
Controlling Loosely Cooperating Processes

Anca Muscholl1 and Sven Schewe2

1 LaBRI, Université Bordeaux, Talence, France
2 Department of Computer Science, University of Liverpool, Liverpool, United Kingdom

Abstract

In this article, we consider the problem of controlling loosely cooperating processes.
We show that this distributed control problem is EXPTIME-complete if we restrict the
number of processes to two, and undecidable for three or moreprocesses.

Keywords: Control and games, Zielonka automata, Loosely cooperatingprocesses

1. Introduction

Asynchronous processes that synchronise on shared actions[Maz77, Kel73, DR95]
are a popular model for distributed systems. In this article, we discuss the control prob-
lem for such processes [RW89]. The control problem is to check whether or not each
process has a local controller that restricts the set of runsby disabling some control-
lable actions in such a way that all joint behaviours satisfya given local property on
each process.

When studying the control problem, a major design decision is the knowledge the
processes have about each other. We studyloosely cooperatingprocesses [Zie87].
Loosely cooperating processes, and hence their local controllers, obtain no additional
knowledge by performing shared actions with other processes. All they know about
other processes is what they can infer from their local history, in particular the history
of their cooperation with other processes. Synthesis of loosely cooperating processes
(or synchronised products of transition systems) from regular specifications has a sim-
ple solution for local acceptance conditions [Zie87, Muk02] and is an open problem if
the acceptance is global (see [BBL05] for partial results).

We show that the control problem for loosely cooperating processes is undecidable
even for local reachability1 properties. The proof is related to the undecidability of
distributed control in the Pnueli and Rosner framework [PR90] with local specifica-
tions [MT01] and the synthesis problem for asynchronous distributed systems [SF06].

While these undecidability proofs [PR90, MT01, SF06] require only two processes,
our undecidability proof uses three processes. This raisesthe question whether the third
process is necessary, and we show that it is: we establish that local control is decidable

1The only other natural weak class of properties is safety, but optimal control for safety specifications
can be obtained by simply blocking all actions that can be blocked.

Preprint submitted to Theoretical Computer Science March 11, 2014



(and EXPTIME-complete) in the two process case. The third process is therefore not a
particularity of our proof, but a prerequisite for undecidability.

2. Preliminaries

2.1. Zielonka automata

Zielonka automata are simple distributed devices. Such an automaton is a parallel
composition of several finite automata, calledprocesses, that synchronise on shared
actions. There is no global clock, and two processes can therefore perform a different
number of actions between two shared actions. Because of this, Zielonka automata are
also called asynchronous automata.

A distributed action alphabeton a finite setP of processes is a pair(Σ, dom),
whereΣ is a finite set ofactionsanddom : Σ → (2P \ ∅) is a location function. The
locationdom(a) of actiona ∈ Σ comprises all processes that need to synchronise in
order to perform this action. Actions fromΣp = {a ∈ Σ | p ∈ dom(a)} are called
p-actions, they involve processp. If |dom(a)| = 1 thena is a local action, otherwise
it is asynchronisation action.

A (deterministic)Zielonka automatonis a tupleA = 〈{Sp}p∈P, sin, {δa}a∈Σ〉 that
contains

• for every processp a finite setSp of (local) states,

• the initial statesin ∈
∏

p∈P
Sp, and

• for every actiona ∈ Σ a partial transition functionδa :
∏

p∈dom(a) Sp
·
→

∏

p∈dom(a) Sp on tuples of states of processes indom(a).

For convenience, we abbreviate a tuple(sp)p∈P of local states bysP , whereP ⊆ P.
We refer toSp as the set ofp-statesand to

∏

p∈P
Sp asglobal states.

A loosely cooperating automaton(abbreviated as LCA) is a Zielonka automa-
ton where each transition functionδa is a product of local transition functionsδp :

Sp × Σp
·
→ Sp. Formally, it is a tuple of finite-state automataA = (Ap)p∈P,

Ap = 〈Sp, Σp, δp, (sin)p〉. It corresponds to a Zielonka automaton by setting

δa(sdom(a)

)

= s′
dom(a) iff δp(sp, a) = s′p , for everyp ∈ dom(a) .

