: the
possible executions have no upper bound. Omitting the acknowledgement from
C to A would make the graph non-confluent, since there is no common extension

of both executions.

A C C B

service req shutdown

ack

We denote throughout this section the prefix order on causal structures (semi-
traces, resp.) by C. That is, let tr(M) C tr(N) if tr(N) = tr(M)tr(M’) for some
chart M’. The least upper bound of tr(M) and tr(N) with respect to the prefix
order is denoted tr(M) U tr(N) (if it exists).

Definition 7 (Confluence). An MSC graph M = (S, —, sg, ¢, P) is called con-
fluent of for any mazimal paths o, 5 € S in M such that tr(a) U tr(5) ez-
ists, there is some mazrimal path v € S in M such that tr(a) C tr(y) and

tr(0) C tr(y).

Let us first formulate the confluence problem in terms of partial commuta-
tions. Consider a regular language L C X* and a commutation relation I C
X x X. Then we denote L as confluent over (X,) if for any #,y € L such that
[2]r U [y]r exists, there is some z € L with [z]; T [2]1, [y]lr T [z]r. The next

proposition states that the confluence problem for partial commutations is in
general undecidable.

Proposition 3. Let (A, I) be defined by A = {a,b,c,d} and the dependence
relation (A, A x A\I) =a b ¢ d. Then it is undecidable whether a

given regular language is confluent over (A,).

Proof. We use again the undecidability of the universality problem, i.e., the
question whether [L]; = B*, where B = {a,b,¢}, L C B* is regular and J =
{(0,0), (¢,0), (5,), (e, D)}

We first define an encoding h : B* — B* by h(a) = ab, h(b) = ba and
h(c) = c. Let K = h(L)b*d* + ¢*d? + h(B*)b?d. Suppose first that [L]; = B*,
then [K]; = h(B*)(b?d? + b%d) + ¢*d? is confluent. For the converse let K be
confluent and consider v € (ab + ba)*, v € c¢*. Then {ub®vd,vd*} C [K]s.
Moreover, if [u'b? v'd?]; € [h(L)b? d*]; is an upper bound of both [ub® vd]; and
[vd?];, where ' € {a,b}*, v € ¢*, then v = v and v = v’. This implies
[A(L)]1r = [(ab + ba)*c*]1, hence [L]; = {a, b, c}*.

Similarly to Thm. 1 we also obtain:

Theorem 2. The confluence problem for MSC graphs under the fifo semantics
1s undecidable.

4 Loop-connected Automata and Restricted MSC
Graphs

Basic decision problems for MSC graphs as detecting races, checking confluence
or matching without gaps (a kind of model-checking) [12] are undecidable due
to the connection to rational semi-trace languages, i.e., languages of the form
[L]r, where L C A* is regular and T C A x A is an independence relation. This
class of languages strictly includes the class of regular, /-closed languages and
contains also non-regular languages, in general (cf. Thm. 3 below). However, the
expressiveness of rational semi-trace languages is based on the iteration of non-
connected expressions, i.e., subexpressions K* where alph(K) = Uyegalph(u) is
not a strongly connected subgraph of the dependence relation (A, A x A\ I). If
we disallow this possibility, that is, if we restrict the Kleene iteration to strongly
connected expressions, then rational semi-trace languages remain regular and
enjoy all good (decidability) properties of regular languages. We consider in this
section loop-connected automata A as defined below. We give an exponential up-
per bound on the size of a nondeterministic automaton for [L(.A)]; and we show
that the universality problem for connected rational languages is EXPSPACE-
complete. Using similar arguments, we can also show that the problem of the

nonempty intersection of connected rational languages is PSPACE-complete; i.e.,
the question whether [L(A)];N[L(B)]; # @, [11]. These results show that partial
commutations in general yield an exponential blow-up in the complexity of finite
automata.

Definition 8. Let (A, I) be an independence alphabet, D = A x A\ I and con-
sider a finite automaton A = (Q, A, 8, J, F). We denote A as loop-connected
over (A, I) if for every loop (qo, a0, ..., ak—1,95x = qo), ¢i € @, a; € A, the set
alph(ag - - -ap—1) C A of letters occurring in the loop induces a strongly connected

subgraph of (A, D).

