Controlling Loosely Cooperating Processes

Anca Muscholl and Sven Schewe

! LaBRI, Université Bordeaux, Talence, France
2 Department of Computer Science, University of Liverpoaverpool, United Kingdom

Abstract

In this article, we consider the problem of controlling letyscooperating processes.
We show that this distributed control problem is EXPTIMExqulete if we restrict the
number of processes to two, and undecidable for three or prooesses.

Keywords: Control and games, Zielonka automata, Loosely cooperatincesses

1. Introduction

Asynchronous processes that synchronise on shared afilang7, Kel73, DR95]
are a popular model for distributed systems. In this artigkediscuss the control prob-
lem for such processes [RW89]. The control problem is to klvgwether or not each
process has a local controller that restricts the set of byrdisabling some control-
lable actions in such a way that all joint behaviours satésfyiven local property on
each process.

When studying the control problem, a major design decisahé knowledge the
processes have about each other. We stodgely cooperatingprocesses [Zie87].
Loosely cooperating processes, and hence their localatars, obtain no additional
knowledge by performing shared actions with other processd they know about
other processes is what they can infer from their local hysia particular the history
of their cooperation with other processes. Synthesis afdtyocooperating processes
(or synchronised products of transition systgiinem regular specifications has a sim-
ple solution for local acceptance conditions [Zie87, Muké&2d is an open problem if
the acceptance is global (see [BBLO5] for partial results).

We show that the control problem for loosely cooperatingpsses is undecidable
even for local reachabilifyproperties. The proof is related to the undecidability of
distributed control in the Pnueli and Rosner framework [BR8ith local specifica-
tions [MTO1] and the synthesis problem for asynchronousitliged systems [SF06].

While these undecidability proofs [PR90, MT01, SFO6] reguinly two processes,
our undecidability proof uses three processes. This réigaguestion whether the third
process is necessary, and we show that it is: we establislotia control is decidable

1The only other natural weak class of properties is safetyoptimal control for safety specifications
can be obtained by simply blocking all actions that can bekaid.

Preprint submitted to Theoretical Computer Science Marth2014

(and EXPTIME-complete) in the two process case. The thiodgss is therefore not a
particularity of our proof, but a prerequisite for undedidigy.

2. Preliminaries

2.1. Zielonka automata

Zielonka automata are simple distributed devices. Suchutoneaton is a parallel
composition of several finite automata, call@cessesthat synchronise on shared
actions. There is no global clock, and two processes cagftirerperform a different
number of actions between two shared actions. Becausespielonka automata are
also called asynchronous automata.

A distributed action alphabedn a finite setP of processes is a pa{&, dom),
whereX. is a finite set ofactionsanddom : ¥ — (2F \ () is alocation function The
locationdom(a) of actiona € ¥ comprises all processes that need to synchronise in
order to perform this action. Actions frold, = {a € £ | p € dom(a)} are called
p-actions they involve procesg. If |dom(a)| = 1 thena is alocal action otherwise
it is asynchronisation action

A (deterministic)Zielonka automatois a tupleA = ({S, } pep, Sin, {04 }acx) that
contains

o for every procesp a finite setS, of (local) states,

¢ the initial states;,, € Hpep Sp, and

e for every actiona € ¥ a partial transition function, : [],caom(a) Sp —
[T,c dom(a) Sp ON tuples of states of processesiinn (a).

For convenience, we abbreviate a tupig),c p of local states by p, whereP C P.
We refer toS), as the set op-statesand to] [. S, asglobal states

A loosely cooperating automato@bbreviated as LCA) is a Zielonka automa-
ton where each transition functiaf is a product of local transition function§ :
S, x ¥, — S,. Formally, it is a tuple of finite-state automatg = (A,),cp,
A, = (Sp, Ep, dp, (sin)p)- It corresponds to a Zielonka automaton by setting

5a(sd0m(a)) = Siiom(a) iff dp(sp,a) = 5;, for everyp € dom(a) .