Thus, the difference between LCA and usual Zielonka automata is that, in an LCA,
processes executing a shared action do not obtain any information about each other,
except for the execution itself.

A Zielonka automaton can be viewed as an ordinary finite-state automaton with
statesS =

∏

p∈P
Sp, initial state sin, and transitions∆ = {sP

a
−→ s′

P
|

(sdom(a), s
′
dom(a)) ∈ δa, andsP\dom(a) = s′

P\dom(a)}. A run is a sequences(1), a1,

s(2), a2, . . . , s
(n), . . ., with s(i) ∈ S andai ∈ Σ, which satisfiess(i) ai−→ s(i+1) for all

i. An actiona is enabled in a states ∈ S if ∆(s, a) is defined.
The finitary languageL(A) of this sequential automaton consists of the labellings

of runs that start in the initial state and end in a final state,i.e., a state from some
designated setF ⊆ S.

2



The location mappingdom defines an independence relationI in a natural way.
Two actionsa, b ∈ Σ are independent, denoted(a, b) ∈ I, if they involve different
processes, that is, ifdom(a) ∩ dom(b) = ∅. Note that the order of execution of two
independent actions(a, b) ∈ I in a Zielonka automaton is irrelevant: they can be
executed asa, b, or b, a – or even concurrently. More generally, we can consider the
congruence∼I on Σ∗ generated byI, and observe that, wheneveru ∼I v, the same
global state is reached from the initial state onu andv. Hence,u ∈ L(A) if, and only
if, v ∈ L(A).

The idea to describe concurrency by an independence relation was introduced by
Mazurkiewicz [Maz77] and Keller [Kel73] in the late seventies. (See also [DR95].)
An equivalence class[w]I induced by∼I is called a Mazurkiewicztrace. It can also be
viewed as a labelled partially ordered multiset (pomset) ofa special kind. As we have
observed,L(A) is a sum of such equivalence classes. In other words it istrace-closed
(w.r.t. (Σ, dom)).

Zielonka’s theorem below says that every finite-state automaton whose language
is trace-closed, can be turned into an equivalent Zielonka automaton. Zielonka au-
tomata are therefore a suitable model for the simple view of concurrency captured by
Mazurkiewicz traces.

Theorem 2.1. [Zie87, GGMW10] Letdom : Σ → (2P \ {∅}) be a distribution of
actions. If a languageL ⊆ Σ∗ is regular and trace-closed w.r.t.(Σ, dom) then there
is a deterministic Zielonka automaton acceptingL of size exponential in the number of
processes and polynomial in the size of the minimal automaton for L.

Remark 2.2. Given a finite-automatonA with L(A) trace-closed, it is not always
possible to construct a loosely cooperating equivalent automaton. If the acceptance
is defined by global final states, the question whether such anequivalent automaton
exists, is open (see [BBL05] for some partial results). But if the acceptance is given by
setsFp ⊆ Sp of local final states (thusF =

∏

p∈P
Fp) then it suffices to test whether

A is equivalent to the LCAB = (Bp)p∈P, whereBp accepts the projection ofL(A) on
Σp [Zie87, Muk02].

2.2. Controlling loosely cooperating processes

We formulate our control problem as in [MTY05], or equivalently, as a variant
of the Ramadge and Wonham supervisory control formulation [RW89]. We will then
provide an equivalent description of the problem in terms ofgames.

Recall that, in the Ramadge and Wonham’s control problem we are given an alpha-

betΣ of actions partitioned into system and environment actions: Σsys
·
∪ Σenv = Σ.

Given a finite automatonP (a plant) one looks for another finite automatonC (a con-
troller) such that the synchronous productP × C satisfies a given specification. Ad-
ditionally, the controller is required not to block environment actions. This can, for
example, be obtained by requiring that the controller has a transition on every action
from Σenv from every state. In our setting, both plant and controller will be LCA.

Let actp = {a ∈ Σsys | dom(a) = {p}} denote thelocal controllableactions
of processp, and letsyncp = Σp \ {a | dom(a) = {p}} denote thesynchronisation
(shared) actions ofp. In this article, we impose the restriction that all uncontrollable

3



actions are local, i.e., each process has its own environment. With some minor modifi-
cations, both results of the article also hold without this assumption.

