
Satisfiability and Relevance for Queries over Active
Documents∗

Serge Abiteboul, Pierre Bourhis and Bogdan Marinoiu
INRIA Saclay – Île-de-France and University Paris Sud

Orsay, France
firstname.lastname@inria.fr

ABSTRACT
Many Web applications are based on dynamic interactions between
Web components exchanging flows of information. Such a situa-
tion arises for instance in mashup systems [22] or when monitoring
distributed autonomous systems [6]. This is a challenging prob-
lem that has generated recently a lot of attention; see Web 2.0 [38].
For capturing interactions between Web components, we use ac-
tive documents interacting with the rest of the world via streams of
updates. Their input streams specify updates to the document (in
the spirit of RSS feeds), whereas their output streams are defined
by queries on the document. In most of the paper, the focus is on
input streams where the updates are only insertions, although we
do consider also deletions.

We introduce and study two fundamental concepts in this setting,
namely, satisfiability and relevance. Some fact is satisfiable for an
active document and a query if it has a chance to be in the result
of the query in some future state. Given an active document and a
query, a call in the document is relevant if the data brought by this
call has a chance to impact the answer to the query. We analyze the
complexity of computing satisfiability in our core model (insertions
only) and for extensions (e.g., with deletions). We also analyze the
complexity of computing relevance in the core model.

Categories and Subject Descriptors
I.7.2 [XML]; H.3.4 [WWW]; H.2 [Database management]; E.2
[Data structure]: Trees

General Terms
Algorithms, Languages

Keywords
Active XML, Query satisfiability, Relevance

∗This work is partially supported by ANR-06-MDCA-005 grant
DocFlow and by ERC Advanced Grant Webdam on Foundation of
Web data management.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’09, June 29–July 2, 2009, Providence, Rhode Island, USA.
Copyright 2009 ACM 978-1-60558-553-6 /09/06 ...$5.00.

1. INTRODUCTION
Many Web applications are based on dynamic interactions be-

tween Web components exchanging flows of information. Such a
situation arises for instance in mashup systems [22] or when moni-
toring distributed autonomous systems [6]. This is a challenging
problem that has generated recently a lot of attention; see Web
2.0 [38]. For capturing interactions between Web components, we
use active documents receiving flows of update requests. We intro-
duce and study two fundamental concepts in this setting, namely,
satisfiability for a document and relevance.

The core of the model consists of active documents interacting
with the rest of the world via streams of updates.

In this paper, we consider active documents with a set seman-
tics for the children of a node. For the queries, we use tree-pattern
queries with joins whose answers are tuples of bindings of the vari-
ables in the pattern. Such a document with queries (i.e. views) de-
fined on it is what we call an axlog widget. The term axlog results
from the marriage between Active XML (AXML for short) [3] and
datalog. The input streams of an axlog widget specify updates to
the document (in the spirit of RSS feeds). In most of the paper, the
focus is on input streams where the updates are only insertions, al-
though we do consider also deletions. An output stream is defined
by a query on the document. More precisely, it represents the list
of update requests to maintain the view of the query.

Our main contribution is a study of two novel notions for active
document, satisfiability and relevance. First, we say that some fact
is satisfiable for an active document and a query if it has a chance to
be in the result of the query in some future state. In the spirit of the
evaluation of tree-pattern queries using datalog [25], we show how
to evaluate query satisfiability in datalog, so in  in the size of
the document. Note that the number of satisfiable tuples may be in-
finite. We use a finite representation based on tuples with variables
for the set of satisfiable tuples. To handle these representations, we
use the constraint query language CQL [30].

We also study satisfiability (for a document and a query) for ex-
tensions of the model. First we introduce typing. We consider
typing for both the documents [18, 21] and the data on the input
streams [39]. Since we use set semantics, we adapt DTDs to ig-
nore the ordering of siblings. We show how to evaluate satisfi-
ability for documents constrained by unordered-DTDs. Then we
consider a number of nonmonotonic features, like deletions, termi-
nating calls, negation in queries. In particular, we see that negation
rapidly leads to undecidability of satisfiability. Finally we consider
temporal queries, a most useful feature in the context of active doc-
uments, e.g., for monitoring. We extend the model with time and
show how to evaluate satisfiability building on constraint query lan-
guages.

The second key notion we study is relevance. Given an active

87

document and a query, a call in the document is relevant if the data
brought by this call has a chance to impact the answer to the query.
This is in the spirit of data relevance in MagicSet [11] and lazy-
relevance in [1]. Relevance of function calls has also been studied
in [17, 2]. Work on view maintenance also discusses relevance of
updates, as in [15, 8]. We show how to evaluate relevance in 
in the size of the data. The combined complexity is high and the
 algorithm is too expensive for pratical purposes. We propose
a weaker condition namely axlog relevance, that is easier to verify.

The work presented here has been used in the implementation of
an engine for axlog widgets. Axlog widgets can be used to support
a number of tasks in distributed environments such as the orchestra-
tion of Web services. The axlog engine we implemented has been
demonstrated in [7] using a supply chain application [31]. It is used
in a new version of a P2P monitoring system we also implemented
[6]. The engine takes advantage of an optimization algorithm that
combines known datalog optimization techniques (e.g., MagicSet
and Differential [16]) as well as novel ones. It is notably based
on satisfiability and relevance. The optimization technique is de-
scribed in a companion paper [5]. The model and the notion of
axlog-relevance are also presented there, although informally. Typ-
ing (Section 4) as well as the nonmonotonic extensions (Section 5)
are not studied there. All the results presented here are new.