Thus, the difference between LCA and usual Zielonka autarisahat, in an LCA,
processes executing a shared action do not obtain any iafammabout each other,
except for the execution itself.

A Zielonka automaton can be viewed as an ordinary finiteestatomaton with
statesS = [[,cp S, initial state s;,, and transitionsA = {sp 2 s |
(Sdom(a)s Siiom(a)) € Oar ANASP\dom(a) = S5\ gom(ay)- ATUN IS @ sequence) a,

s? aqg, ..., s ... withs®) € Sanda; € &, which satisfies(® 24 s(i+1) for all
i. An actiona is enabled in a statec S if A(s,a) is defined.

The finitary languagé (A) of this sequential automaton consists of the labellings
of runs that start in the initial state and end in a final state, a state from some
designated seff' C S.

The location mappinglom defines an independence relatibiin a natural way.
Two actionsa,b € X areindependentdenoted(a,b) € I, if they involve different
processes, that is, ifom(a) N dom(b) = 0. Note that the order of execution of two
independent action&z,b) € I in a Zielonka automaton is irrelevant: they can be
executed asg, b, or b, a — or even concurrently. More generally, we can consider the
congruence-; on ¥* generated by, and observe that, whenever~; v, the same
global state is reached from the initial statewoandv. Henceu € L(A) if, and only
if, v € L(A).

The idea to describe concurrency by an independence melats introduced by
Mazurkiewicz [Maz77] and Keller [Kel73] in the late severdi (See also [DR95].)
An equivalence clags]; induced by~ is called a Mazurkiewictrace It can also be
viewed as a labelled partially ordered multiset (pomseg special kind. As we have
observed[(.A) is a sum of such equivalence classes. In other worddrti®-closed
(w.r.t. (X, dom)).

Zielonka's theorem below says that every finite-state aatomwhose language
is trace-closed, can be turned into an equivalent Zielonitamaton. Zielonka au-
tomata are therefore a suitable model for the simple viewoatarrency captured by
Mazurkiewicz traces.

Theorem 2.1. [Zie87, GGMW10] Letdom : ¥ — (27 \ {0}) be a distribution of
actions. If a languagd. C ¥* is regular and trace-closed w.r.t>, dom) then there
is a deterministic Zielonka automaton acceptingf size exponential in the number of
processes and polynomial in the size of the minimal autonfatol..

Remark 2.2. Given a finite-automatomd with L(.A) trace-closed, it is not always
possible to construct a loosely cooperating equivalenbm#ton. If the acceptance
is defined by global final states, the question whether suobgalivalent automaton
exists, is open (see [BBLO5] for some partial results). Bthe acceptance is given by
setsk;, C 5, of localfinal states (thus” = [[. F},) then it suffices to test whether
Ais equivalent to the LCA = (B,),cp, WhereB3,, accepts the projection di(.A) on
¥, [Zie87, Muk02].

2.2. Controlling loosely cooperating processes

We formulate our control problem as in [MTYO05], or equivalgnas a variant
of the Ramadge and Wonham supervisory control formulafidg9]. We will then
provide an equivalent description of the problem in termgarhes.

Recall that, in the Ramadge and Wonham'’s control problemrevgiaen an alpha-

betX of actions partitioned into system and environment actiaif§® U X" = ¥,
Given a finite automato® (a plant) one looks for another finite automatéh(a con-
troller) such that the synchronous produttx C satisfies a given specification. Ad-
ditionally, the controller is required not to block enviroent actions. This can, for
example, be obtained by requiring that the controller haamsttion on every action
from 2¢™ from every state. In our setting, both plant and controllérive LCA.
Letact, = {a € ¥%¥° | dom(a) = {p}} denote thdocal controllableactions
of procesy, and letsync, = ¥, \ {a | dom(a) = {p}} denote thesynchronisation
(shared) actions af. In this article, we impose the restriction that all uncofiable

actions are local, i.e., each process has its own environmétih some minor modifi-
cations, both results of the article also hold without tlsistanption.