Recall that controllers are LCA. We can represent the controller of processp as
a control strategyσp : Σ∗

p → 2actp∪syncp . Thus, a control strategy forp mapslocal
histories to sets of controllable actions ofp (local or shared).

A control strategy restricts the set of possible runs. Thep-historyhp(ρ) of a run
ρ = s(1), a1, s

(2), a2, . . . is the subsequenceai1 , ai2 , . . ., wherei1 < i2 < . . . are
exactly the indices, where the actionaij

belongs toΣp.
The setC(A, σ) of controlled runsfor a set of local controllersσ = (σp)p∈P is

the smallest set of runs ofA that start in the initial statesin, and satisfy the following
conditions:

• ǫ ∈ C(A, σ),

• if ρ = s(1), a1, s
(2), a2, . . . , s

(n) is in C(A, σ) anda ∈ Σenv is enabled in state
s(n) thenρ, a, s is in C(A, σ), wheres(n) a

−→ s,

• if ρ = s(1), a1, s
(2), a2, . . . , s

(n) is in C(A, σ), a ∈ Σsys, anda ∈ σp(hp(ρ)) for
eachp ∈ dom(a), thenρ, a, s is in C(A, σ), wheres(n) a

−→ s.

A controlled run s(1), a1, s
(2), a2, . . . is maximal, if it cannot be extended by

any action (controllable or uncontrollable). This means that either the run
s(1), a1, s

(2), a2, . . . , s
(n) is finite and it cannot be extended according to the rules

above; or it is infinite, and then it is required that there is no actiona and indexn
such thata is enabled ins(n) and, for everym ≥ n andp ∈ dom(a), p /∈ dom(am).

In this article we considerlocal reachability (LRP)winning conditions. For this,
every process has a set of final (target) statesFp ⊆ Sp, and the control objective is that
all processes are eventually in a final state. We assume w.l.o.g. that all successors of
final states are final.

Definition 2.3 (Control Problem). Thecontrol problemis the question whether or not
a set of processes of an LCA can be controlled in such a way thatall maximal controlled
runs satisfy a given LRP.

Observation 2.4. If the processes in an LCA can be controlled, then they can be con-
trolled by a strategyσ = (σp)p∈P such thatσp maps eachp-history either to a single
local action or to a set of synchronisation actions,σp : Σ∗

p → actp ∪ 2syncp .

The above fact holds because when we turn a controller into a more restrictive con-
troller that disables actions (without blocking), then themaximal controlled runs are
a subset of the original maximal controlled runs. If in a given state there is some un-
controllable (and therefore local) enabledp-action then the control strategy ofp can
safely offer an empty set of controllable actions; ifσp(x) contains some local (control-
lable) actiona, then we can safely setσp(x) = {a}. In both cases the resulting control
strategy satisfies the LRP iff the former control strategy did.

4



3. Undecidability of the Control Problem for Loosely Cooperating Processes

In this section, we show that the control problem for looselycooperating processes
with local reachability objectives is undecidable. For this we reduce solving a Post’s
Correspondence Problem (PCP) to the control problem. Alternatively, we could give
a reduction from distributed games with local specifications [MT01] to the control
problem. The direct reduction shown below, however, is muchsimpler.

Let (ui, vi)1≤i≤n be some instance of PCP over some alphabetA = {a1, . . . , am}.
Let K = {1, . . . , n}. We denote below byA andK a copy ofA andK, respectively.
Figure 1 shows two processes,U andV , that are to emit a solution to PCP, and a process
T , whose task is to check that they do not cheat. The only uncontrollable actions are
the two initial actions of processT , namelycw (check words) and ci (check indices).

0 d

1

u1

1
u

k1−1

1

u
k1

1

cU

tU pU

n

...

. . .

. . .

. . . ProcessU

0 d

1

v1

1
v

m1−1

1

v
m1

1

cV

tV pV

n

...

. . .

. . .

. . . ProcessV

A ∪ A

pV

A ∪ A

A ∪ A

ci

pU

1

1

n

n

...