We want to stress the fact that we consider only unordered trees
(set semantics for the children of a node). Results in [36] indicate
that the document satisfiability for ordered trees and types specified
by DTDs is much more complicated.

The paper is organized as follows. In Section 2, we formalize the
model. In Section 3, we study satisfiability. We consider types in
Section 4 and other extensions of the model in Section 5. Section
6 is about relevance. The last section is a conclusion. Due to space
limitations, the proofs are omitted. They can be found in [4].

2. THE MODEL
In this section, we define the data structure (active documents)

and the query language (tree-pattern queries) that we study in the
remaining of the paper. We introduce here the core model. We will
consider a number of extensions in Sections 4 and 5.

We assume the existence of some infinite alphabets I of node
identifiers, L of labels, F of (function) call Ids, and V of vari-
ables. We do not distinguish here between XML data, attributes
and labels, i.e., our labels are meant to capture these three notions.
We use the symbols n,m, p for node identifiers, a, b, c... for labels,
? f , ?g, ?h... for call Ids, possibly with sub and superscripts, and
$x, $y, $z... for variables. We consider active documents in the style
of AXML [3, 10]. Such documents may be viewed as abstractions
of XML documents including calls to external resources, e.g., Web
services.

D 1 (A ). An active document is a pair
(t, λ) where (1) t is a finite binary relation that is a tree1 with
nodes(t) ⊂ I ; (2) λ is a labeling function over nodes(t) with val-
ues in L ∪ F; and (3) the root and each node that has a child are
labeled by values in L (so only leaves may be labeled by values in
F). We also impose that: (4) no call Id occurs more than once in
an active document.

A (data) forest is a finite set of documents and of trees consisting
of a single node with a label from F.

R 1. In AXML, a function call node has children denot-
ing the parameters of the call. We consider in this paper that calls

1The trees that we consider here are unordered and unranked.

have already been made and a function call node, labeled with a
call Id, is just a marker to indicate where the results of the call
should go, i.e., as siblings of this node. Observe that, therefore,
function call nodes do not have children, so there is no nesting of
such nodes.

Four examples of documents are given in Figure 1. The last doc-
ument presents the members of the Gemo team. Calls to the per-
sonnel database feed the document. In a standard database manner,
we use in this paper a set semantics for the children of a node.
Two active documents (t, λ), (t′, λ′) are isomorphic if they differ in
their node identifiers only. In the following, we will consider that
all documents are reduced, i.e., that they don’t include a tree node
with two isomorphic subtrees. Clearly, each document can be re-
duced by eliminating duplicate isomorphic subtrees, and the result
is unique up to isomorphism. These notions are lifted to forests in
the straightforward manner.

Calls can be seen as subscriptions (to some services) and are
meant to receive streams of updates. Trees evolve in time by re-
ceiving such update requests from the services called in them. To
simplify, we consider first that (1) the incoming flow of updates
consists only of insertions, and (2) these flows return data not con-
taining new calls. More precisely, an insertion for an active docu-
ment I is an expression add(? f , J) where ? f is a call occurring in
I and J a “passive” active document (i.e., it contains no calls). Let
I be an active document, add(? f , J) an update of I and n the node
of I labeled ? f . The result of applying add(? f , J) to I, denoted
add(? f , J)(I), is the active document obtained from I by adding, as
a sibling of n, a fresh copy2 J′ of J. For instance, for I, J,K as in
Figure 1, K = add(? f , J)(I). The active document obtained from
I by applying a sequence ω of inserts is denoted ω(I). To gener-
alize, we also see an expression add(? f , {J1, ..., Jn}) as an update.
Applied to some active document I, it has the same effect as the
sequence add(? f , J1);...; add(? f , Jn) of updates (for some ordering
of the updates in the set). Observe that the order of application of
these updates is irrelevant. This will no longer be true when we
consider extensions of the model. Note also that, by definition of
active documents, a tree consisting of a single function call node is
not a document. This is ruled out because a call may request the
insertion of a set of trees, so yield a forest.

Constraint (4) in the definition of active document may seem
arbitrary. We justify it next. We can extend the definition of up-
dates to allow the multiple occurrences of a call Id. When such a
call returns some data, isomorphic copies of this data are inserted
in the document in various places corresponding to occurrences of
the call. This introduces some nonregularity (in the sense of reg-
ular trees). To see that, consider the set of documents that can be
reached from the document r[a[? f]][b[? f]].

The queries considered in our model are tree-pattern queries. Ex-
amples are given in Figure 2. The single lines indicate a parent
relationship, and the double lines an ancestor relationship. The $-
variables may match any label. A variable $x is requested to be in
the result if marked by a “+”. The result therefore consists of tuples
over the variables marked with “+”. Query q1 is a Boolean query,
and the other three queries return binary relations over $x and $y.
We consider only equality joins for now. We will introduce other
comparators further on. Formally, we have:

D 2. (Tree-pattern query) A (tree-pattern) query q is
an expression (E/, E//, λ, π) where: (i) E/, E// are finite, disjoint
subsets of I × I, and (E/ ∪ E//) is a tree; (ii) The labeling function

2The copy is isomorphic to J and its nodes are disjoint from the
nodes of I.

88

I J K Gemo

a

b

? f

c

e

a

b

? f c

e

Gemo

Permanents

?researcher researcher

name

Ioana

topic

xml

researcher

name

Serge

topic

xml

· · · PhDStudents

?phd phd

name

Bogdan

adviser

Serge

phd

name

Pierre

adviser

Serge

phd

name

Spyros

adviser

Ioana

Figure 1: Four examples of active documents

q1 q2 q3 q4

a

b

c

d

a

+$x

c

+$y

c

d

a

b

+$x

+$y

c

e

$x

Gemo

researcher

name

+$x

topic

xml

phd

name

+$y

adviser

$x

Figure 2: Examples of queries

λ maps nodes(q) to L ∪ V; and (iii) projection π is a subset of
nodes(q) with labels in V, where nodes(q) is the set of nodes in
E/ ∪ E//.