Recall that controllers are LCA. We can represent the ctiatrof processp as
a control strategyo,, : ¥, — 23<tyUsyne, - Thus, a control strategy far mapslocal
histories to sets of controllable actionspoflocal or shared).

A control strategy restricts the set of possible runs. Fnéstory h,(p) of a run
p = s a1,5? ay,...is the subsequenag, ,a;,, ..., wherei; < iy < ... are
exactly the indices, where the actioy) belongs ta>,,.

The setC(A, o) of controlled runsfor a set of local controllers = (o,),cp iS
the smallest set of runs of that start in the initial state;,,, and satisfy the following
conditions:

e ccC(A o),

o if p=25W,a1,5? as,...,5MisinC(A, o) anda € ™ is enabled in state
s(" thenp, a, s isin C(A, o), wheres(™ —% s,

o if p=3sM a;,5? ay,...,sMisinC(A, o), a € 2%, anda € o, (h,(p)) for
eachp € dom(a), thenp, a, s isinC(A, o), wheres™ - s,

A controlled run s a;,s5® ay,... is maximal if it cannot be extended by
any action (controllable or uncontrollable). This meanst tleither the run

s a1, 5? as,...,s™ is finite and it cannot be extended according to the rules
above; or it is infinite, and then it is required that there ésattiona and indexn
such that is enabled ins(™) and, for everyn > n andp € dom(a), p ¢ dom(a.,).

In this article we considdocal reachability (LRP)winning conditions. For this,
every process has a set of final (target) stées S, and the control objective is that
all processes are eventually in a final state. We assumegvitat all successors of
final states are final.

Definition 2.3 (Control Problem). Thecontrol problenis the question whether or not
a set of processes of an LCA can be controlled in such a waattragximal controlled
runs satisfy a given LRP.

Observation 2.4. If the processes in an LCA can be controlled, then they carohe ¢
trolled by a strategy = (o,),ep such thato,, maps eaclp-history either to a single
local action or to a set of synchronisation actions,:) — act, U 2%,

The above fact holds because when we turn a controller intora nestrictive con-
troller that disables actions (without blocking), then thaximal controlled runs are
a subset of the original maximal controlled runs. If in a giwtate there is some un-
controllable (and therefore local) enablgdction then the control strategy pfcan
safely offer an empty set of controllable actionstjfx) contains some local (control-
lable) actiorz, then we can safely set,(x) = {a}. In both cases the resulting control
strategy satisfies the LRP iff the former control strategy di

3. Undecidability of the Control Problem for Loosely Coopeiating Processes

In this section, we show that the control problem for loosslgperating processes
with local reachability objectives is undecidable. Fosthie reduce solving a Post’s
Correspondence Problem (PCP) to the control problem. Adterely, we could give
a reduction from distributed games with local specificaipdTO1] to the control
problem. The direct reduction shown below, however, is naictpler.

Let (u;, vi)1<i<n be some instance of PCP over some alphabet{a1, ..., a:}-

Let K = {1,...,n}. We denote below byl andK a copy ofA and K, respectively.
Figure 1 shows two processésandV/, that are to emit a solution to PCP, and a process
T, whose task is to check that they do not cheat. The only unzitatile actions are
the two initial actions of process, namelycw (check words) andiqcheck indices).

