
The AXML Artifact Model†

(Invited Paper)

Serge Abiteboul∗, Pierre Bourhis, Alban Galland, Bogdan Marinoiu
INRIA Saclay & LRI, University Paris Sud

Orsay, France
Email: firstname.lastname@inria.fr

∗ Also at LSV, Ecole Normale Supŕieure, Cachan

Abstract—Towards a data-centric workflow approach, we
introduce an artifact model to capture data and workflow
management activities in distributed settings. The model is built
on Active XML, i.e., XML trees including Web service calls. We
argue that the model captures the essential features of business
artifacts as described informally in [1] or discussed in [2].
To illustrate, we briefly consider the monitoring of distributed
systems and the verification of temporal properties for them.

Keywords-Active XML, database, workflow, artifact, docu-
ments

I. INTRODUCTION

The evolution of shared data is at the center of most
human activities. The novel notion of business artifact [1]
has been proposed to specify such evolution. The main idea
is to capture both the flow of control (workflow) of the
application but also data evolution (data cycle). See [2] for
a brief survey on the topic and research directions. In the
spirit of this approach, we assume as a context a network of
autonomous systems evolving and interacting by exchanging
data. Building on Active XML (AXML for short) [3], we
propose a new artifact model. The thesis is that AXML is a
proper formal foundation for such an artifact model.

Workflow and database systems are two essential software
components that often have difficulties interoperating. Data-
centric workflow systems are meant to integrate both the
control of workflows and the data of databases. They allow
the management of data evolution by tasks with complex
sequencing constraints as encountered for instance in scien-
tific workflow systems, information manufacturing systems,
e-government, e-business or healthcare global systems. We
follow here a data-centric workflow approach where both
data and tasks, and also the “actors” (humans, processes,
systems) are captured by objects called artifacts. Artifacts
present the following facets that, in our opinion, have to be
captured by an artifact model:

State An artifact is an object with a universal
identity (e.g., URI). Its state is self-describing (e.g.,
XML data) so that it may be easily transmitted or

† This work has been partially funded by the Advanced European
Research Council grant Webdam and the ANR grant Docflow.

archived. It has a host that is a peer or another
artifact.
Evolution An artifact is created, evolves in time
(possibly space), hibernates, is reactivated or dies
according to a logic that is specified declaratively.
Its evolution may be constrained to obey some
laws, e.g. some workflow.
Interactions An artifact interacts with the rest of
the world via function calls (e.g., Web services)
both as a server and a client. An artifact provides
for communications, storage and processing for the
artifacts it hosts.
History As in scientific workflows, an artifact has a
history with time and provenance information that
may be recorded and queried.

These requirements have been in part motivated by [4].
We claim that the AXML model [3] provides a proper

foundation for an artifact model. An AXML document
consists of an XML document with embedded function calls.
The calls may be activated from inside (the artifact as a
client) and then receive answers in push or pull mode. The
calls may also be activated from outside (the artifact as a
server). Rules are used to specify the logic of functions,
declaratively [5].

In this paper, we introduce the AXML artifact model and
illustrate its use with recent works on distributed system
monitoring and verification. The paper is organized as fol-
lows. In Section II, we present the model. We briefly discuss
monitoring in Section III and verification in Section IV. The
last section is a conclusion. To conclude this section, we
present a motivating example and mention related works.

Example: To illustrate, we use as a running example,
a simplified view of the Dell manufacturing system [6].
See Figure 1. When a new Web order arrives (1), a new
webOrder artifact is created. Then the new artifact creates
a subartifact that is sent to a credit service (2). Once credit
has been approved, the subartifact returns to the webOrder
but now its state contains all the credit data (and notably
the fact that the credit request was successful). A plant is
then selected and the artifact moves to that plant (3). It
initiates a new subartifact for gathering parts, that is sent to
a warehouse and another local artifact for communications

< plant artID=”plant02” >
...
< webOrder artID=”wo3” >

< client >
< name > Sue Leroux < /name >
< address > ... < /address >

< /client >
< order > ... < /order >
< order > ... < /order >

< creditApproval artID=”wo3-ca” >
...

