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Abstract. We study the problem of controller synthesis for distributed systems
modelled by Zielonka automata. While the decidability of this problem in full
generality remains open and challenging, we suggest here to seek controllers
from a parametrised family: we are interested in controllers that ensure frequent
communication between the processes, where frequency is determined by the pa-
rameter. We show that this restricted controller synthesis version is affordable for
synthesis standards: fixing the parameter, the problem is EXPTIME-complete.

1 Introduction

The synthesis problem has a long tradition that goes back to Church’s solvability prob-
lem [4], which asks for devices that generate output streams from input streams, such
that a given specification is met. Synthesis of sequential systems has been thoroughly
studied and driven various results for infinite 2-player games (see [15] for a survey).

Synthesis of distributed systems has a bad reputation. Many possible variants of
distributed synthesis could be considered. But in the best known and most studied one,
initiated by Pnueli and Rosner [26], the problem is undecidable in general – cf. also
variations [18] and generalisations [22,9] thereof. These models extend Church’s for-
mulation to a fixed architecture of synchronously communicating processes that ex-
change messages through one-slot communication channels. Undecidability in this set-
ting comes mainly from partial information: architectures (the communication topol-
ogy) restrict the flow of information about the global system state. Synthesis in a
given architecture is decidable, iff this partial knowledge defines a preorder on the pro-
cesses [9]. The complexity of the decision problem is non-elementary in the number
of quotients. When extended to asynchronous communication with one-slot channels,
only systems where a single process needs to be synthesised remain decidable [30].

We use here a different synchronisation model, based on shared variables and known
as Zielonka automata [31]. In this model, processes that execute shared actions get full
information about the states of the processes with whom they synchronise. Therefore,
partial information is reduced to concurrency: the only missing knowledge that a pro-
cess might have concerns those events that happen concurrently. Partial information in
this model is therefore minimalistic, in the sense that it is not driven by the specifi-
cation or the architecture. As a consequence, establishing the (un)decidability of dis-
tributed synthesis in this setting has proven to be challenging and remains open. We
know, however, of some non-trivial cases where the problem is decidable. The first one
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[23] imposes a bound on the missing knowledge of a process concerning the evolution
of other processes. This restriction mainly says that every event in the system may have
only a bounded number of concurrent events. In this setting, the distributed game can be
reduced to a 2-player game with complete information. The proof of [23] actually uses
Rabin’s theorem about decidability of monadic second-order logic over infinite trees.
The second decidability result is based on a restriction on the distributed alphabet of ac-
tions [11], which needs to be a co-graph, and it applies to global reachability conditions.
More recently, it has been shown that distributed synthesis with local reachability con-
ditions is decidable under the assumption that the synchronisation graph is acyclic [13].
The exact complexity is non-elementary in the depth of the synchronisation tree. For
instance, it is EXPTIME for trees of depth 1, as for architectures involving one server
and several clients. The decidability proof also involves a reduction to a 2-player game.

The complexity of distributed synthesis with shared variables is therefore forbid-
dingly high, unless the class of strategies under consideration is restricted. The reason
for this high complexity is, once again, the partial knowledge a process has about other
processes. In the acyclic case studied in [13], partial knowledge is hierarchical. This
resembles the situation from Pnueli and Rosner’s setting [26,18,22,9], and similarly
increases the complexity by one exponent for each additional level of the hierarchy.

With this observation in mind, we reconsider the result of [23] and restrict the class
of strategies in such a way, that missing knowledge is uniformly limited. The restric-
tion on strategies is very similar to the notion of N -communicating plants used in [23]
to show decidability of monadic second-order logic over the event structure associ-
ated with the plant. The main differences are that (1) we do not require that the N -
communicating restriction is made explicit in the plant, but more liberally look for
strategies that impose N -communication on the controlled system, (2) the bound N ap-
plies only to synchronisation events: there is no limitation of local actions, and (3) the
winning condition is local on each process. The first condition above is reminiscent of
the bounded-context restriction used in model-checking [27], where local computations
are unrestricted and only context-switches are limited. To keep the presentation simple,
we do not consider divergent infinite plays, where two disjoint groups of processes can
synchronise infinitely often in parallel (our result can be adapted to include this case).