Theorem 3 ([4]). Let (A, I) be an independence alphabet and A a loop-connected
automaton over (A, I). Then [L(A)]r is a regular language.

Before considering the complexity of testing whether an automaton is loop-
connected (with (A,) part of the input) let us note that it does not suffice to
check the property on simple loops, only:

Ezample 1. Let (X, 1) = b c. Let A = (Q,X,6,q0, F) with Q =
190,91, 92,43}, = {(q90, @, 1), (91, @, 90), (91, b, 42), (92,6, 91), (g0, ¢, ¢3), (43, ¢, 90) },
F = {qo}. Every simple loop of A is connected. However, [L(.A)]r is not regular.
Note that the intersection of [L(A)]; with the regular language [a*(bbce)*]r is
the I-closure of {a?"(bbcc)™ | n > m}, which is easily seen to be not regular.

a

Proposition 4. The following problem is co-NP-complete:
Instance: An independence alphabet (X, 1) and a finite automaton A.
Question: Is A loop-connected over (X, 1)?

Proof. For the co-NP-hardness, assume that FF = C7 A --- A (), 1s a boolean
formula in CNF over the variable set {z1,...,2,}. Moreover, let C; = ;1 V5V
l;3, with [, literals.

Let X = {ajk,bjk |1 <j<mk= 1,2,3}U{Cj,dj | 1 < j < m}. The
symmetric dependence relation is given by the following picture:

<

;T ;2 ;3
C< / / d
bii bia bi3/

Cit1 dit1

There are two dependence chains above, ¢ Co ¢m and
dy do dmm, and the dependence relation restricted to any
other subset {¢;,d;, a;x, b5 | K = 1,2,3} is analogous to the one depicted for
j = 1. The point is that the c-chain and the d-chain are connected only if we
have all letters b;1, b;2, b;3 for some j.

The automaton A associated with F' has for simplicity edges labeled by
words. Let A = (Q, X,d,q0, {q0}) with @ = {¢; | 0 < i < n}, and transition
relation 6 = {(¢i, P, ¢i+1), (¢i, Niy¢ig1) | 0 < i < n} (by convention, ¢nt1 = go).
Hereby, Pp = Ny = ¢1---emdy ---dy, and P; = p1 -+ -pm, Ni = q1 - ¢m Where
p; = ajk, if @ = U, and q; = by, if Ty = [, otherwise p; = ¢; = ¢. The
idea is that the letters a;, correspond to true literals, whereas b;, correspond
to false literals. Every (simple) loop from ¢g to ¢, and back to ¢ corresponds
to an assignment of the variables, the edge labeled P; means that z; is true,
whereas N; means that z; is false. As noted previously, if some assignment o
of I is satisfying, then it can be easily checked that A is not loop-connected,
using the loop corresponding to o. Conversely, it can be easily checked that every
non-satisfying assignment means that the corresponding loop is connected.

Remark 2. Our proof shows that even testing loop-connectedness for simple
loops 1s co-NP-complete.

4.1 Decision problems for loop-connected automata

For our previous undecidability results on MSC graphs (Thms. 1, 2) we used
the universality problem for rational trace languages, 1.e., the question whether
[L]r = A®, where L C A* is regular. If L is given by a loop-connected au-
tomaton A over (A, I), then by Thm. 3 we get decidability. In this section, we
exhibit a precise complexity characterization by showing that the universality
problem for rational semi-trace languages (i.e., I is not necessarily symmetric)
is EXPSPACE-complete. This leads later to the same complexity bounds for
detecting races and checking confluence.

The algorithm for the universality problem is based on an exponential bound
on the size of the automaton accepting [L(A)];r. The key lemma is a classical
automaton construction. Note that an exponential increase of the number of
states is unavoidable. Consider for example the finite language L, = (aa + bb)"
over A = {a,b,a,b}, and (A, A x A\I) =a b a b. Then [L,]r N
{a,b}*{a,b}* = {ut | u € {a,b}"}. The latter language is known to require at
least 2" states for a minimal NFA recognizing it.

Lemma 1. Let (A, I) be an independence alphabet and consider a loop-connected
automaton A = (Q, A,0,q0, F'). Let n = |Q| denote the number of states of A.
Consider some word v € A* such that §(q,v) # 0 for some state q. Moreover,
assume that v = touy - - tp_qupty forsome uy #1, 4, #1, 1 <i <k, 1<j<k
and (ti,u;) € I for all i < j. Then we have k < (n — 1)(|A] + 1).