1 ki—1
Uy upt

Procesd/

Procesd’

am
KUF/

Figure 1: The processds$ andV are structurally similar. They first emit a number, markihg tndex,
followed by the sequence} - uf’“ = u; andv} ---v]" = v, of actions fromA and’4, respectively,
definingu; andv;. Actions fromA U K are synchronisation actions betwe€nand 7", whereas actions
from A U K are synchronisation actions betwegérandT'. At the end of this sequence, each process has in
stated the choice between two local actiorg(continue), upon which it returns to its initial state,tdqtest),
upon which it continues to a test state. In the test statgntanly progress withy to its final state if the
respective other process is in its test state, too. The tesepsl” starts with an uncontrollable action, which
can either be am: for ‘check indices’, or acw for ‘check words’. In each casé, tests by synchronising
alternatively withU andV, if the sequences emitted by the two processes are equivalen

Lemma 3.1. The three processes from Figure 1 can be controlled to gatisf LRP if,
and only if, the corresponding PCP has a solution.

Proof. For the “if” direction, assume that there is a sequemces, . . ., oy of indices
that induces a solutiota,, %q, - - - Ua, = Va;Va, - - Va, Of PCP.
ThenU uses the following control strategy (similarly fo):

e enablen; (and onlya;) when being for thé* time in stated,
e enable the local actiofy; (and onlycy) the firstk — 1 times it reaches statg
e enable the local actioh; (and onlyty;) the k" time it reaches staté

The third processT, is constructed such that the initial uncontrollable chaie-
cides if the equivalence of the sequence of indices or oféljaance of letters is tested
(skipping over actions from the sequence that is not und#. tkn both cases, the test
is passed, and the LRP satisfied.

Now assume that the processes can be controlled by someggtisat; andoy to
satisfy the LRP. We can assume thgtandoy are as stated in Observation 2.4. Since
only states 0 and allow to choose (exactly one) controllable action, this neethat
each of the processésandl” has exactly one maximal run that complies wiih and
oy, respectively. Since the LRP is satisfied, both these runfirdte. Leta € K* be
the projection ofJ’s run on K, and similarly3 € K* for V. Note that ifa # 3, then
T will eventually block when it starts by actiafi. Therefore we have = 3. For the
same reasons, the projectionld@® run on A is equal to the projection df’'s run on
A. Thus, the PCP has a solution. O

Corollary 3.2. The control problem for LCA is undecidable for LRPs. Thiswwelds
if we restrict the number of processes to three, allow foyamle process with a single
state that is not fully controllable, and only allow comneation between pairs of
processes.

4. Two Processes

In this section, we show that the control problem for LCA isidable for two
processes. In a nutshell, the argument for the two processisdahat we can replace
the local behaviour of each process bguanmary This summary abstracts the local
strategy of a process between two synchronising actionsleWtch a summary will
not encode the same actions we started with, it will predenad reachability, provided
the strategy of the other process remains unaltered.

Using summaries we can represent the strategies of botegses in a single tree,
which branches by synchronising actions. This essentiatiyuces the problem to the
classical case of single process synthesis.

Consider a strategy, : %, — act, U 2%" for proces® (recall Observation 2.4).
A local run for process is one where every action is local gn A local run that is
consistent withr,, (w.r.t some local history) is calleshaximalif it is either (i) infinite,
or (ii) finite and there is neither an uncontrollable acti@n a local controllable action
allowed byo,, in the last state of the run.

Definition 4.1 (Summary, consistent summary).A summaryfor process is a par-
tial function ¢ : S, — 2xme)ULL} guch thatd,(t,,a) is defined for every
(tp, a) € ¢(sp) and everys,, in the domain ofp.

A summaryp is calledconsistenif there exists a strategy), : 3.7 — (act, U2%"»)
such that for some local history € 327 both conditions below hold for every statg
in the domain ofp and for every maximal local rup from s, that is consistent withr,
W.rth:

o if pisfinite,p = s,,a1, s}

s+ -5 0n, 5y itholds that

— if op(hay ---an) # 0, then(s;, a) € ¢(s,) for everya € oy, (hay - - - an),
— if op(hay ---a,) = 0, then L € o(s,) andsy € F),

e if pisinfinite then it ultimately reachel,. Moreover,L € ¢(sp).