< /creditApproval >
< fun funID=”?warehouseOrder”/ >
< fun funID=”?comm”/ >

< /webOrder >
...
< /plant >

Figure 2. An AXML artifact

with the customer (4). Once the product has been built, the
artifact is sent to a delivery service (5). Finally, once the
Web order has been completed, the artifact moves to an
archive where it is stored as a text-based XML serialization
that includes all the information it has gathered during its
life cycle (6). (Subartifacts may also be archived separately.)

The state of an artifact is an AXML document. See
Figure 2 where the tree is represented using an XML syntax
(a text-based serialization of the tree). The figure shows
part of a webOrder artifact immediately after it enters the
plant. The creditApproval element denotes a subartifact (the
one that has been processed by the bank). The functions
?warehouseOrder and ?comm will be activated next in
order to create the warehouseOrder and communication
subartifacts that will then work concurrently (and somewhat
autonomously). Observe that we have simplified here the
exact AXML syntax. For instance, the artifact IDs are more
complex. (They include the URI of the peer where the
artifact has been created and an identifier within this peer.)

Related work: Although the notion of artifact has been
recently articulated by [1], similar ideas of data centric
workflows have been around, e.g., in AXML [3], in the
Vortex system [7] or scientific workflows [8]. The models
that are considered are often restricted, e.g., [9], [4]. For
instance, a single artifact is usually considered, vs. a system
of artifacts in the present paper. Also, these models are
often based on the relational model so have difficulties with
the collections of artifacts or nested tasks/artifacts. Formal
models for data-centric workflows have been considered in
[10] (that focuses on verification) and [11] (that discusses
the synthesis of artifacts).

II. THE MODEL

In this section, we present the AXML artifact model. We
assume the existence of infinite alphabets: P for peer names;

A for artifact identifiers; C for class names; S for stage
names; L for labels; D for constants (say strings).

Artifact tree: The identifier α ∈ A of an artifact is a
URI that it acquires at creation time. The artifact identified
by α is an object that has an AXML document for state. In
the following, we use α to denote the identifier as well as the
object itself. We next modify the notion of active documents
of [3] to meet the needs of an artifact model.

An (AXML) artifact tree is a tree with nodes in N defined
as follows. A node in N is a pair (α, i) where α is the ID
of the artifact this node belongs to and i ∈ D a unique ID
within this artifact. This guarantees that two distinct nodes
in the system will not have the same identifier. The nodes
in an artifact α are called α-nodes. Some nodes are labeled
by element names in L (element nodes), some by constants
in D (content nodes) and finally some by “function names”
(function call nodes) in F , that is defined next. A function
name in F is an expression f@α where α is in A∪⊥ and
f is in D. For f@α with α in A, we say that we call f at
artifact α. For f@⊥, we say that we call the external service
f (in practice, f is the URL of a Web service).

An artifact tree regroups several artifacts (on the same
peer):

Definition: An (AXML) artifact tree is a finite, labeled,
unordered, unranked tree with nodes in N and labels in
F ∪ L ∪D where nodes labeled by D are only leaves1 and
verifying:

(+) If an α-node in the tree has a β-node as child,
then this β-node is a maximum for all β-nodes in
the tree and none of its descendants is an α-node.

If a β-node is a child of some α-node, we say that β is
a subartifact of α, and this transitively.

Figure 2 illustrates these notions. The figure shows a
possible state of a Plant artifact tree. Observe the wo3
webOrder artifact. Its ID is wo3. It contains some element
nodes (name), some content node (“Sue Leroux”), some
function nodes (a call to a ?warehouse function), and a
subartifact (wo3-ca).

Artifact schema: We next define the notion of schema
by enriching the schemas of Guarded AXML (GAXML for
short) [5] to meet the needs of an artifact model. A schema
imposes constraints on a system of artifacts or its evolution:
(i) typing constraints (as in DTD or XSD); (ii) service
signatures (as in WSDL); and (iii) dynamic constraints (as
in BPEL). We next introduce our notion of schema based
on different components that are detailed further.