Our main result is that the existence of distributed strategies for a system described
by a Zielonka automaton A and a fixed bound N is exponential in the size of A and
doubly exponential in N . If N is fixed, then the problem is EXPTIME-complete.

Related work. The restriction to solutions that obey various bounds in synthesis
[10,17,8,6,2] has been inspired by similar restrictions in model-checking, e.g., in boun-
ded model-checking [3] and model-checking with bounded context switches [27,1].

The first two bounds used in synthesis were bounds on the size of the model [10,17]
and bounds on the number of rejecting states [19,10] in emptiness equivalent determin-
isation procedures from universal Co-Büchi automata to deterministic Büchi [19] and
safety [10] automata. The latter approach has been implemented by different groups
[8,6], while the first has been extended to quantitative specification languages [2], as
well as to restrictions on the size of symbolic representations of implementations [7,20].
The implementations of genetic synthesis algorithms in [16] is of the same kind, as the
fitness functions used effectively restrict the size of the synthesised programs.
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2 Zielonka automata

Informally, Zielonka automata are parallel compositions of finite-state processes that
synchronise on shared actions. There is no global clock, so between two synchro-
nisations, two processes can perform a different number of actions. Because of this,
Zielonka automata are also called asynchronous automata.

A Zielonka automaton has a (fixed) assignment of actions to sets of processes. A
distributed action alphabet on a finite set P of processes is a pair (Σ, dom), where Σ is
the finite set of actions and dom : Σ → (2P \ ∅) is the location function. The location
dom(a) of an action a ∈ Σ comprises all processes that synchronise in order to perform
a. Similar to other classical synchronisation mechanisms, e.g., CCS-like rendez-vous
or Petri net transitions, executing a shared action is only possible if the states of all
processes in dom(a) allow to execute a. In addition, the execution of a shared action
allows to “broadcast” some information between its processes: for instance, an action
shared between processes p and q may produce a swap between the states of p and q.
Related concepts are used in multithreaded programming, where atomic instructions
like compare-and-swap (CAS) allow to exchange values between two processes.

A (deterministic) Zielonka automatonA = 〈{Sp}p∈P, sin, {δa}a∈Σ , F 〉 is given by

– a finite set Sp of (local) states for every process p,
– the initial state sin ∈

∏
p∈P Sp, a set F ⊆

∏
p∈P Sp of accepting states, and

– a partial transition function δa :
∏
p∈dom(a) Sp

·→
∏
p∈dom(a) Sp for every action

a ∈ Σ, acting on tuples of states of processes in dom(a).

For convenience, we abbreviate a tuple (sp)p∈P of local states by sP , where P ⊆ P.
We also refer to Sp as the set of p-states and of

∏
p∈P Sp as global states.

A Zielonka automaton can be seen as a sequential automaton with the state set
S =

∏
p∈P Sp and transitions s a−→ s′ if (sdom(a), s

′
dom(a)) ∈ δa, and sP\dom(a) =

s′P\dom(a). By L(A) we denote the language of this sequential automaton.
This definition has an important consequence. The location mapping dom defines

in a natural way an independence relation I ⊆ Σ × Σ: two actions a, b ∈ Σ are
independent (written as (a, b) ∈ I) if the processes they involve are disjoint, that is, if
dom(a) ∩ dom(b) = ∅. Note that the order of execution of two independent actions
(a, b) ∈ I in a Zielonka automaton is irrelevant, they can be executed as a, b, or b, a
– or even concurrently. More generally, we can consider the congruence ∼I on Σ∗

generated by I , and observe that, whenever u ∼I v, the state reached from the initial
state on u and v, respectively, is the same. Hence, u ∈ L(A) if, and only if, v ∈ L(A).
We denote u, v as trace-equivalent whenever u ∼I v (and write u ∼ v for simplicity).