Proof. Let A; denote for each 0 < j < k the alphabet A; = I(uj41---ug). Then
Ag € Ay -+ C Ag—1 C A. Suppose by contradiction that k& > (n — 1)(]A| + 1).

Then we obtain some indices 0 < 7 < j < k such that 4; = A;41 = -+ =
A; and j — ¢ > n — 1. Thus, we have (t;---t;,uiqy1---uj41) € I. Let us also
fix some computation p of A on v, i.e., a path from some state ¢ to a state
q’, which is labeled by v. Let ¢; denote the state reached on p after reading
touy - --tj_1u;. With 7 — ¢ > n — 1 we obtain some ¢ < | < m < j such that
qi = qm. Therefore, tjujyq1 -+ tm_1um is the labelling of a loop of A. However,
(tr+tme1, g1 - - Um) € I, thus A is not loop-connected, contradiction.

Proposition 5. Let (A, I) be an independence alphabet and A = (Q), A, d, qo, F)
a loop-connected automaton withn = |Q|. Then a finite automaton B with (n? -
2l AN+l spates exists such that L(B) = [L(A)]r.

Proof. Let v € L(A) be as in Lem. 1, i.e. v = tguy - - -t_1upts, with (¢t;,u;) € I
for all ¢ < j. Moreover, u; # 1 for all ¢, ¢; # 1 for all 0 < j < k and & <
(n —1)(JA| + 1). We consider some input ¢’ € [v]; for B such that v = ww’,
where w € [ug -+ -ug]r, w' € [to---tg]r. Let us fix some computation p of A on
v such that p starts in the initial state ¢o. We denote by p; (¢;41, resp.), the
state reached in p after reading touy - - -¢; (touy - -t;ui41, resp.). Each state of
B will encode the states go, po, q1, - - - , ¢k, P and the alphabets T(uq), ..., I(ug).
A state of this form is reachable in B by a prefix w of the input v’ only if w
satisfies w € [u] - - u}]r for some u; with T(u}) = I(u;) and ¢; € §(pi_1, ul).

Let @ € A and assume that wa is a prefix of the input v'. Suppose that
this occurrence of the letter a corresponds to some factorization ¢; = ray in v,
where z,y € A*. Then we have @ € I(t;41 - - - ug). There are three possible cases.
First, assume by symmetry that z = 1 and y # 1, hence we have for example
v = touy - ti—1(w a)yuiyr - upty, if ¢ # 0. In this case B replaces I(u;) by
I(u;a) and ¢; by some state ¢; € 6(¢;,a), if i # 0. The case where ¢ = 0 requires
a bit more care. We guess a state ¢ with ¢ € J(go, @) and let the new list of
states be (qo, g0, ¢, Do, - - - , Pi). Second, suppose that # 1 and y # 1, hence for
k< (n—1)(JA|+ 1) we have

1! ! ! ! !
v="douy - ti_1us way uiyy - upty = tozy -t 2 2l

where
tjifj<i w ifj<i
T ifj=1 ;L 'f':' 1
iTYy ifj=iq1 o) Mu=ed

tioaifj > it 1 U= ifj >4 1.
In this case B will guess the states p, ¢ € @) such that p is reached after reading
touy - - u;x, whereas ¢ € d(p, a). The new state of B will encode the list of states
(90, P0, 415 -« ,4i, Dy 4 Dis - - - s ks pi) and the list of alphabets (I(u1),..., I(u;),
I(a), ..., I(ug)).

Finally, let us consider # = y = 1. Then p; € §(q¢;,a). The new state of B
encodes the states (go, Do, q1, .-, Pi—1, Git1s - - - s 4k, Pk), if @ # 0, and the alpha-
bets (I(u1),...,I(ui—1), I(wjuip1a),. .., I(ug)). The case where ¢ = 0 is dealt
with similarly.

A final state of B is given by & = 1 and the states (qo, qo, p1,p1), with p; € F.
An initial state of B is given by the state list (¢o, ¢o) and the alphabet list (A).

Remark 3. We stated the above upper bound only for finite strings. However,
the same arguments also apply to nondeterministic Biichi automata.