The semantics of queries is defined as follows.

D 3. (Semantics of TPQ) Let q = (E/, E//, λ, π) be a
query and I = (t′, λ′) a document. A valuation ν from q to (t′, λ′)
is a mapping from nodes(q) to nodes(t′) that is:

(i) Root-preserving: ν(root(q)) = root(t′).
(ii) Parent/descendant preserving: For each (p, p′) ∈ E/, ν(p) is

a parent of ν(p′) in t′; and for each (p, p′) ∈ E//, ν(p) is an ancestor
of ν(p′) in t′.

(iii) Label-preserving: For each p ∈ nodes(q), if λ(p) ∈ L then
λ′(ν(p)) = λ(p), otherwise λ′(ν(p)) ∈ L.

(iv) Join-obeying: If λ(p) = λ(p′) ∈ V, then λ′(ν(p)) = λ′(ν(p′)).
The result q(I) is the relation {λ′(ν(π)) | ν a valuation}.

If there is no variable occurring more than once, the query is
said to be a no-join query. If π is empty, the query is said to be a
Boolean query. Its result is then either the empty set (false) or the
set containing the empty tuple (true). For a Boolean query q, if q(I)
is true, we say that I satisfies q, denoted I |= q. For a non-Boolean
query q, using standard notation, we denote the fact that a tuple u
is a result, i.e. u ∈ q(I), by I |= q(u).

In general, we can use non-recursive datalog (nrec-datalog for
short) to compute the answers to a query in the style of [25, 35].
We assume, in a standard manner, that the document is represented
in a relational database using the extensional relations root, child,
descendant, label with their standard meaning ; in particular,
label(a, x) holds if the node with identifier x is labeled by a ∈ L.
The representation also uses a unary relation, namely function, with
the semantics that function(x) holds if the label of node x is in F,
i.e., x is a function call node. We construct by recursion the datalog
program Pq that computes q(I) given I using the programs corre-
sponding to its subqueries. The program has one relation p for each
node p of q. The relation for the root of q defines the answer. Ob-
serve that the datalog program needs to carry along labels if they

are potentially in the result or can potentially be joined to other
labels. Observe also that the function call nodes play no role for
computing the answers to the query. Details are omitted. Efficient
algorithms for evaluation of tree-pattern and XPATH queries can
be found in [26].

3. SATISFIABILITY
We are interested in the evolution of views over such documents,

defined by tree-pattern queries. First, given a document, we want
to know if a Boolean query holds in some reachable state. Simi-
larly, we are concerned with determining whether a tuple belongs
to the view in some reachable state of the document. These notions
are related to that of coverability in dynamic systems [23]. To in-
vestigate these issues, we introduce and study the notion of query
satisfiability for a document.

Given a document I and a query q, a tuple u is satisfiable for (I, q)
if u ∈ q(ω(I)) for some (possibly empty) sequence ω of insertions.
We say that a Boolean query q is satisfiable for I, if for some ω,
ω(I) |= q, i.e., the tuple () is satisfiable for (I, q). This is denoted
by I |= �q. Clearly, if I |= q, then I |= �q. In Figure 3, I1 |= q0,
I2 6|= �q0 and I3 |= �q0. For I3, q0 does not hold but ? f may
bring some node labeled c to make q0 hold. Observe that this leads
to some form of 3-valued logic where a tuple may be true, false
for now but possibly true in some future, or false forever. This
notion is interesting in its own right. For instance, consider in the
context of the supply chain application of [31] a query that selects
the mail orders that completed successfully. One may want to know
which mail orders still have a chance to complete successfully even
though they are not part of the query result yet.

We also use a datalog program to compute the set of satisfiable
tuples for (I, q). As previously mentioned, in the computation of
satisfaction, one carries along the bindings of the variables that may
occur in the result or be joined to other labels. For satisfiability, this
is more intricate since parts of the bindings may be brought by fu-
ture inserts and may still be unavailable. In particular, the set of
successful bindings for satisfiability may be infinite. (So, there is

89

q0 I1 I2 I3 q I I′

a

b c

a

b c

a

b c’

a

b ?f

a

b

$x

+$x

+$y

a

b

a

a

?f

a

b

?f

a

?g

Figure 3: Some queries and active documents

typically no reachable instance that contains all the complete sat-
isfiable tuples since there may be infinitely many such tuples and
instances are finite). To overcome this difficulty, we use general-
ized n-tuples and the constraint query language CQL [30], an ex-
tension of datalog with constraints. We only need for now equality
constraints between variables and possibly constants.

D 4. A generalized n-tuple is a pair (u,C) where u is a
tuple of variables and C is a set of constraints of the form $x = $y
or $x = a for some a in L.

A generalized tuple (u,C) is a finite representation for a possi-
bly infinite set of (complete) n-tuples, i.e., the set of tuples θ(u) for
some instantiation θ of the variables satisfying C. We say that a
generalized n-tuple (u,C) is satisfiable for (I, q) iff for each instan-
tiation θ of u satisfying C, θ(u) is satisfiable for (I, q). Consider
Figure 3. One can verify that, for instance, ($x, $y; $x = a) and
($x, $y; $x = a, $y = c) are satisfiable for (I, q).