Definition: An (artifact) schema S = (Π, C, τ, ω, θ, ι)
consists of:
• A finite set Π = p1, ..., pK of peer names.

1In [5], function nodes are leaves. Here we will see that the function
nodes have children that will in particular contain their “call guard” and
“argument query”. See further.

Wo6
wo5

catalogue

wo4 wo3 wo2

wo1

WEBSTORE PLANT DELIVERY

CREDIT APPROVAL WAREHOUSE ARCHIVE

wo4-ca wo3-wh

wo3-com

(1)

(2)

(3)

(4)

(5)

(6)

Figure 1. Artifacts in the Dell application

• A finite set C = {c1, ..., cN} of (artifact) class names
and, for each class ci, τ(ci) specifies a typing constraint
on the state of ci-artifacts.

• For each artifact class, the function θ specifies the
semantics of internal functions. The function ι specifies
the interfaces of the internal/external functions.

• The workflow function ω specifies constraints on arti-
fact evolution (beyond those already specified by θ).

Peers: To simplify, we assume here that the set Π of
peers is fixed. In general, it may vary when, during a run,
we discover new peers. From an implementation viewpoint,
a peer provides storage, communications and computing
resources for the artifacts it hosts. As we will see, artifacts
will be allowed to exchange data with other peers or to move
to another peer. AXML data (e.g., in function arguments and
results) are sent as strings and reconstructed at the receiving
peer with new node IDs. On the other hand, when an artifact
moves, its nodes preserve their IDs.

Classes: To simplify, we assume here that the set C of
classes is fixed. In general, it may vary when we discover
new classes of artifacts. To simplify again, we assume that
the class of an artifact is an immutable property. For each
class, the function τ specifies the type of the state of artifacts
in this class. For each class, the artifacts in that class go
through different stages. We use a variant of DTDs for
unordered trees [5]. Let ci be a class of artifacts. Then
the class typing τi is a set {(si1, δi1), ..., (siM , δiM)} where

each sij is one of the possible stages of class ci, and each
δij is an unordered DTD that characterizes this particular
stage. To discriminate between stages, we impose that for
two distinct j, k, there is no data that satisfies both δij and
δik.

Interface: The function ι defines the interface of arti-
facts. For each class c, ι(c) specifies the list of functions,
artifacts in that class are willing to support, as well as the
types of the input and output of these functions.

Note that the interfaces we consider here focus on sig-
natures and are therefore rather simple. One could consider
more complex interfaces, and in particular some that would
include states. For instance, suppose we view creditApproval
as an external service. Such a service may have in its
interface the constraint that it will always refuse credit to
a customer that has already been denied credit twice (unless
some special procedure is performed). Such more complex
interfaces may be captured as well by artifacts.

The function ι similarly defines the list of external func-
tions and their input/output types (ι(⊥)).

Function semantics: Artifacts evolve in time according
to some “logic” specified declaratively. We assume here each
artifact carries with it, its logic. (This is a departure from
AXML where functions are not defined within a document
but in their hosting peers. We will examine this issue
further.) We first consider “internal functions”, i.e., functions
supported by the artifacts, then “external functions”, i.e.,

those supported by external services. As in GAXML, there
are 4 components in a function call:

Function call activation is controlled by a call guard.
Call argument is computed by an argument query.
The return of the result is controlled by a return guard.
The result of the call is computed by a result query.

Observe that the guards impose a control over runs of the
system. They are specified using Boolean combinations of
tree-pattern queries over the documents (BTPQ for short).
More precisely, they are Boolean BTPQs, i.e., BTPQs with
no free variables. The argument and return queries are also
BTPQs but possibly with free variables that define their
results. These are all queries that are evaluated relative to
the function call node, respectively function return node.