Using Prop. 5 we obtain immediately:

Proposition 6. The following problem is in EXPSPACE:

Instance: An independence alphabet (A, I) and a loop-connected automaton
A over (A,).

Question: Is [L(A)]; = A*¢

Proof. Given a loop-connected automaton A, we guess some word w € A* and
verify that w ¢ [L(A)];. By Prop. 5 there is some automaton 3 accepting [L(A)]r
which has 20AI%) states. Moreover, we can construct the states and the transi-
tion relation of B using space which is polynomial in n and |A|. Hence it suffices
to guess w on-line and store the subset of states of B reached so far, which

. 2
requires 294l gpace.

4.2 Lower Bounds

We have also a matching lower bound for all problems considered previously.
The proof idea is based on a construction used by Walukiewicz [15] for proving
lower bounds on the temporal logic LTrL.

Proposition 7. The universality problem for loop-connected automata is hard
for EXPSPACE. This holds even if the independence alphabet is fired to (A,),
with A = {a,b,c,d,$,#} and I the least symmeltric relation containing {a,b} x

{e,d} U{a, b} x {#}U{c,d} x {$}.

Proof. We express the set of invalid computations of a Turing machine M on an
input w by means of regular expressions. Let M be a (Q”k — 1)-space bounded
Turing machine, where & > 1 is some constant, and let w be an input to M of
length n. Assume that the head of M never moves to the left of the first position
of w. We denote in the following s = 27" 1. A configuration a of M is of the
form « = uqv, where ¢ denotes the state, uv the tape contents and the head
scans the first symbol of v. Let I' denote the alphabet of configurations, with
B € I' denoting the blank symbol. Without restriction we may assume that

i) Th 1 initial fi tion 1 B..-B d th 1 t
i) e unique initial configuration is ¢ow . an e unique accepting
5—n
configuration is ¢; B ---B.
k3
ii) For every transition a - of M, a =ag---as, f =bo---bs (a;,b; € I'), we
have that each symbol b; is determined by a;_1, a; and a;41.
iii) Every accepting computation of M has odd length.

Let a,b, c,d, $,# be letters not in I'. For encoding computations of M we use the
independence alphabet (A, T), where A = {#,2 | # € {a,b,e,d}U '} U{S$, #}.
The independence relation I C A x A is the least symmetric relation satisfying
{(z,9),(8,9), (&, #)} C I, for all z,y € 'U{a,b,c,d}.

Consider a computation p = ag F a3 F -+ F ay of M, where ¢ is odd. We

encode p as in Figure 2. Hereby, each A; (A;, resp.) has the form
A =p(0,a,0) ;. 0p(1,a,b) a1+ p(s,a,b)a;,,
respectively
A; = p(0, a, 13) &; o p(1,a, 77) & 1---p(s,a, 77) Qs

where p(l,a,b) (p(l,a,b), resp.) is the binary representation of using a (a,

resp.) as 0 and b (b, resp.) as 1. Moreover, least significant bits are leftmost.
The strings C;, C; are defined analogously, with a, b, a, b replaced by ¢, d, ¢, d.

$\\\i;///&\\65 $ @;//7 B
¥ #/c g
Fig. 2. Computations of M.

We define in the following a loop-connected automaton A over (A, I) satisfying
[L(A)]r = A* if and only if M has no accepting computation on w. The set L(.A)
will be given as

L(A)y= N, UN(a,a) UN(c,e) UN(a,c)UN(¢, a)U Ninit U Nan ,
where

i) w € [Ns]y if and only if [w]; does not have the shape of Figure 2, with the
required form for A;, A;, Cy, C'j.

i) If w ¢ [N]; then w € [N(a,a)]; if and only if A;41 is not the successor
configuration of A;, for some i. Similarly for N(c,¢) and Cj, Cj1.

iil) Tfw ¢ [N,]r then w € [N (a, ¢)]s if and only if A; is not the same configuration
as C;, for some i. Similarly for N (¢, a) and C;, A;.

iv) If w ¢ [N]r then w € [Ninit]r if and only if [w]; has no prefix from
$#p(0,a,b) qop(l,a,b)wy ---p(n,a,b) w, ({a,b}* B)* $.

v) If w ¢ [Ny]r then w € [Ngn]r if and only if [w];r has no suffix from
#p(0,¢,d) ¢5 ({c, d}" B)" 3.