The idea of describing concurrency by an independence relation on actions was
introduced in the late seventies by Mazurkiewicz [24] (see also [5]). An equivalence
class [w] of ∼ is called a Mazurkiewicz trace, it can be viewed as a labelled pomset.
We will often refer to a trace using just a word w instead of writing [w]. As we have
observed L(A) is a sum of such equivalence classes. In other words, the language of a
Zielonka automaton is trace-closed.

Actions a with |dom(a)| = 1 are called local, and Σloc is the set of local actions.
If |dom(a)| > 1 then a is called synchronisation action, and Σsync is the set of such
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actions. Actions from Σp = {a ∈ Σ | p ∈ dom(a)} are denoted as p-actions. We write
Σsync
p = Σsync ∩ Σp and Σloc

p = Σloc ∩ Σp. For u ∈ Σ∗ we write statep(u) for the
p-state reached by A on u.

Example 1. Consider the example automaton with processes P1, . . . , Pn, S1, . . . , Sm
as shown in Figure 1. Here, processes S1, . . . , Sm are backup servers and each of the
processes Pi loops on a sequence of internal actions, followed by backup actions on
some server. We abstract this by the following distributed alphabet: `i, bi are local ac-
tions of Pi (i.e., dom(`i) = dom(bi) = {Pi}), where bi denotes a backup request
on Pi, and si,k is a shared (backup) action with dom(si,k) = {Pi, Sk}. Action si,k
is enabled if Pi is in state 1i. Actions `i, bi, si,k (k = 1, . . . ,m) are Pi-actions, and
Σsync = {si,k | i, k}. Note also that si1,k1 , si2,k2 are independent iff i1 6= i2 and
k1 6= k2.

0i 1i

`i

bi

si,1, . . . , si,m

0

s1,k

sn,k

si,k

Fig. 1. Example Zielonka automaton; Process Pi on the left and server Sk on the right.

A major result about Zielonka automata is stated in the theorem below. Note that it
is one of the few examples of synthesis of (closed) distributed systems.

Theorem 1. [31] Let dom : Σ → (2P \ {∅}) be a distribution of letters. If a language
L ⊆ Σ∗ is regular and trace-closed, then there is a deterministic Zielonka automaton
recognising L. Its size is exponential in the number of processes and polynomial in the
size of the minimal automaton for L [12].

3 Distributed control and games

The synthesis problem considered here was proposed in [23]. It can be viewed as
a distributed instantiation of supervisory control, as considered in the framework of
Ramadge and Wonham [28]. In supervisory control, one is given a plant A, together
with a partition Σ = Σsys ∪̇Σenv of Σ into controllable actions Σsys and uncontrol-
lable actions Σenv . As in [23,13] we assume that all uncontrollable actions are local,
Σenv ⊆ Σloc. The goal is to synthesise a controller C, which is a device that never
blocks uncontrollable actions. The controlled plant is then the product of A and C, and
it needs to satisfy additional conditions like safety, reachability, or parity conditions.

We will work with the game description of the controller problem, and start by
illustrating it on an example.

Example 2. Reconsider the automaton from Figure 1 and assume that local actions are
uncontrollable, whereas synchronisation actions are controllable. In this model, the en-
vironment decides whether a process Pi continues to use local transitions or needs
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backup, while the system is in charge of deciding each time, on which server(s) the
backup is made. One possible objective of the control strategy could be to achieve a
balanced use of the servers, which avoids using certain servers more often than others.
A round-robin strategy on each process Pi, e.g., that asks each time for backup on the
next server, guarantees that a server Sk can be “behind” the other servers by at most
O(nm) backup actions.

The game formulation refers to a game between the distributed system and local
environments, one for each process. A Zielonka automaton A defines a game arena,
with plays corresponding to initial runs. Since A is deterministic, we can view a play x
as a word from L(A) – or a trace, since L(A) is trace-closed. Let Plays(A) denote the
set of traces associated with words from L(A).

A strategy for the system will be a collection of individual strategies for each pro-
cess. The important notion here is the view each process has of the global state of
the system. Intuitively, this is the part of the current play that the process could see
or learn about from other processes by synchronising with them. Formally, the p-view
of a play x, denoted viewp(u), is the smallest trace [v] such that u ∼ vy and y con-
tains no action from Σp. We write Playsp(A) for the set of plays that are p-views:
Playsp(A) = {viewp(u) | u ∈ Plays(A)}.