K ∪ K

K ∪ K

K ∪ K

cw

pU

a1

a1

am

am

... ProcessT

Figure 1: The processesU andV are structurally similar. They first emit a number, marking the indexi,
followed by the sequenceu1

i
· · · u

ki
i

= ui andv1

i
· · · v

mi
i

= vi of actions fromA andA, respectively,
definingui andvi. Actions fromA ∪ K are synchronisation actions betweenU andT , whereas actions
from A ∪ K are synchronisation actions betweenV andT . At the end of this sequence, each process has in
stated the choice between two local actions,c (continue), upon which it returns to its initial state, ort (test),
upon which it continues to a test state. In the test state, it can only progress withp to its final state if the
respective other process is in its test state, too. The test processT starts with an uncontrollable action, which
can either be anci for ‘check indices’, or acw for ‘check words’. In each case,T tests by synchronising
alternatively withU andV , if the sequences emitted by the two processes are equivalent.

5



Lemma 3.1. The three processes from Figure 1 can be controlled to satisfy the LRP if,
and only if, the corresponding PCP has a solution.

Proof. For the “if” direction, assume that there is a sequenceα1, α2, . . . , αk of indices
that induces a solutionuα1

uα2
· · ·uαk

= vα1
vα2

· · · vαk
of PCP.

ThenU uses the following control strategy (similarly forV ):

• enableαi (and onlyαi) when being for theith time in state0,

• enable the local actioncU (and onlycU ) the firstk − 1 times it reaches stated,

• enable the local actiontU (and onlytU ) thekth time it reaches stated.

The third process,T , is constructed such that the initial uncontrollable choice de-
cides if the equivalence of the sequence of indices or of the sequence of letters is tested
(skipping over actions from the sequence that is not under test). In both cases, the test
is passed, and the LRP satisfied.

Now assume that the processes can be controlled by some strategiesσU andσV to
satisfy the LRP. We can assume thatσU andσV are as stated in Observation 2.4. Since
only states 0 andd allow to choose (exactly one) controllable action, this means that
each of the processesU andV has exactly one maximal run that complies withσU and
σV , respectively. Since the LRP is satisfied, both these runs are finite. Letα ∈ K∗ be
the projection ofU ’s run onK, and similarlyβ ∈ K∗ for V . Note that ifα 6= β, then
T will eventually block when it starts by actionci. Therefore we haveα = β. For the
same reasons, the projection ofU ’s run onA is equal to the projection ofV ’s run on
A. Thus, the PCP has a solution. �

Corollary 3.2. The control problem for LCA is undecidable for LRPs. This even holds
if we restrict the number of processes to three, allow for only one process with a single
state that is not fully controllable, and only allow communication between pairs of
processes.

4. Two Processes

In this section, we show that the control problem for LCA is decidable for two
processes. In a nutshell, the argument for the two process case is that we can replace
the local behaviour of each process by asummary. This summary abstracts the local
strategy of a process between two synchronising actions. While such a summary will
not encode the same actions we started with, it will preservelocal reachability, provided
the strategy of the other process remains unaltered.

Using summaries we can represent the strategies of both processes in a single tree,
which branches by synchronising actions. This essentiallyreduces the problem to the
classical case of single process synthesis.

Consider a strategyσp : Σ∗
p → actp ∪ 2syncp for processp (recall Observation 2.4).

A local run for processp is one where every action is local onp. A local run that is
consistent withσp (w.r.t some local history) is calledmaximalif it is either (i) infinite,
or (ii) finite and there is neither an uncontrollable action nor a local controllable action
allowed byσp in the last state of the run.

6



Definition 4.1 (Summary, consistent summary).A summaryfor processp is a par-
tial function ϕ : Sp

·
→ 2(Sp×syncp)∪{⊥} such thatδp(tp, a) is defined for every

(tp, a) ∈ ϕ(sp) and everysp in the domain ofϕ.
A summaryϕ is calledconsistentif there exists a strategyσp : Σ∗

p → (actp∪2syncp)
such that for some local historyh ∈ Σ∗

p both conditions below hold for every statesp

in the domain ofϕ and for every maximal local runρ fromsp that is consistent withσp

w.r.t h:

• if ρ is finite,ρ = sp, a1, s
1
p, . . . , an, sn

p it holds that

– if σp(ha1 · · ·an) 6= ∅, then(sn
p , a) ∈ ϕ(sp) for everya ∈ σp(ha1 · · · an),

– if σp(ha1 · · ·an) = ∅, then⊥ ∈ ϕ(sp) andsn
p ∈ Fp,

• if ρ is infinite then it ultimately reachesFp. Moreover,⊥ ∈ ϕ(sp).