The previous discussion motivates the following auxiliary no-
tion. Let (u,C) and (u′,C′) be two generalized n-tuples over the
same set of attributes. Then (u′,C′) v (u,C), (u,C) more general
than (u′,C′), iff for each instantiation θ′ of u′ satisfying C′, there
is an instantiation θ of u satisfying C and θ(u) = θ′(u′). (This
corresponds to the existence of a homomorphism from (u′,C′) to
(u,C).)

We now sketch the construction of a program Pq that computes
the satisfied tuples for an active document. This program is used
to build the progam P̂q that computes the generalized tuples for
satisfiability. Program Pq has two different kinds of intensional
relations:

• One intensional relation for each node p, denoted p. The re-
lation p has an arity equal to the number of different variables
appearing in the subtree rooted by p plus one.

• One intensional relation q. This is the output relation and has
an arity equal to the arity of Π.

A tuple (n, a1, . . . ak) belongs to p iff the tuple (a1, . . . , ak) is an
answer of the subquery rooted at p evaluated over the tree rooted
at n. Intuitively, the rule associated at the relation p checks if there
exists a tuple u belonging to the relation p′ for each child p′ of
p and those tuples satisfy the join constraints over the values and
the relations constraints (children and descendants) over the nodes.
Due to space limitations, we do not present the construction of Pq.

We now sketch the construction of a program P̂q that computes
the generalized tuples for satisfiability. It has one relation p̂ for
each node p in q with the same arity as p and a relation q̂. Relation
p̂ defines the satisfiability for the subquery rooted at p. Program P̂q

is obtained as follows :

1. Each rule of Pq is rewritten by remplacing each relation p (q)
by the relation p̂ (q̂).

2. For each node p of q that is not the root, the following rule is
added

p̂(x1, ..., xk)← f unction(x1)

where x1 is the node corresponding to p and x2, ..., xk the
bindings that are carried are unconstrained along.

Observe es that the second kind of rules may introduce uncon-
strained variables. This comes from the fact that a call may a-priori
bring data matching any pattern. Note also that equality constraints
in the generalized tuples are introduced by the joins and the con-
straints of the generalized tuples are implicit in the rules.

We present here Program P̂q in Algorithm 1 associated to the
query q of Figure 3. The nodes of the query are numbered using
a preorder traversal (the children of the query are ordered for this
numbering as in the figure.). So, the node p1 denotes the root of the
query. The program restricted to the six first rules is the part derived
from Pq. The four last rules are added to compute the satisfiable
tuples in CQL.

Algorithm 1: Program P̂q for Query q of Figure 3

begin
1 : q̂(x, y)← p̂1(n, x, y)
2 : p̂1(n, x, z)← root(n), label(a, n), child(n, n′),

child(n, n
′′

), p̂2(n′, x), p̂4(n
′′
, y, z), x = y

3 : p̂2(n, x)← child(n, n′), label(b, n), p̂3(n′, x)
4 : p̂3(n, x)← label(x, n)
5 : p̂4(n, x, y)← label(x, n), child(n, n′), p̂5(n′, y)
6 : p̂5(n, y)← label(y, n)
% Satisfiable rules
7 : p̂2(n, x)← f unction(n)
8 : p̂3(n, x)← f unction(n)
9 : p̂4(n, x, y)← f unction(n)
10 : p̂5(n, x)← f unction(n)

end

In [30], it is shown how to evaluate datalog on generalized tuples
in . Using their result, one can show by induction that:

T 1. Let q be a query. Then there exists an nrec-datalog
program P̂q such that for each generalized n-tuple (u,C), (sound)
if (u,C) ∈ P̂q(I), then (u,C) is satisfiable for (I, q) and (complete)
if (u,C) is satisfiable for (I, q), then there exists (u′,C′) in P̂q(I),
(u,C) v (u′,C′). Given I, one can compute P̂q(I) in  in the
size of the document.

Observe that the set of tuples returned by the program P̂q may
be exponential in the size of q. To analyze more precisely the com-
plexity, we turn to Boolean queries. It is interesting to note that a
generalized tuple is satisfiable for some (I, q) if the Boolean query
q(θ(u)) is satisfiable for I for some θ that maps each variable in u
to a distinct new constant not occurring in I or q. We now consider

90

the complexity of deciding whether a Boolean query is satisfiable
for some document.

T 2. Given I and a Boolean query q, one can decide
whether q is satisfiable for I in  in the size of I. The problem
is - in the size of q (or the size of I and q).

P. (sketch) The data complexity follows from Theorem 1.
NP-hardness is by reduction of the evaluation problem that is known
to be -. See Theorem 7.3 of [25]. We now prove that
the satisfiability problem is in NP. Consider an instance (I, q) of the
problem. To show that I |= �q, it suffices to exhibit a sequence
ω of insertions and a valuation ν of q in ω(I). First, observe that
if such a sequence exists, there is one with a number of insertions
bounded by |q| and the size of inserted trees also bounded by |q|.
Furthermore, observe that we need only to consider a polynomial
number of labels (we have to guess values for variables). Then we
have to check (in polynomial time) that the given candidate valu-
ation is successful. So, a polynomial number of guesses (to guess
a valuation) followed by a polynomial computation (to check the
valuation) suffice. This shows that the problem is in .

We conclude this section with three remarks: the first is about a
subclass of queries for which the problem is easier, and the last two
discuss extensions:

R 2 (- ). The program complexity of the
problem is -. The complexity comes from the joins. In-
deed, one can check whether a Boolean no-join query q is satisfi-
able for a document I in O(|q|× |I|). This is based on P̂q of Theorem
1 and using [25, 35].

R 3 ( ). We can consider insertions of active
data (i.e., data including new call Ids). Such feature has no real
impact on this section.