A strategy for a process p is a function σp : Playsp(A) → 2Σ
sys
p , where Σsys

p =
{a ∈ Σsys | p ∈ dom(a)}. We require in addition, for every u ∈ Playsp(A), that
σp(u) is a subset of the set enabled(sp) of actions that are enabled in sp = statep(u).
A strategy is a family of strategies {σp}p∈P, one for each process.

The set of plays respecting a strategy σ = {σp}p∈P, denoted Plays(A, σ), is the
smallest set that contains the empty play ε and that satisfies, for every u ∈ Plays(A, σ),
the following two conditions: (1) if a ∈ Σenv and ua ∈ Plays(A), then ua is in
Plays(A, σ), and (2) if a ∈ Σsys and ua ∈ Plays(A), then ua ∈ Plays(A, σ) provided
that a ∈ σp(viewp(u)) for all p ∈ dom(a). So this definition says that actions of the
environment are always possible / enabled, whereas actions of the system are possible
only if they are allowed by the strategies of all involved processes.

Before defining winning (control) strategies, we need to introduce infinite plays
that are consistent with a given strategy σ. Such plays can be viewed as (infinite) traces
associated with infinite initial runs of A that satisfy both conditions of the definition of
Plays(A, σ). The precise definition is very intuitive when using pomsets, here we just
give an example: the infinite play aωbω is the set of all ω-words with infinitely many
as and infinitely many bs. We write Plays∞(A, σ) for the set of such finite or infinite
plays. A play from Plays∞(A, σ) is also denoted as σ-play. A play u ∈ Plays∞(A, σ)
is called maximal, if there is no action c such that uc ∈ Plays∞(A, σ).

Winning conditions. In analogy to regular 2-player games, winning conditions in
these games can be provided by regular, trace-closed languages [23]. In this paper, we
consider simpler conditions, namely local parity conditions, because we are interested
in the game complexity and do not want to add the specification as an extra parameter.

Our systemA is thus a deterministic Zielonka automaton with local states, coloured
by integers from [k] = {0, . . . , k − 1}: let A = 〈(Sp)p∈P, (δa)a∈Σ , s0, χ〉, χ :⋃
p∈P Sp → [k]. A maximal play u ∈ Plays∞(A, σ) is winning, if the following holds

for every process p. Write viewp(u) as u0u1 . . ., for u0, u1, . . . such that, for every n,
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we have that viewp(u0 · · ·un) = u0 · · ·un and either un is empty or it has only one
p-action (which is the last one). Then we require that lim infn→∞ χ(statep(u0 · · ·un))
is even. Equivalently, if viewp(u) is infinite, then the local parity condition should hold,
and if viewp(u) is finite, then the colour of the last state reached by p needs to be even.
A strategy σ is winning, if every maximal play in Plays∞(A, σ) is winning. Maximal-
ity is a sort of fairness condition for such automata. Requiring infinite plays as in [23] is
also possible, but it does not guarantee fairness for each process. A more refined notion
of fairness can be found in [14].

Remark 1. The decidability of the existence of a winning distributed control strategy
for systems modelled by Zielonka automata is an open problem. It is worth noting that
slight modifications of the problem statement lead to undecidability. First, if one uses
regular, but not trace-closed specifications, then the problem is known to be undecid-
able (see e.g. [21]). Second, if the individual strategy σp only depends only on the local
history of process p (i.e., σp : (Σp)∗ → 2Σ

sys
p ), then the problem is again undecid-

able [21]. In both cases, undecidability stems from the restricted partial knowledge of
the processes.

4 Resuming local behaviour

Recall that Σenv ⊆ Σloc, i.e., environment actions are local. As shown in this section,
this allows to summarise local behaviour, such that one can reason about distributed
strategies only w.r.t. synchronisation actions.