The L symbol in a summary indicates that procgssay terminate its cooperation
with other processes, either by continuing alone infinjtetyby reaching a state with
no transition (neither controllable nor uncontrollablpte that actior: in the above
definition is a synchronisation, sinpds a maximal local run.

Observation 4.2. Given a summary with domainS;, for procesg, we can determine
whether it is consistent by solving 2-player reachabilignes on the the subgraph
induced by the local transitions pf For every state € S, in the domain of, a game
is played between a verifier, and a spoiler. The verifier dsltte controllable local
actions, and the spoiler selects the uncontrollable loaians to be executed. Verifier
wins the game if she reaches

e astates, such that, for some action (s,, a) is in the range ofp(s), or

e incasethatl € ¢(s), a states,, in the setF), (recall that all successors of states
in F, are in F,).

A summary is consistent iff the verifier wins the respectaragfor alls € .5}, in the
domain ofp.

Note that the verifier has a memoryless winning strategyisighme if she wins.
We use an arbitrary (but fixed) memoryless winning stratdgy @nsistent summary
to define awitnessing strategy

In the remainder of this section, we fix two processBsand @, and letl’ =
syncp = syncg, be the set of synchronisation actions.T'Aree is a tree with edges
labelled byI", such that each node has, for everg I", at most one-child.

Definition 4.3 (Local summary tree). A local summary tre€x for a processR is a
labelledI'-tree, with each node labelled by sormnsistent summarfpr R. The root
is labelled by a summary whose domain is singleton and cosithie initial state. A
node labelled by has ana-child with node labely’ iff a occurs in the range op. In
this case, the domain qf is the se{dr(tg, a) | (tg,a) € ¢(sr) for somesg}.

Definition 4.4 (Summary strategy tree). A summary strategy trefor the processes
P and@ is the product of two local summary tre@s and7g, for P and (@), respec-
tively, synchronised on shared actions: a node with lakely’) has ana-child with
label (v, ~') if 7y is thea-child of ¢ in Tp and~’ is thea-child of ¢’ in 7.

A node in the summary strategy tree with lalfel ') is calledrejectingif, for
some statesp, sq in the domain ofp andy’, respectively, one of the following holds:

e Thereissome’, ¢ Fp intherange ofp(sp)and eitherl € ¢’ (sg) or, for some
sg inthe range ofy(sq): {a | (sp,a) € p(sp) and(sg, a) € ¢'(sq)} = 0.

e Symmetrically forQ.

Note that a rejecting node can never occur in a summary girdtee associated
with a control strategy satisfying the LRP: from such a naates of the processes can
be stuck (in non-final state) since the other process is reithe-cooperating or not
proposing a suitable shared action.

Definition 4.5. A summary strategy tree is good, if it contains no rejectingenand
every path eventually reaches a node with lakely’) where

e every state in the range g¢fis in Fp, and

e every state in the range ¢f is in Fy.

Proposition 4.6. The processe® and(@ can be controlled to satisfy the LRP iff there
is some good summary strategy tree.

Proof. For the “if” direction, it is sufficient to show that the stegies obtained by
replacing each consistent summary by a withessing stragegwinning. Every play

is of the formp = zoypaoriy1a1 - - - TRYrag - - - With x; (resp.y;) consisting of local
actions ofP (resp.Q), anda; in T', for all i. Assume for contradiction that proceBs
does not reacl, in p. Recall thatP” cannot get stuck in a non-final state, since there
is no rejecting node in the summary tree Afis ultimately non-cooperating inthen,

by definition of consistent summaries, it eventually readfe Otherwisepga; - - - is

a path in the summary strategy tree that never reaches a ritidiabel (¢, ¢’) such
that every state in the range ¢fis in in Fp, contradicting the fact that the summary
strategy tree is good.