R 4 (   ). One can consider a
system of active documents. In each document, queries produce
streams of answers. These streams are used as input streams to
other documents of the system (possibly the same document that
produced it). Note that as defined, a query produces a set of tuples
(answers). These tuples are turned into trees in the obvious way.
We assume that some of streams come from the external world (like
the input streams we considered so far). Satisfiability of one of the
queries in such a system is defined in the obvious way. The datalog
computation can be generalized to this setting. Observe that the
program may now be recursive. One can show that satisfiability of
a query in such a system remains in  in the size of the system
(i.e., the sum of the sizes of the documents) and that the combined
complexity is -. Such systems form the core of the
implementation in [5].

4. TYPED DOCUMENTS
A schema introduces types for the document (as in DTD [21])

and for the return values of calls (as in WSDL [39]). We consider
types for unordered unranked trees inspired by DTDs. We study
the complexity of satisfiability for queries over documents with
schemas specified with such types. Results on query satisfaction
(in the classical sense) by static documents constrained by DTDs
can be found, e.g, in [12, 19].

DTDs have been defined for unranked ordered trees. We adapt
them to our context of unranked unordered trees. Recall that we
assumed that a call Id occurs at most once in the document. On the
other hand, we will accept that a document contains several calls,

e.g. ? f1, ? f2 to the same Web service, say w. (For instance, ? f1 may
correspond to the call w(0) and f2? to the call w(1).) We assume the
existence of an infinite set W of Web service names. The types we
use are based on cardinality constraints on children of nodes. For
example, the following “unordered-DTD” ∆1 defines all trees that
have a root labeled a with one b-child, any c-children (the nodes
labeled b or c are leaves), and at least one call to some Web service
w that returns only nodes labeled c:

d root : a
a→ {|b| = 1 & |c| ≥ 0 & |w| ≥ 1}
b→
c→

call w root : c
c→

Formally, a cardinality constraint over some set E is a Boolean
combination of expressions of the form |e| ≥ k, for some e ∈ E and
integer k. A multiset M of E is a function from E to N. A multiset
M satisfies a cardinality constraint, denoted M ` C, if by replacing
each |e| by M(e) the cardinality constraint is true.

We use a particular symbol, namely dom, to represent the set of
data values, i.e., the elements of L except those labels occurring
in the type definition. An unordered-DTD is a an expression (τ, L,
W, r) (denoted τ when the other symbols are understood) where
L is finite set of labels, W a finite set of Web service names, r ∈
L is the root label and τ maps each label in L into a cardinality
constraint over L ∪ W ∪ {dom}. The definition of the satisfaction
of an unordered-DTD (τ, L, W, r) by a tree (t, λ) with labels in
L ∪W, denoted t |= τ, is defined as follows: the root must be r;
the nodes with labels in L − L or in W are leaves; the children of
each node with label in L must satisfy the corresponding cardinality
constraints.

Based on these types, we define schemas. In general, a schema
defines the types of severals documents and of severals Web ser-
vices.

D 5. A(n unordered-DTD) schema ∆ is an expression
(d,W, ζ) where d is the name of the document, W is a finite set of
Webservice names and ζ is a function associating to the document
name and to each w in W, an unordered-DTD. An instance I of a
schema ∆ = (d,W, ζ) is an expression (t, λ, ν) s.t. the pair (t, λ)
is an active document, ν is a function that maps each call Id to a
Webservice name and is the identity on L and the tree (t, ν ◦ λ)
satisfies ζ(d).

Our notion of active document constrained by an unordered-
DTD schema is closely related to the notion of incomplete trees
of [8].

Satisfiability for unordered-DTD schemas. A schema con-
strains the evolution of an active document. In particular, some in-
sertions may be inconsistent if they try to transform the instance
into an instance not satisfying the schema. For example, consider
the unordered-DTD schema ∆1 previously defined. The insertion
add(? f , c) applied to the instance I3 of Figure 3 gives an instance of
∆1, by considering that the Id call ? f is a call to the Webservice w.
But the insertion add(? f , e) leads to a violation of the schema con-
straint. We assume that an insertion that does not verify the typing
constraints is simply rejected. Given a document I satisfying ∆1,
an insertion ω = add(? f ,K) is valid if K verifies the signatures of
the service corresponding to ? f and if ω(I) verifies ∆1. A sequence
ω1; ..., ωk of insertions is considered valid if for each 1 ≤ i ≤ k,
ωi is valid for ω1; ...;ωi−1(I). Observe that for some set of inser-
tions, some sequencing of the set may be valid and some invalid.
The document satisfiability problem is extended to take schemas

91

into account: a query is satisfiable over an instance of a schema
(d,W, ζ) iff there is a valid sequence ω of insertions s.t. ω(I) |= q.

The following theorem shows that the document satisfiability
problem is still tractable in presence of unordered-DTDs with re-
spect to data complexity.

T 3. Let a query q and an unordered-DTD schema ∆ =

(d,W, ζ) be fixed. Given I, the satisfiability problem for q,∆ and I
an instance of ∆ is in  in the size of I.

P. (sketch) To check if a tuple u is satisfiable, we proceed
as follows. First the tuple must be satisfiable in absence of typing
constraints. We compute the satisfiable tuples and find all those that
“cover” u. We prove that u is derived iff there exists a sequence of
updates whose length is bounded by a polynomial in the size of the
query. Then one has to check, for each call that is performed, that
it can bring data matching the desired pattern without violating the
typing constraints. Those tests are expensive but do not depend on
the data.

The following theorem shows that the combined complexity re-
mains unchanged in general in the context of DTD’s, but goes up
for special cases such as no-join Boolean queries.