Lemma 1. Let A be a Zielonka automaton. If there is a winning control strategy σ =
(σp)p∈P for A, then there also exists a winning one that satisfies, for every process
p ∈ P and every play t ∈ Playsp(A, σ), either σp(t) = {a} for some a ∈ Σloc

p ∩Σsys,
or σp(t) ⊆ Σsync

p . In addition, σp(t) = ∅ if enabled(statep(t)) ∩Σenv
p 6= ∅.

The proof exploits that, when both local and synchronisation actions are enabled,
disabling the synchronisation actions reduces the set of plays, but they are still winning.

Definition 1. Fix some process p. A local p-play is a word from (Σloc
p )∗. A p-context is

a play from Playsp(A) that ends with an action from Σsync
p (unless it is empty).

Given a distributed strategy (σp)p∈P, we associate with a p-context u a local strat-
egy from u: this is the mapping σp[u] : (Σloc

p )∗ → 2Σp defined as

σp[u](x) := σp(ux) for all x ∈ (Σloc
p )∗.

We assume in the following that σ = (σp)p∈P satisfies Lemma 1, thus σp[u] :
(Σloc

p )∗ → (Σloc
p ∩Σsys) ∪ 2Σ

sync
p . We are interested in the configurations that result

after a maximal local run of process p from a given p-context u with sp = statep(u).
We define:

Syncσ(p, u) = {(s′p, A, c) | ∃x ∈ (Σloc
p )∗ : s′p = statep(ux), A = σp(ux) ⊆ Σsync

p ,

enabled(s′p) ∩Σenv
p = ∅, and the minimal colour seen on sp

x−→ s′p is c} .
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A local strategy σp[u] is called simple if, for every (s′p, A, c), (s
′′
p , A

′, c′) ∈
Syncσ(p, u), we have that s′p = s′′p implies A = A′. In this case Syncσ(p, u) is a
partial mapping Syncσ(p, u) : Sp

·→ 2Σ
sync
p × 2[k].

A local strategy σp[u] from context u is computable with memory M if σp[u](x)
can be computed from statep(ux) using an additional finite memory M . In this case,
σp[u] is a mapping from Sp ×M to (Σloc

p ∩Σsys) ∪ 2Σ
sys
p .

Lemma 2. If there is a winning control strategy σ = (σp)p∈P for A with a local parity
condition with k colours, then there is also a winning one, say τ = (τp)p∈P, where,
for each process p and every p-context u, the local strategy τp[u] is simple, computable
with memory of size k, and such that every infinite (and thus local) τp[u]-play satisfies
the parity condition for process p.

The proof exploits that, for every s′p that can occur at the end of a run, one can select
a triple (s′p, A, c) with worst color among the elements of Syncσ(p, u) and then change
the decision for each such end-point s′p to A. It is then easy to turn the resulting simple
local strategy into one, where the decision is only based on the state and the minimal
colour that occurred so far.

We denote local strategies τp[u] as in Lemma 2, as good strategies. In Section 6 we
will compose good strategies, and we therefore define their outcomes.

Definition 2. Let u be a p-context. The outcome of a simple strategy τp[u] is a partial
mapping f : Sp

·→ 2Σ
sync
p × [k] that satisfies the following side constraints:

1. f and Syncτ (p, u) have the same domain, and
2. for each state sp in the domain of f : if Syncτ (p, u)(sp) = (A,C) for some A ⊆
Σsync
p and C ⊆ [k] then f(sp) = (A, c) where:
– either C 6⊆ 2N, c is odd and c ≤ d for every odd colour d ∈ C, or
– C ⊆ 2N, c is even, and c ≥ max(C).

Remark 2. Note that we can test, for given sp ∈ Sp and partial mapping f : Sp
·→

2Σ
sync
p × [k], whether f is the outcome of a good local strategy from state sp. The test

amounts to solving a 2-player game with parity condition on infinite plays. Finite plays
are won if the last state, say tp, is in the domain of f . In addition, if f(tp) = (A, c) for
some A, then tp can be reached only with even minimal colours d ≤ c if c is even. If
c is odd, and tp is reached with odd minimal colour d, then d ≥ c. The condition on
colours can be checked using additional memory k.