The⊥ symbol in a summary indicates that processp may terminate its cooperation
with other processes, either by continuing alone infinitely, or by reaching a state with
no transition (neither controllable nor uncontrollable).Note that actiona in the above
definition is a synchronisation, sinceρ is a maximal local run.

Observation 4.2. Given a summaryϕ with domainS′
p for processp, we can determine

whether it is consistent by solving 2-player reachability games on the the subgraph
induced by the local transitions ofp. For every states ∈ S′

p in the domain ofϕ, a game
is played between a verifier, and a spoiler. The verifier selects the controllable local
actions, and the spoiler selects the uncontrollable local actions to be executed. Verifier
wins the game if she reaches

• a statesp such that, for some actiona, (sp, a) is in the range ofϕ(s), or

• in case that⊥ ∈ ϕ(s), a statesp in the setFp (recall that all successors of states
in Fp are inFp).

A summary is consistent iff the verifier wins the respective game for alls ∈ S′
p in the

domain ofϕ.

Note that the verifier has a memoryless winning strategy in this game if she wins.
We use an arbitrary (but fixed) memoryless winning strategy of a consistent summary
to define awitnessing strategy.

In the remainder of this section, we fix two processes,P and Q, and letΓ =
syncP = syncQ be the set of synchronisation actions. AΓ-tree is a tree with edges
labelled byΓ, such that each node has, for everya ∈ Γ, at most onea-child.

Definition 4.3 (Local summary tree). A local summary treeTR for a processR is a
labelledΓ-tree, with each node labelled by someconsistent summaryfor R. The root
is labelled by a summary whose domain is singleton and contains the initial state. A
node labelled byϕ has ana-child with node labelϕ′ iff a occurs in the range ofϕ. In
this case, the domain ofϕ′ is the set{δR(tR, a) | (tR, a) ∈ ϕ(sR) for somesR}.

7



Definition 4.4 (Summary strategy tree). A summary strategy treefor the processes
P andQ is the product of two local summary treesTP andTQ, for P andQ, respec-
tively, synchronised on shared actions: a node with label(ϕ, ϕ′) has ana-child with
label (γ, γ′) if γ is thea-child ofϕ in TP andγ′ is thea-child ofϕ′ in TQ.

A node in the summary strategy tree with label(ϕ, ϕ′) is calledrejecting if, for
some statessP , sQ in the domain ofϕ andϕ′, respectively, one of the following holds:

• There is somes′P /∈ FP in the range ofϕ(sP ) and either⊥ ∈ ϕ′(sQ) or, for some
s′Q in the range ofϕ′(sQ): {a | (s′P , a) ∈ ϕ(sP ) and(s′Q, a) ∈ ϕ′(sQ)} = ∅.

• Symmetrically forQ.

Note that a rejecting node can never occur in a summary strategy tree associated
with a control strategy satisfying the LRP: from such a node,one of the processes can
be stuck (in non-final state) since the other process is either non-cooperating or not
proposing a suitable shared action.

Definition 4.5. A summary strategy tree is good, if it contains no rejecting node and
every path eventually reaches a node with label(ϕ, ϕ′) where

• every state in the range ofϕ is in FP , and

• every state in the range ofϕ′ is in FQ.

Proposition 4.6. The processesP andQ can be controlled to satisfy the LRP iff there
is some good summary strategy tree.

Proof. For the “if” direction, it is sufficient to show that the strategies obtained by
replacing each consistent summary by a witnessing strategy, are winning. Every play
is of the formρ = x0y0a0x1y1a1 · · ·xkykak · · · with xi (resp.yi) consisting of local
actions ofP (resp.Q), andai in Γ, for all i. Assume for contradiction that processP
does not reachFp in ρ. Recall thatP cannot get stuck in a non-final state, since there
is no rejecting node in the summary tree. IfP is ultimately non-cooperating inρ then,
by definition of consistent summaries, it eventually reachesFp. Otherwise,a0a1 · · · is
a path in the summary strategy tree that never reaches a node with label (ϕ, ϕ′) such
that every state in the range ofϕ is in in FP , contradicting the fact that the summary
strategy tree is good.