For the “only if” direction we define a summary strategy tEdérom some fixed
control strategies faP and(that satisfy the LRP. As noted above, there is no rejecting
node in the summary tree. Assume for contradiction the ext® of some maximal
pathaga; - - - in 7 witnessing that the summary tree is not good. If the path itefin
and ends in a node labellég, ¢') then this node must be rejecting, a contradiction. If
the path is infinite then one of the processes never reachesl atiate, which is again
a contradiction. O

Theorem 4.7. The LRP control problem for two loosely cooperating proessis
ExpPTIME-complete.

Proof. The upper bound follows from Proposition 4.6, by checkingo#ness of an
exponential-size tree automaton with reachability acoege. To establish hardness,
one can reduce the acceptance of an alternating Turing ma¢ATM) with linear
space bound to the control problem for a 2-process LCA. prgcessP can emit
sequences of configurations of this ATM, synchronising witbcess) on each pro-
duced symbol/position pair. The update (transition) issgmobetween the output of
two configurations; it is chosen by the environment for uréaéand by the controller
for existential configurations.

Process) checks that each sequence of configurations is an acceptinof the
ATM. This is done by letting the environment ¢f test that two successive configura-
tions are compatible with the transition between them, lyosing some position and
recording the relevant symbols at that position for the taofigurations. Note thaP
cannot cheat, since it is not informed about a possible febtcenvironment o).

If the respective test is passed, the second process goesfinal sink state, oth-
erwise it goes into a rejecting sink. If no test is run, theosekprocess will go into a
final sink state when a halting configuration is output. O

AcknowledgmentiVe thank the reviewers for their careful reading and cowtitre
comments.

References

[BBLO5] Jean Berstel, Luc Boasson and Michel Latteux. Miagguages.Theor.
Comput. Scj.332(1-3):179-198, 2005.

[DR95] Volker Diekert and Grzegorz Rozenberg, editdree Book of TracesWorld
Scientific, 1995.

[FSO5] Bernd Finkbeiner and Sven Schewe. Uniform distetdusynthesis. In
Proc. of LICS pages 321-330. IEEE Computer Society Press, 2005.

[GGMW10] Blaise Genest, Hugo Gimbert, Anca Muscholl, andrlgValukiewicz.
Optimal Zielonka-type construction of deterministic asigronous automata.
In Proc. of ICALR LNCS 6199, 2010.

[Kel73] Robert M. Keller. Parallel program schemata and imak parallelism |I.
Fundamental resultsJournal of the Association of Computing Machinery
20(3):514-537,1973.

[Maz77] Antoni Mazurkiewicz. Concurrent program schemad ¢heir interpreta-
tions. DAIMI Rep. PB 78, Aarhus University, Aarhus, 1977.

[MTO1] P. Madhusudan and P. S. Thiagarajan. Distributedrotiar synthesis for
local specifications. IProc. of ICALR LNCS 2076, pages 396—407, 2001.

[MTYO05] P. Madhusudan and P. S. Thiagarajan and S. Yang. TB®Nheory of
connectedly communicating processes. Piioc. of FSTTCSLNCS 3821,
pages 201-212, 2005.

[Muk02] Madhavan Mukund. From global specification to logaplementations.
Synthesis and Control of Discrete Event SystésCaillaud et al., eds.),
pp. 19-34, Kluwer 2002.

[PR90] Amir Pnueli and Roni Rosner. Distributed reactiveteyns are hard to syn-
thesize. InProc. of FOCS pages 746—757. IEEE Computer Society Press,
1990.

[RW89] P.J. G. Ramadge and W. M. Wonham. The control of disa@eent systems.
Proceedings of the IEEF7(2):81-98, 1989.

[SF06] Sven Schewe and Bernd Finkbeiner. Synthesis of &sgnous systems. In
Proc. of LOPSTRLNCS 4407, pages 127-142, 2006.

[Zie87] Wieslaw Zielonka. Notes on finite asynchronous smdta. R.A.l.LR.O. —
Informatique Tkorique et Application®21:99-135, 1987.

10