An issue is where are these four components specified.
Let f be a function defined in class c, i.e., each c-artifact α
supports calls f@α. Then θ(c, f) specifies the return guard
and return query of function f in class c, i.e. for all such call
f@α. (In practice, the definitions of these two components
are specified in the definition of the particular class of the
receiver.)

On the other hand, the call guard and the argument query
are chosen by the caller2. They are given as children of
function call nodes. Note that one can therefore specify
different call guards and argument queries for different calls
of the same function, even in the same artifact. Note also
that call guards allow in particular sequencing function calls.
For instance, given two calls to functions f1, f2 in the same
document, to force f1 to be evaluated first, one may require
in the call guard of f2 that the result of f1 has already been
received.

To illustrate, consider the running example. One can
specify that when a product has been ordered, a bill is
issued to the customer. The guard may be that this product
is available. In GAXML syntax, the query to compute the
argument of the call may be as in Figure 3.

A last aspect of function in the AXML artifact model is
that like AXML, AXML artifacts support both pull and push
services. A pull service call is just a standard remote method
call. A push service call is a subscription. It is typically
answered by “yes”. Then the server sends a stream of data
possibly eventually closed by an end-of-stream.

Now consider external functions. From a peer viewpoint,
there is no difference between calling an internal or an
external function. Thus, a call to an external function also
has a call guard and an argument query. On the other hand,
the external service is outside the artifact realm. Thus the
return guard is simply a constraint on the data that is returned
and there is no return query. So an external function sim-
ply returns non-deterministically some data obeying typing
constraints. Observe that one can use these external queries

2In GAXML, all calls to a function f use the same call guard and
argument query .

to model arithmetic functions (to ignore their semantics and
avoid reasoning about arithmetic) or user inputs.

Workflow: For each class ci, a workflow ω(ci) imposes
constraints on how an artifact in this class may evolve. This
may be specified with triples (event, precond, postcond).
The key events that can be considered correspond to the
activation of a function call at some peer, the reception of
the call at some other peer, the sending of the result, and
the reception of that result. Many high level events such as
artifact creation, move or archiving may be seen as instances
of function calls. The conditions precond and postcond are
(BTPQ) formulas over the states of the artifacts (including
their times and locations).

One could prefer a more standard workflow approach in
the style BPEL. The workflow is then given by specifying
admissible transitions between the stages. Suppose that an
event e occurs that moves an artifact in class ci from state
σ to σ′. Then there must exist (e, p, p′) ∈ ω(ci) with σ |= p
and σ′ |= p′. If this is not the case, a workflow constraint
violation is detected.

In both approaches, the system should specify what to do
when such a violation occurs, e.g., transaction abortion or
roll back.

Artifact system and runs: An artifact system for a
schema (Π, C, τ, ω, θ, ι) is a function I that (i) maps each
p ∈ Π to an artifact tree I(p); and (ii) for p 6= p′, no artifact
ID occurs in both I(p) and I(p′).

An artifact system defines the set art(I) of artifacts
occurring in I. Note that (ii) is some form of “non-ubiquity”
condition for artifacts. Each is entirely in one host. On the
other hand, an artifact may create a subartifact and “send”
it out in the world, e.g., the warehouseOrder subartifact of
a webOrder. The localization of an artifact α in art(I),
denoted λ(α), is the peer that it is included in.

A run of a system is a sequence Ij of systems, where
each transition corresponds to some elementary operation,
e.g. a function call. An interesting issue is the time of
the transition. Time is always defined with respect to a
peer, e.g., a time is a pair (p, t) where p is a peer ID and
t ∈ Q. The order between these times, denoted ≺, is only
partial. Consider for instance the activation of a function
call. As already mentioned, this involves some synchronicity
between the caller and callee. The transition happens at two
simultaneous times, one for the caller p1 and one for the
callee p2 and (p1, t1) ≡ (p2, t2).