For the “only if” direction we define a summary strategy treeT from some fixed
control strategies forP andQ that satisfy the LRP. As noted above, there is no rejecting
node in the summary tree. Assume for contradiction the existence of some maximal
patha0a1 · · · in T witnessing that the summary tree is not good. If the path is finite
and ends in a node labelled(ϕ, ϕ′) then this node must be rejecting, a contradiction. If
the path is infinite then one of the processes never reaches a final state, which is again
a contradiction. �

Theorem 4.7. The LRP control problem for two loosely cooperating processes is
EXPTIME-complete.

8



Proof. The upper bound follows from Proposition 4.6, by checking emptiness of an
exponential-size tree automaton with reachability acceptance. To establish hardness,
one can reduce the acceptance of an alternating Turing machine (ATM) with linear
space bound to the control problem for a 2-process LCA. E.g.,processP can emit
sequences of configurations of this ATM, synchronising withprocessQ on each pro-
duced symbol/position pair. The update (transition) is chosen between the output of
two configurations; it is chosen by the environment for universal and by the controller
for existential configurations.

ProcessQ checks that each sequence of configurations is an accepting run of the
ATM. This is done by letting the environment ofQ test that two successive configura-
tions are compatible with the transition between them, by choosing some position and
recording the relevant symbols at that position for the two configurations. Note thatP
cannot cheat, since it is not informed about a possible test of the environment onQ.

If the respective test is passed, the second process goes into a final sink state, oth-
erwise it goes into a rejecting sink. If no test is run, the second process will go into a
final sink state when a halting configuration is output. �

Acknowledgment.We thank the reviewers for their careful reading and constructive
comments.

References

[BBL05] Jean Berstel, Luc Boasson and Michel Latteux. Mixedlanguages.Theor.
Comput. Sci., 332(1-3):179-198, 2005.

[DR95] Volker Diekert and Grzegorz Rozenberg, editors.The Book of Traces. World
Scientific, 1995.

[FS05] Bernd Finkbeiner and Sven Schewe. Uniform distributed synthesis. In
Proc. of LICS, pages 321–330. IEEE Computer Society Press, 2005.

[GGMW10] Blaise Genest, Hugo Gimbert, Anca Muscholl, and Igor Walukiewicz.
Optimal Zielonka-type construction of deterministic asynchronous automata.
In Proc. of ICALP, LNCS 6199, 2010.

[Kel73] Robert M. Keller. Parallel program schemata and maximal parallelism I.
Fundamental results.Journal of the Association of Computing Machinery,
20(3):514–537, 1973.

[Maz77] Antoni Mazurkiewicz. Concurrent program schemes and their interpreta-
tions. DAIMI Rep. PB 78, Aarhus University, Aarhus, 1977.

[MT01] P. Madhusudan and P. S. Thiagarajan. Distributed controller synthesis for
local specifications. InProc. of ICALP, LNCS 2076, pages 396–407, 2001.

[MTY05] P. Madhusudan and P. S. Thiagarajan and S. Yang. The MSO theory of
connectedly communicating processes. InProc. of FSTTCS, LNCS 3821,
pages 201-212, 2005.

9



[Muk02] Madhavan Mukund. From global specification to localimplementations.
Synthesis and Control of Discrete Event Systems(B. Caillaud et al., eds.),
pp. 19-34, Kluwer 2002.

[PR90] Amir Pnueli and Roni Rosner. Distributed reactive systems are hard to syn-
thesize. InProc. of FOCS, pages 746–757. IEEE Computer Society Press,
1990.

[RW89] P. J. G. Ramadge and W. M. Wonham. The control of discrete event systems.
Proceedings of the IEEE, 77(2):81–98, 1989.

[SF06] Sven Schewe and Bernd Finkbeiner. Synthesis of asynchronous systems. In
Proc. of LOPSTR, LNCS 4407, pages 127–142, 2006.

[Zie87] Wieslaw Zielonka. Notes on finite asynchronous automata. R.A.I.R.O. —
Informatique Th́eorique et Applications, 21:99–135, 1987.

10