5 Well-informed strategies

We start by defining the distributed strategies we are interested in. They are very similar
to the notion of N -communicating plants used in [23], with two exceptions. First, our
bound N applies only to synchronisation actions. That is, there is no limitation on local
actions. Second, our definition implies that infinite plays are non-divergent, which is a
restriction that we impose only for simplifying the presentation (see also Remark 4).
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Definition 3. Let N > 0 be an integer. A strategy σ = (σp)p∈P is called N -informed
if, for every play u ∈ Plays∞(A, σ) such that u = u′av with a ∈ Σsync, v ∈ Σ∞ and
dom(a) ∩ dom(v) = ∅, it holds that v has at most N actions from Σsync.

The round-robin strategy mentioned in Example 2 is N -informed with N ∈
O(nm). Note that Lemma 2 preserves N -informedness, since only local strategies are
modified and Def. 3 refers only to synchronisation actions. By abuse of notations, we
will call a sequence from (Σsync)∞ N -informed, if it satisfies the above definition.

Let us fix some total order < on Σsync. A sequence u ∈ (Σsync)∗ is said to be in
lexicographic normal form (w.r.t. <) if there is no trace-equivalent sequence u′ ∼ u
such that u = vbw, u′ = vaw′ with a < b. We denote by lnf(u) the trace-equivalent se-
quence v ∼ u that is in lexicographic normal form. Sequences in lexicographic normal
form build a regular set: a sequence u ∈ (Σsync)∗ is not in lexicographic normal form
iff, for some x, y, z ∈ (Σsync)∗:

u = xbyaz with dom(a) ∩ dom(by) = ∅ and a < b . (1)

Let s = maxp∈P |Sp|, c = maxp∈P |Σsync
p |, p = |P|, and recall that k is the number of

colours. A deterministic safety automaton of size O(c · 2p) exists that accepts the set of
sequences in lexicographic normal form. This automaton records, for every a ∈ Σsync,
the set of processes in whose view the last a occurs.

The next lemma considers how the lexicographic normal form changes when ex-
tending a sequence from (Σsync)∗, showing that only a bounded suffix is modified.
The lemma is essentially the same as Lemma 3 in [23]:

Lemma 3. [23] Let u ∈ (Σsync)∗ be an N -informed sequence and a ∈ Σsync. Then
lnf(u) = zx and lnf(u · a) = zy for some x, y, z with |x| ≤ N .

The next lemma makes the statement of Lemma 3 more precise:

Lemma 4. Let u, v ∈ (Σsync)∗ be N -informed and p ∈ P such that u = viewp(v)
and both u, v are in lexicographic normal form. Then we can write u = zx and v = zy,
with y = y0x1y1x2 · · · ym−1xmym for some m ≤ c · p, such that (1) |x| ≤ N , (2)
x = x1 · · ·xm, and (3) dom(yi) ∩ dom(xi+1 · · ·xm) = ∅ for every i < m hold.

6 Strategy trees

Let Ω =
∏
p∈P Ωp, where Ωp is a set of tuples (sp, f, b), where f is outcome of some

good local p-strategy τ from state sp and b ∈ {0, 1} says whether τ allows infinite
(local) plays from sp. Let ∆ =

⋃
a∈Σsync δa. A strategy tree is an infinite tree with

directions Γ = Σsync × ∆ and nodes labelled by elements of Ω ∪ {⊥}. Note that
|Γ | ≤ c · |A|. A node in the tree is identified with the sequence from Γ ∗ labelling the
path from the root to that node. We require for every pair of nodes u, u · 〈a, d〉 ∈ Γ ∗:

1. d ∈ δa, and
2. if the labels of u and u ·〈a, d〉 are ω′ and ω, resp., then ω′q = ωq for all q /∈ dom(a).
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For u ∈ Γ ∗, we denote by statep(u) the state of process p after u. This is namely
the state that occurs in the transition d of the last pair 〈a, d〉 with p ∈ dom(a).

Nodes in a strategy tree that do not correspond to realisable summarised plays, are
called sink nodes and are labelled by ⊥. A node u · 〈a, d〉 with label ω′ is a sink, but u
is not, if, and only if, (1) either the action a is not allowed by ωdom(a), where ω is the
label of u, (2) or the a-transition d does not result from ωdom(a), (3) or ω′p 6= (tp, ∗, ∗)
for some p ∈ dom(a) with tp = statep(u · 〈a, d〉).