T 4. Let an unordered-DTD schema ∆ = (d,W, ζ) be
fixed. Given I and q, the satisfiability problem for q and I con-
strained by ∆ is - in the size of I and q. It is already
- for no-join Boolean queries.

P. (sketch) - for no-join Boolean queries is proved
by reduction of the satisfiability problem of a no-join Boolean query
over a fixed DTD, which is known to be -. See Theorem
4.5 of [12]. Membership in  is proved by exhibiting a sequence of
updates such that the length of the sequence is bounded by a poly-
nomial in q and the size of each tree is bounded by a polynomial in
q. The last property is proved by adapting the proof of Theorem 4.5
in [12], for types on reduced trees. The main technique is to trans-
late an unordered DTD τ to an unordered DTD τ′ that “almost”
describes the corresponding reduced trees. It captures the trees that
can be extended to reduced trees obeying the constraint τ.

R 5. When active insertions are allowed, the complexity
remains the same, i.e. - in the size of the query and the
document and  in the size of the document.

R 6. The problem becomes undecidable in the case of ac-
tive insertions when one considers richer typing, namely bottom-up
tree automata. Due to space limitations, such richer typing will not
to be considered here.

5. NONMONOTONICITY
We consider in this section nonmonotonic mechanisms: dele-

tions, end of calls, time queries and queries with negation. In this
context, satisfiability is no longer monotonic; e.g. a Boolean query
may become unsatisfiable during the evolution of document. We
consider first mechanisms so that the document is no longer infla-
tionary. We then consider nonmonotonic queries.

Noninflationary documents. We consider two mechanisms
that lead to a noninflationary behavior of documents: deletion and
end of calls. A deletion is a new kind of update of the form del(? f , q)
where q is a tree-pattern query to select the nodes to delete. More
precisely, the result of applying del(? f , q) to a document I, denoted
del(? f , q)(I), is the document obtained by deleting the siblings of
node ? f satisfying q, as well as their descendants. (In practice, a

deletion often uses identifiers to specify the subtrees to be deleted.)
We also introduce the possibility that a call terminates. Formally,
we consider also messages of the form eos(? f), for end of update
stream ? f . When such a message arrives, the function call node
is deleted. Observe that all the operations we consider, insertions,
deletions and eos, are in some sense local.

Because of deletions, satisfaction is no longer monotonic. Be-
cause of deletions and eos, the document is no longer inflationary
and therefore, satisfiability can decrease. One can prove that dele-
tions do not increase the complexity of the satisfiability problem in
the simple model. Theorems of Section 3 remain valid in presence
of deletions. But, deletions and schema3 together make the satisfi-
ability problem more difficult. More precisely, Theorems 3 and 4
become :

T 5. Let a query q and an unordered-DTD schema ∆ =

(d,W, ζ) be fixed. Given I, the satisfiability problem for q and I an
instance of ∆ and with add, delete updates is -- in the size
of I.

Let an unordered-DTD schema ∆ = (d,W, ζ) be fixed. Given I
and q, the satisfiability problem for q and I constrained by ∆, with
add and delete updates is ΣP

2 in the size of I and q.

In our context, we have considered only continuous Web ser-
vices. In practice, some Web services are one shot, i.e. they send a
unique forest as an answer, and terminate. Such one shot Web ser-
vices do not change much our setting. On the other hand, one may
want to impose that the one-shot answer is a single tree, or more
generally, that its answer consists of a forest of less than m trees,
for some integer m. The satisfiability problem for no-join Boolean
queries becomes - when such constraints are imposed even
for m = 1.

Nonmonotonic queries. We next consider two kinds of non-
monotonic queries: time queries and queries with negation.

Time is present in many examples of queries one wants to ask
over active documents. For instance, one may want to detect large-
amount mail orders that took more than 2 days to be processed. We
next sketch an extension of the model and the query language to
support time-based queries relying on systems of inequations. We
assume that the definition of an instance I includes a time function
ψ from nodes(I) to Q. In general, it would be interesting to also
consider data values from Q and inequations involving data values.
To simplify, this is not done here. We impose that in an instance, the
time of a node is larger or equal to that of its parent. Furthermore,
when applying an update add(? f ,K) to an instance I, we impose
that (i) the time of each node in K is larger than the time of each
node in I; and (ii) the times of all nodes in K are identical. Con-
dition (i) is compulsory to be able to reason about time. Condition
(ii) can be relaxed but is used here to simplify.

D 6. A time-based query is a pair (q,C) where q is a
query and C is a system of linear inequations over the nodes of
q. A valuation ν of a query (q,C) in an instance I = (t, λ, ψ) is a
valuation of q in (t, λ) such that the system of inequations obtained
by replacing each node n in C by ψ(ν(n)), is satisfied.

An example of time-based document I and one of time-based
query (q,C) are given in Figure 4. In the graphical representation
of documents, we append the time to the label, as in “a : 2” for
label a and time 2. We use a similar notation in queries.
3The schema specifies the nature of updates, inserts or deletes of
the funtions occuring in it. Details omitted.