Let us sketch how to define loop-connected regular expressions for the above
languages. First, for i) it is not difficult to express that [w]; does not have the

shape of Figure 2, for alphabetical reasons. Hence, it suffices to express that
some A; (Ai, C;, C;, resp.) has not the required form w.r.t. the counters. This
is precisely the case when

i) A; does not start with a* g for some g € I'.

ii) A; does not end with b g for some g € I'.

i) A; ¢ ({a,b}""1)".

iv) A; contains a factor g1 uwgs v gs, with g; € I', u, v € {a, b}”k, but v # u+ 1.
This condition can be expressed by guessing some position 0 < i < n* such
that either u starts with 5°~', but the i-th symbol of v is the same as the
i-th symbol of a, or dually, u starts with some prefix in {a, b}~ \ 4~!, but
the i-th symbol of v differs from the i-th symbol of u.

For the languages described in ii), iii) we use the counters for identifying cor-
responding positions. For example, we require for N(a,c) that a factor from
(aa + bB)”k 9192 occurs, with g1, 92 € I', g1 # g2. Note that the construction can
be realized by iterating only connected expressions.

Using encodings we also obtain the last claim of the theorem.

Theorem 4. The universality problem for loop-connected automata is complete
for EXPSPACE (even if the independence relation is fived).

4.3 The race problem and the confluence problem revisited

The classes of MSC graphs considered in this section are defined by restrict-
ing loops to be strongly connected w.r.t. the visual (causal, resp.) order. This
restriction is natural for two reasons. First, it means that we disallow global
synchronization. (That is, iterating in parallel disjoint sequences of messages
would require some global counting mechanism which is not natural in a concur-
rent setting). Second, it corresponds to finite state systems. That is, we disallow
e.g. unbounded computations where P repeats sending a message to P’ (without
waiting for an answer).

Recall that A = {s;;,7;; | 1 < i # j < n} denotes the set of actions, and
that the visual and causal order, respectively, are induced by the independence
relations I, I (dependence relations D, D).

Definition 9. Let M = (S,—,so,¢,P) be an MSC graph. We say that M is
locally synchronized with respect to the visual order (causal order, resp.) if for
every loop (s1,s2, -+ ,8k = s1) in M, the set U¥_ msg(c(s;)) C A induces a
strongly connected subgraph of (A, Dy) ((A, D¢), resp.).

Using the connection between MSC graphs and rational semi-trace languages
(Prop. 1) we obtain also:

Proposition 8. The race problem under the fifo asynchronous semantics over
MSC graphs which are locally synchronized w.r.t. the visual order is decidable in
EXPSPACE.

Proof. By Prop. 1 it suffices to consider two independence alphabets (A, I1),
(A, I) with I; C I», and a loop-connected automaton A (w.r.t. (4, 1;)). Tt is
not hard to see that [L(A)]r, # [L(A)]1, if and only if some words u, v € A* and
(a,b) € Iz exist such that uabv € [L(A)]1,, but ubav ¢ [L(A)]1,. By Prop. 5 the
automaton B3 accepting [L(A)]7, has 20("141") states, hence it is possible to guess
u, v and simultaneously store the sets of states of B reached on uabv, resp. ubav,
using exponential space.

Proposition 9. The confluence problem under the fifo asynchronous semantics
over MSC graphs which are locally synchronized w.r.t. the causal order is in

EXPSPACE.

Proof. By Prop. 1 it suffices to consider an independence alphabet (A, T) and a
loop-connected automaton A (w.r.t. (A, I)). Then A is not confluent if and only if
some words p, ¢, 7 € A* exist such that {pq, pr} C [L(A)]s, alph(g) x alph(r) C I,
but pgrs ¢ [L(A)]z, for any s € A*. Clearly, these conditions can be checked in
exponential space using the automaton accepting [L(.A)];.

Theorem 5. Detecting races for MSC' graphs which are locally synchronized
w.r.t. the visual order is EXPSPACE-complete.