From a formal point of view, these exchanges and moves
occur instantaneously. For instance, for a message from
some peer p to some peer p′, the message is sent and
received simultaneously. Of course, this synchronicity does
not correspond to the fundamentally asynchronous nature of
the distributed world we model. To overcome this short-
coming, one can introduce a new peer, namely Net, to
represent the communication network. So, for instance, to
move from p1 to p2, an artifact will move (instantaneously)

Main

Catalog

Product

Pname

X

Price

Y

MailOrder

Pname

X

self

{Process-bill}
Pname

X

Amount

Y

!Invoice

Figure 3. A GAXML query

from p1 to Net, then later on move (instantaneously) to p2.
So, we will see two distinct times, (p1, t1) ≡ (Net, t′1) ≺
(Net, t′2) ≡ (p2, t2). Note that the inequality captures the
(desired) constraint that a message arrives after it is sent.

We conclude this section with remarks on important
aspects of the artifact model:

Tasks and services, states and stages, activities
All these notions (in our opinion, sometimes con-
sidered in confusing ways) are formally captured in
the artifact model. This will be best seen with our
running example. A Plant artifact receives streams
of webOrders, a collection of tasks. To each of
these tasks, corresponds an artifact for us. Differ-
ent subtasks for a webOrder, e.g., creditApproval,
warehouseOrder, are represented by subartifacts.
This is where the natural nesting in the model
comes in handy. In general, a task may require the
collaboration of several artifacts. A Plant artifact
provides a service (that corresponds physically to
building the product). At some point in time, a
Plant artifact may be processing a large number
of webOrders. The state of each webOrder is an
(Active) XML document. Some of them may be in
a waitingForParts stage, others in inConstruction,
waitingForTests, etc.
The notion of activity often arising in functional
decompositions of business processes, may be seen
as a view over a system of artifacts. It may focus on
several artifacts, e.g., the warehouse activity would
group the artifacts involved in the warehousing task
for a webOrder. It may also isolate a particular
period of the process, e.g., the different stages in
a product construction.
Time and provenance The system handles time
and queries talk about it, e.g., which webOrders
took more than one week of processing and which
webOrder were delivered before being paid? The
system also handles provenance and queries talk
about it, e.g., which webStore created a particular
webOrder and which plant built the products for
it?
Life and death An artifact may be created in a
number of ways, e.g., from scratch, by cloning
an existing artifact, or by activating some (pas-

sive) data. An artifact may hibernate temporarily
or terminate. Typically some archiving may be
performed at the end of the artifact life cycle or
at particular milestones.
Asynchronous communications The system pro-
vides reliable communications, where an artifact
can send a message to any other artifact just
by knowing its ID. An issue is the localization
of the destination artifact. This is straightforward
to implement for artifacts that are anchored at a
particular peer. For artifacts that move, the system
is responsible for forwarding them messages. This
is a standard issue in system with mobile objects,
e.g., cell phones.
Where are the artifact rules? The fact that
an artifact (in an object-oriented style) carries its
own logic is a departure from AXML where the
rules that define local functions are installed at the
hosting peer. Observe that this does not imply that
the artifact has to have some deep knowledge of
the organization of its host. For instance, an artifact
entering the webStore does not have to know where
the catalog is located; it only has to know the
name of the function to obtain information from
the catalog. A more serious issue is that this may
be viewed as some security violation since the
peer is going to run the rules of the artifact inside
its own environment. We believe that this is the
standard cost (as in Java applets) we have to pay for
the flexibility of the approach. A peer can always
deactivate an artifact it is hosting or control it very
tightly (e.g., in a sandbox).

III. MONITORING

One of the problems we studied is the monitoring of
distributed systems based on the notion of artifacts. In this
section, we briefly mention this work to illustrate the use of
artifacts. A fundamental issue in that setting is that we do
not see all that is going on inside the artifact. We may not
even see all the communications. Hence we have to handle
incomplete information in particular for query processing.

We have developed the P2PMonitor monitoring system
[12]. Both the monitored and the monitoring systems are
P2P. We have used the Dell manufacturing system [6] in a

demo [13] to validate these ideas with webOrders modeled
as AXML artifacts.