Remark 3. If we fix local good strategies for every pair of local states and outcomes
from Sp×Ωp, then every initial path ω0, 〈a0, d0〉, ω1, 〈a1, d1〉 . . . in a strategy tree such
that all ωi 6= ⊥ can be “expanded” in a natural way to a set of plays from Plays(A).

Lemma 5. A deterministic safety automaton with O(sp) states can check that the label
⊥ correctly identifies sink nodes.

A strategy tree is winning if all plays that are expansions of maximal initial paths
of the tree, are winning. Checking consistency of the labels ω requires to include in
the label of each node u ∈ Γ ∗ a bit that reflects whether or not the projection of u
on Σsync is in lexicographic normal form. As mentioned in Section 5, a deterministic
safety automaton with O(c · 2p) states can check that this labelling is correct. In the
following we will focus on non-sink nodes in lexicographic normal form. We will refer
to them as normalised nodes.

We will need to ensure that a strategy tree has a consistent node labelling. The next
definition tells when two nodes u, u′ ∈ Γ ∗ correspond to the same summarised play.

Definition 4. Two nodes u, u′ ∈ Γ ∗ are called play-equivalent if the following hold:

1. The projections of u, u′ onto Σsync are trace-equivalent.
2. For all a ∈ Σsync and k ≥ 0: suppose that u = u1〈a, d〉u2 and u′ = u′1〈a, d′〉u′2,

with 〈a, d〉, 〈a, d′〉 being the k-th occurrence of a in u and u′, respectively. Assume
also that u1 and u′1 is labelled by ω and ω′, respectively. Then we require that

d = d′ and ωdom(a) = ω′dom(a) .

We ensure that the strategy tree is labelled consistently by local strategies by
comparing normalised nodes that are play-equivalent. By abuse of notation, we write
viewp(u) for the p-view of u ∈ Γ ∗.

Definition 5. A strategy tree is labelled consistently if, for all normalised non-sink
nodes u, v ∈ Γ ∗ and every process p such that u and viewp(v) are play-equivalent,
it holds that ωp = ω′p, where ω and ω′ are the labels of u and v, respectively.

Informally, the strategy tree is labelled consistently if the choice of the next out-
comes ωdom(a) after some synchronisation a ∈ Σsync depends only on the history
associated with the views of processes p ∈ dom(a) after a.

Lemma 6. Every good control strategy (cf. Lemma 2) maps to a consistently labelled
strategy tree. Conversely, from every consistently labelled strategy tree we can construct
a good control strategy.
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Lemma 7. An alternating safety automaton with O(|Γ |N ·N · s · c ·k) states can check
that a strategy tree associated with an N -informed strategy is labelled consistently.

Proof. Let u, v ∈ Γ ∗ be as in Definition 5, so in particular normalised, non-sink,
and such that u and viewp(v) are play-equivalent. We can apply Lemma 4 to (the
projections on Σsync of) u, v. Thus, we can write u = zx, v = zy with y =
y0x1y1x2 · · · ym−1xmym for somem ≤ c ·p, such that (1) |x| ≤ N , (2) x = x1 · · ·xm,
and (3) dom(yi) ∩ dom(xi+1 · · ·xm) = ∅ for every i < m hold.

An alternating (reachability) tree automaton can check that some u, v ∈ Γ ∗ as
above do not satisfy ωp = ω′p, with ω, ω′ the labels of u, v. The automaton first guesses
(and moves to) node z. It then guesses x ∈ Γ≤N and two directions where to proceed;
it also guesses the difference between the labels of zx and zy, e.g., a state from Sp, an
action from Σsync

p , and some colour. In the first direction it checks that a path labelled
by x ends with a p-label consistent with the guessed difference. In the second direction,
it checks that the path is of the form y0x1y1x2 · · · ym−1xm, with x = x1 · · ·xm and
dom(yi) ∩ dom(xi+1 · · ·xm) = ∅ for every i < m, and that it ends with a p-label
consistent with the guessed difference.