92

I (q,C) qn

r:1

a:2

d:2

b:2

?f:2

c:2

?g:2

n1:r

n2:a

n3:d

C =
{

(n5 − n3) < 6
}

n4:b

n5:d

r

a

$x

¬ b

$x

Figure 4: Nonmonotonicity: Time and negation

Satisfiability is defined based on this extended notion of valu-
ation in the obvious way. Satisfiability can also be computed in
CQL, but the construction is more intricate than previously. We
now have to carry along each generalized fact, constraints on its
variables. All this can be captured by datalog with constraints [30].
A difficulty is that we don’t have the time value of the future data to
come. It is important to take into account the fact that this data will
have a time larger than the largest time value in the instance (that
we can view as the current time). Note that, as a consequence, sat-
isfiability is no longer monotonic. Indeed, the arrival of some data
that is seemingly unrelated to the query may turn some query from
satisfiable to unsatisfiable simply by updating the current time. To
illustrate, consider I and (q,C) in Figure 4. The query is satisfiable
for this document. It suffices that ? f returns some node labeled d
with time say 4. Now suppose that instead, it is ?g (seemingly un-
related) that returns some new node with time 10. This is imposing
a new constraint on the time of data that will be received later, that
makes the query unsatisfiable for the new instance.

T 6. Satisfiability for time-based documents and que-
ries can be computed by a datalog program with linear inequations
as constraints. Thus it can still be tested in  in the size of the
instance. It is - in the document and query size.

P. (sketch) To prove the  bound, we adapt the program
P̂. 3Sat can be reduced to query satisfaction that itself can be re-
duced to query satisfiability. This shows -.

To complete the extensions, we consider negation in queries. A
tree-pattern with negation is a tree-pattern with an additional unary
relation Neg over the nodes of the tree-pattern. The meaning of a
negation is to state that “there is no subtree matching the pattern”.
For instance, the Boolean query qn in Figure 4 states that the r-root
has an a-child with a child with some label $x, such that there is no
b-child of the root that also has a child labeled $x. In general several
negations may be found on a down path from the root. The meaning
of the quantification is as follows. Variables not occurring in the
output are existentially quantified in the least ancestor of the nodes
where they occur. Finally, we also impose that for each variable
occurring in the output, at least one of nodes labeled by the variable
has all its ancestor non negated.

T 7. The satisfiability problem is undecidable for queries
with negation.

P. (sketch) The proof is by reduction of the implication
problem of functional and inclusion dependencies [29]. This proof
is is in the spirit of that of Theorem 4.5 of [8]. Observe that Theo-
rem 7 is more general.

We observe that in absence of joins, the satisfiability problem
is decidable for queries with negation. In the Boolean case, it has

I q I′ q′

a

b

c ?f

?g e

?h

a

b

c

d

a

b

?f

e

b

?g

a

b

c

e

c

Figure 5: Queries and active documents for relevance

 data complexity and - combined complexity.
It is interesting to obtain restrictions that make satisfiability decid-
able even in presence of negation and joins. Such restrictions are
considered, for instance, in [9].

6. RELEVANCE
We are interested in this section in the possible contributions of

call Ids to the result of a query. This problem is particularly useful
for optimization. For instance, if we know that a call does not af-
fect the view we want to maintain, we can discard it. We introduce
a notion of relevance that captures the intuition that one particu-
lar call brings useful information for some particular query we are
interested in. We consider here the core model of Section 2 with
insertions only and without time. A study of relevance with non-
monotonic features such as deletions is more complicated, and is
left for future research.

After some brief motivation, we introduce a semantic notion of
relevance and consider its complexity. We then introduce a weaker
notion, axlog-relevance, and discuss its completeness and complex-
ity. We briefly mention at the end of the section how we use rele-
vance to optimize axlog widgets.

Intuitively, a call Id ? f is “not relevant” for I, q if ignoring the
data brought by ? f in I does not change the result of q. Consider I
and q in Figure 5. Note that ?h is not relevant for I and q because
its e parent does not match either b or d. Also, ? f is not relevant
because some sibling already provides the c. On the other hand, ?g
is clearly relevant for I and q since it can bring a node matching d.

This notion is related to the notion of lazy-relevance considered
in [1]. They studied the closely related problem: given a query
over a document with intentional data (described as Id calls), what
are the Web services that need to be called to answer the query.
Lazy-relevance can be computed using a tree-pattern query. It is a
necessary condition for relevance (as formally introduced further).
However, the notions of relevance we consider here are more re-
fined. For instance, the call Id ? f in I of Figure 5 is lazy-relevant
for I and q, whereas one can see that it is not useful since the only
matching data it can bring is a c and we already have one there. We
observe in passing that the notion of relevance studied here could
be used to improve the query evaluation technique in [1].

To define relevance, we use the following auxiliary notion. Given
a sequence ω of insertions and a call Id ? f , let ωno- f denote the se-
quence obtained from ω by removing all ? f -insertions. Now, we
have:

D 7. Let q be a query and I an active document. A
call Id ? f is said to be not relevant for q and I iff for each update
sequence ω and for each tuple u, u ∈ q(ω(I)) iff u ∈ q(ωno- f (I)).

This notion of relevance of calls can be carried to data. When
the data in a subtree is no longer useful (after all tuples that could
be derived using it have been derived), it is not necessary to keep

93

it. The subtree can then be garbage-collected. This will not be
considered here.

The notion of relevance is somewhat more complex that it may
look. Indeed, the active document I′ and query q′ in Figure 5
illustrates a subtlety. Consider the sequence ω = add(? f , e[c]);
add(?g, c), that yields a document satisfying the query. A superfi-
cial analysis would lead to believe that ? f and ?g are both useful
because ? f can bring data matching the left branch of the query,
and ?g data for the right branch. However, observe that the update
(?g, c) alone is enough to yield a document satisfying the query.
Indeed, the update add(? f , e[c]) is not needed in that particular se-
quence and more generally, ? f is not relevant for I′ and q′ as in
Figure 5.

Indeed, one can show that:

T 8. The problem of deciding, given a document and an
arbitrary query, whether a call Id is not relevant is in ΣP

2 in the size
of the document and the query. The problem of deciding, given a
document and a no-join Boolean query, whether a call Id is rele-
vant, is - in the size of the query and the document.