Functionalities: In general, the surveillance of artifact
in our system is based on the following functionalities. The
alerters are in charge of the detection of basic events in the
systems we monitor (e.g., sending/reception of a function
call, sending/reception of result). The stream processors
process streams of alerts and evaluate on-line queries. Repos-
itories store surveillance data and maintain access structures
such as indexes or materialized views. And, finally, XML
processors process this surveillance data and evaluate off-
line spatio-temporal queries.

We next briefly discuss interesting issues encountered
when developing this system.

The alerters: AXML peers can provide self-monitoring
functionalities for the artifacts they host. In these systems,
monitoring may be run simultaneously with the application
logic (if there is no risk to interfere, e.g., with the application
performance). However, most of the systems we want to
monitor are not AXML. For such a non-AXML system, we
have limited access to the data and control of the system.
We can observe (some of) its interactions with the rest of the
world. This may be achieved e.g., by installing a “spy” on
its Web server that observes the service calls and responses
of the Web server. For database systems, an alerter may
rely on the triggering system of the database or on the
surveillance of update calls to the database. For instance,
in P2PMonitor, we have developed a Webserver alerter and
an eXist-database alerter.

Stream processing: Stream processing is needed for
gathering and organizing the desired traces of runs and for
on-line queries. The techniques we use for stream processing
are described in [14]. The central component is the axlog
widget defined by tree-pattern queries over active documents
(in the AXML style) that include some input streams of
updates. A widget generates a stream of updates for each
query, the updates that are needed to maintain the view
corresponding to the query. To support widgets we use a
novel algorithm [14], [15] based on datalog technology (Dif-
ferential or MagicSet) and efficient XML automata filtering
(YFilter).

Localization of the artifacts to monitor: This is an im-
portant aspect in monitoring. Different styles of localization
may be considered:
• Static Monitoring: We know in advance the peers to

monitor and their location as, e.g., in the Dell Supply
Chain demonstration [13].

• Self-monitoring: An AXML artifact does itself the
monitoring so localization is not an issue.

• Monitoring by contamination: When an artifact moves
to a different location (say a new peer), its monitor
sends to the monitor of the new location all the in-
dications needed for the monitoring of the artifact to
continue. (It may have to “install” a monitor at the new

location if none exists.)
• Primary-site-driven monitoring: In the style of the

MobileIP protocol [16], a primary site of the artifact
is responsible for always knowing the location of the
artifact (e.g., the artifact has to inform it) and installing
monitoring on the host of the artifact (when possible).

IV. VERIFICATION

In [5], the analysis of the behavior of GAXML systems,
and in particular the verification of temporal properties of
their runs, are considered. For instance, one may want
to verify whether some static property (e.g., all ordered
products are available) and some dynamic property (e.g. an
order is never delivered before payment is received) always
hold. The temporal properties are specified in Tree-LTL,
a data-tree-based temporal logic that allows expressing a
rich class of temporal properties. Two examples of tree-LTL
formulas are given in Figure 4.

The analysis establishes the boundary of decidability of
satisfaction of Tree-LTL properties by GAXML systems. In
particular, decidability is obtained by disallowing recursion
in GAXML systems, which leads to a bound on the number
of total function calls in runs.

Although recursion-free GAXML is a rather restricted
language for specifying artifacts, it already captures some
essential aspects of the control of applications in presence
of data.

V. ISSUES AND ON-GOING WORK

There has been a number of works around AXML. See
[3]. We mention the ones that are most relevant to the
discussion and discuss issues.

1) Model: The present paper is an attempt to specify a
model of artifacts based on AXML. This is on-going
work.

2) Monitoring, tracing, querying history: We mentioned
works in that direction in Section III.

3) Verification: We mentioned works in that direction in
Section IV. The problem is also studied in [17], [18].
An interesting direction is to enrich (beyond GAXML)
the class of system that may be verified.

4) Time: an issue is the absence of global clock. So
reasoning about time is more complicated.