Proof. For the hardness we use Prop. 7 and a reduction from the universality
problem as given in Prop. 2. Note that the language L defined in Prop. 7 over
the alphabet A = {a,b,¢,d,a,b,¢,d,$,#} is such that 7(L) = A* is always
satisfied. Moreover, this property still holds if we encode {a,b,a,b} into {a,b}
(resp. {c,d,¢,d} into {c,d}). Thus, [L]; = A* is equivalent to [L]; = 7(L),
without restriction A = {a,b,¢c,d, $,#}.

We encode the alphabet A into MSCs as follows. Consider processes Py, Ps, Ps.
Let a, b be messages from processes P,, Py, respectively, to P;. The messages ¢, d
are defined similarly, from P, P; to Ps. Let $1 (41, resp.) be a message from
Py (Pg, resp.) to Ps. Let $5 be a message from Ps to Py, and #, from Py to
P5. Note that the receive events of a, b, $5 are visually ordered, but not causally
ordered. The same holds for ¢, d, #2, resp. $1, #1. The details of the proof are
straightforward.

Theorem 6. The confluence problem for MSC graphs which are locally synchro-
nized w.r.t. the causal order 1s EXPSPACE-complete.

Proof. We use a modified reduction from the universality problem [L]I = A*,
with L, A = {a,b,¢,d,$,#} and I as in Prop. 7 Let e be a new letter which
commutes with every letter in A. Let h : A — A* be an encoding of A, defined
as h(z) = xza. Then it is easy to check that [L]; = A* if and only if the language

K = e+ h(A") abed$# + e h(L) abed$#

is confluent. The alphabet A is encoded into messages as in Thm. 5, whereas e
is encoded as a message between a new pair of processes.

Acknowledgment: The authors thank Volker Diekert for an improvement of
the proof of Prop. 2.

References

10.

11.

12.

13.

14.

15.

R. Alur, G. H. Holzmann, and D. A. Peled. An analyzer for message sequence
charts. Software Concepts and Tools, 17(2):70-77, 1996.

. H. Ben-Abdallah and S. Leue. Syntactic detection of process divergence and non-

local choice in message sequence charts. In Proc. of Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’97), LNCS 1217, pp. 259-274.

M. Clerbout. Commutations Partielles et Familles de Langages. Thése, Université
des Sciences et Technologies de Lille (France), 1984.

. M. Clerbout and M. Latteux. Semi-Commutations. Information and Computation,

73:59-74, 1987.
V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific,
Singapore, 1995.

. S. Ginsburg and E. H. Spanier. Semigroups, Presburger formulas and languages.

Pacific Journal of Mathematics, 16(2):285-296, 1966.
G. Holzmann, D. Peled, and M. Redberg. Design tools for requirements engineer-
ing. Bell Labs Technical Journal - Software, 2(1):86-95, 1997.

. A. Mazurkiewicz. Concurrent program schemes and their interpretations. DAIMI

Rep. PB 78, Aarhus University, Aarhus, 1977.

Y. Métivier. Une condition suffisante de reconnaissabilité dans un monoide par-
tiellement commutatif. R.A.LLR.O. — Informatique Théorique et Applications,
20:121-127, 1986.

Y. Métivier. On recognizable subsets of free partially comutative monoids. Theo-
retical Computer Science, 58:201-208, 1988.

A. Muscholl. Decision and complezity issues on concurrent systems. Habilitations-
schrift (postdoctoral thesis), Universitdt Stuttgart, Jan. 1999. Submitted.

A. Muscholl, D. Peled, and Z. Su. Deciding properties of message sequence charts.
In Proc. of the 1st Int. Conference on Foundations of Software Science and Com-
putation Structures (FoSSaC5’98), LNCS 1378, pp. 226-242, 1998.

E. Ochmanski. Regular behaviour of concurrent systems. Bulletin of the Furopean
Association for Theoretical Computer Science (EATCS), 27:56-67, Oct. 1985.

J. Sakarovitch. The “last” decision problem for rational trace languages. Report
LITP 91.77, Univ. Paris 6, 1991. Abstract presented at the 1st Int. Symp. of Latin
American Theor. Informatics (LATIN’92), LNCS 583 (1992), pp. 460-473.

I. Walukiewicz. Difficult configurations — on the complexity of LTrL. In Proc. of
the 25th International Colloquium on Automata, Languages and Programming
(ICALP’98), LNCS 1443, pp. 140-151, 1998.