Note that we do not need to remember the intermediate labels ω on the path x,
because we can look for a shortest u that witnesses the inconsistency. Then we can
assume that u and viewp(v) are play-equivalent (and not only trace-equivalent). The
alternating automaton has O(|Γ |N ·N · s · c · k) states, |Γ |N ·N for matching x inside
y0x1y1x2 · · · ym−1xm and s · c · k for the guessed difference between node labels.

Lemma 8. A deterministic safety automaton with O(c · p! · 2p · (N + 1)p) states can
check that a strategy tree corresponds to an N -informed control strategy.

Proof. The state records, at each node u and for each u = u1〈a, d〉u2, how many
synchronisation actions in u are concurrent to this a (up to N ), and the set of processes
in the causal future of a in u. Note that, if u = u1〈a, d〉u2 = u′1〈a, d′〉u′2 with |u1| <
|u′1|, then the set of processes in the causal future of 〈a, d〉 is a superset of the set of
processes in the future of 〈a, d′〉. In addition, we need to count, for each a ∈ Σsync, the
length of u \ viewdom(a)(u) (up to N +1). Thus, O(c · p! · 2p · (N +1)p) states suffice.

Lemma 9. For a given consistently labelled strategy tree for anN -informed strategy, a
universal Co-Büchi automaton with 1+p(k+2) states can check that each run satisfies
the parity condition.

The proof idea is to construct an automaton that rejects if it can guess, for some
process p, a path where the minimal colour occurring infinitely often is an odd colour o.
It can guess a point where no lower colour than o occurs and verify (1) this (safety) and
(2) that o occurs infinitely often (Co-Büchi). To test the corner case of a process p being
scheduled finitely often, the automaton can guess a point where p is not scheduled again
and verify (1) this and (2) that it might end in a state with odd colour (both safety).

Remark 4. As mentioned, we consider strategies that produce only non-divergent plays.
A divergent play is a play where, whenever a synchronisation event a has more than N
synchronisation events b1, . . . , bM in parallel, then the processes of a and those of the
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bi are henceforth separated. It is easy to extend Lemma 8 to the divergent case, we
merely need to check N -informedness on non-divergent plays. Extending the winning
condition (Lemma 9) requires more care, since we need to consider processes that are
scheduled finitely often and to show that a play is maximal for them.

Summing up, we showed how to check the following properties of strategy trees:

1. Sink nodes are identified correctly: deterministic safety automaton B1 with
O(|S|) = O(sp) states.

2. Normalised nodes are identified correctly: deterministic safety automaton B2 with
O(c · 2p) states.

3. Strategy tree is labelled consistently: alternating safety automaton B3 with
O((c · |A|)N ·N · s · c · k) states (Lemma 7).

4. Control strategy is N -informed: deterministic safety automaton B4 with
O(c · p! · 2p · (N + 1)p) states (Lemma 8).

5. The parity condition is satisfied: universal Co-Büchi automaton B5 with O(p · k)
states (Lemma 9).

Theorem 2. Given a Zielonka automaton A with local parity condition and an inte-
ger N , the existence of a winning N -informed control strategy can be decided in time
doubly exponential in N and exponential in A. For fixed N , the problem is EXPTIME-
complete. The same bounds apply to the construction of a winning strategy (if it exists).

The proof exploits the correspondence between N -informed control strategies and
trees accepted by the intersection of B1 through B5. We intersect them in two steps.
Invoking the simulation theorem [25], we first construct a nondeterministic parity au-
tomaton B′5, which is language equivalent to B5, with polynomially many colours and
exponentially many states in the states of B5. We likewise construct a nondeterministic
safety automaton B′3, which is language equivalent to and exponential in B3. We can
then intersect B1, B2, B′3, B4, and B′5 to a nondeterministic parity automaton B with the
same colours as B′5, whose states are the product states of these five automata.

The emptiness of B can be checked (and a control strategy constructed) by solving
the resulting emptiness parity game, which is polynomial in the number of states, and
exponential only in the number of colours [29]. This provides the claimed complexity.
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