5) Interface: in general, we don’t know the internal logic
of some artifacts or that of some tasks performed on
another peer. We need to be able to describe abstractly
such behaviors. There is some on-going work on
interfaces in the context of AXML [19].

6) Access control: we are working on access control
mechanisms in such a distributed environment, where
partners want to keep control over their own data.

Every mail order is eventually completed (delivered or rejected):

∀X[G(Main

MailOrder

Order-Id

X

→ F(Main

MailOrder

Order-Id

X

Delivered

∨ Main

MailOrder

Order-Id

X

Rejected

))]

Every product for which a correct amount has been paid is eventually
delivered (note that the variable Z is existentially quantified):

∀X∀Y [G(Main

Catalog

Product

Pname

X

Price

Z

MailOrder

Paid

Pname

X

Amount

Z

Order-Id

Y

→ F(Main

MailOrder

Pname

X

Order-Id

Y

Delivered

))]

Figure 4. Tree-LTL formula

REFERENCES

[1] A. Nigam and N. Caswell, “Business artifacts: An approach
to operational specification,” IBM Systems Journal, vol. 42,
no. 3, pp. 428–445, 2003.

[2] R. Hull, “Artifact-centric business process models: Brief
survey of research results and challenges,” in OTM, 2008.

[3] S. Abiteboul, O. Benjelloun, and T. Milo, “The Active XML
project: an overview,” VLDB J., 2008.

[4] K. Bhattacharya, R. Hull, and J. Su, “A data-centric de-
sign methodology for business processes,” in Handbook of
Research on Business Process Management, J. Cardoso and
W. van der Aalst, Eds. N.A., 2009.

[5] S. Abiteboul, L. Segoufin, and V. Vianu, “Static analysis of
Active XML systems,” in PODS, 2008, pp. 221–230.

[6] R. Kapuscinski, R. Q. Zhang, P. Carbonneau, R. Moore,
and B. Reeves., “Inventory decisions in Dell’s supply chain,”
Interfaces, vol. 34, no. 3, pp. 191–205, 2004.

[7] G. Dong, R. Hull, B. Kumar, J. Su, and G. Zhou, “A
framework for optimizing distributed workflow executions,”
in DBPL 1999, 2000.

[8] S. Davidson and J. Freire, “Provenance and scientific work-
flows: Challenges and opportunities,” in ACM SIGMOD Int.
Conf. on Management of Data, 2008.

[9] K. Bhattacharya, C. Gerede, R. Hull, R. Liu, and J. Su,
“Towards formal analysis of artifactcentric business process
models,” in Int. Conf. on Business Process Management,
2007.

[10] A. Deutsch, R. Hull, F. Patrizi, and V. Vianu, “Automatic
verification of data-centric business processes,” in ICDT,
2009.

[11] C. Fritz, R. Hull, and J. Su, “Automatic construction of simple
artifact-based business processes,” in ICDT, 2009.

[12] S. Abiteboul and B. Marinoiu, “Distributed Monitoring of
Peer to Peer Systems,” in Workshop On Web Information And
Data Management, 2007, pp. 41–48.

[13] S. Abiteboul, B. Marinoiu, and P. Bourhis, “Distributed
Monitoring of Peer to Peer Systems (demo),” in ICDE, 2008.

[14] S. Abiteboul, P. Bourhis, and B. Marinoiu, “Efficient mainte-
nance techniques for views over active documents,” in EDBT,
2009.

[15] ——, “Satisfiability and Relevance for Queries over Active
Documents,” in PODS 2009, 2009.

[16] I. E. T. Force, “Rfc 3344, IP mobility support for IPv4,”
http://tools.ietf.org/html/rfc3344, 2002.

[17] S. Abiteboul, O. Benjelloun, and T. Milo, “Positive Active
XML,” in ACM PODS, 2004, pp. 35–45.

[18] B. Genest, A. Muscholl, O. Serre, and M. Zeitoun, “Tree
pattern rewriting systems,” in ATVA, LNCS 5311, 2008.

[19] A. Benveniste and L. Helouet, “Interface for Active XML,”
private communication.