P. (sketch) Let I be a document containing a call Id ? f and
q a query. Then ? f is relevant for (I, q) if there exists an update ω,
such that ω(I) = (t′, λ′) a tuple u and a valuation θ of the variables
in q such that:

(*) for each instanciation θ′ from the variables in q to ,
such that for variable $x labeling a node of π, θ($x)) = θ′($x)

(+) ω(I) |= ν(q) and ωno− f (I) 6|= ν′(q).
One can show that it suffices to consider ω of polynomial size.
Also, the test (+) can be performed in . Thus the problem
is in ΣP

2 .
Now consider no-join Boolean queries. -ness is by re-

duction of 3-SAT. For membership in , let ? f be a call Id in a
document that is relevant. Then there exists a sequence of updates
that demonstrates that ? f is relevant. One can show that there also
exists a “small” sequence of updates that demonstrates it. So, to
compute relevance in , it suffices to guess a “small” sequence of
updates and test (*). The test (*) can be performed in  for
no-join Boolean queries.

The previous result shows the high expression complexity of the
problem. We next show that for any fixed query, relevance can be
computed in  in the size of the document. To do that, we ex-
plore in more details the possible scenarios for obtaining answers
to the query, where a scenario is essentially assigning the different
roles, i.e. the subqueries to match, to existing data or Id calls occur-
ring in the document. More precisely, we reconsider satisfiability.
We extend the generalized tuples used to describe satisfiability by
including some “provenance” information. Generally, provenance
is used to capture where data came from. Here, we are concerned
with where data might come from. A generalized fact is now of the
form p̂(u1, ..., un,C,P), where each ui is some constant or a vari-
able and u1, · · · , un is a tuple over the variables of subquery p that
appear in the result or appear at least twice in q (joins), C is the
set of constraints, and P is the provenance information defined as
follows.

Let p̂(u1, ..., un,C,P) be a generalized tuple derived for some
query node p̂. The provenance P is a tuple that specifies how the
derivation of corresponding facts depends on the arrival (in certain
streams) of data satisfying certain patterns. More precisely, prove-
nance is an m tuple, where m is the number of nodes in the subquery
rooted at p̂. The k-th component of P corresponds to the k-th node
of the subquery, in some fixed ordering of these nodes, say preorder
traversal. Its value is ? if some data is already present in the docu-
ment and matches the corresponding query node. It is n? f for some

call Id ? f if this specific call Id may bring data matching it. It is •
otherwise, with the meaning that the data comes from a match in
an ancestor node.

We modify the datalog program that computes satisfiability so
that it also computes provenance information. We call such tuple
(with provenance information), a scenario. For the query q and the
document I of Figure 5, three tuples are derived (by considering the
nodes of the query with the prefix order):

((), , ?, ?, ?, ?g), ((), , ?, ?, ? f , ?g), ((), , ?, ?g, •, ?g)
where the 4 entries of each tuple correspond to provenance for the
4 query nodes in preorder traversal of the query tree. (The query
is Boolean, so there is no data to return). Note that each tuple
corresponds to a scenario for the possible future derivation of the
same fact q(). By observing these tuples, one may be led to believe
that ? f or ?g may bring useful data. But since we already obtained
the subgoal a/b/c, it turns out that this is not the case and only ?g
is relevant. So, we have to check each scenario to see if it possibly
brings new results and in that case, which Id calls are needed.

An instanceω of a given scenario is a sequence of updates, where
each update add(? f ,K) in ω corresponds to some occurrence of ? f
in the provenance for a position corresponding to a subquery rooted
at p if the edge between p and its parent is a parent edge (single
line). Furthermore K satisfies the query ν(p) (p is here the subquery
rooted at p) where ν assigns to the result and join variables the
values specified by this scenario. (If the edge between p and its
parent is a descendant edge, some subtree of K must satisfy it, i.e.,
double line.)

The  algorithm is rather intricate. Its crux is to check (for
some I and ? f) for each scenario where ? f occurs, whether there
exists a tuple that would be derived in this scenario, and would not
have been derived if ? f were removed from the scenario. This leads
to:

T 9. Let q be a fixed query. The problem of deciding,
given a document and a call Id ? f in it whether ? f is relevant for
I, q, is in  in the size of I.

P. (sketch) Let I be a document and ? f a call Id in it. We
can compute in  all the possible scenarios for (I, q) (i.e., the
satisfiable tuples with their provenance). Consider one particular
scenario (u,C,P) including ? f . (There are polynomially many such
scenarios.) Suppose (to simplify the presentation and without loss
of generality) that in this scenario ? f is used only once. Suppose it
is matched to the subquery p. Now consider the query q′ obtained
from q by pruning out the p subtree. The scenario gives us a sce-
nario for q′ that we call the no-f scenario of (u,C,P). To check
that ? f is relevant for (I, q), it is necessary and sufficient to find a
scenario (u,C,P) and a complete tuple u such that there exists an
instance ω of the scenario such that:

(a) the instance ω transforms I into I′ with u ∈ q(I′),
(b) the instance ω without ? f (which is an instance of

the no-f scenario of (u,C,P)) transforms I
into I′′ with u < q(I′′).

First observe that, it is possible to restrict our attention to a poly-
nomial number of u tuples. Let u be such a tuple. It is rather easy
to test (a). The test of (b) is trickier. Consider the query q̃ obtained
by transforming I as follows: the ? f call and the ?g calls not occur-
ring in the scenario are removed, a ?g call occurring in the scenario
is replaced by the subquery it is supposed to provide according to
this scenario. This query (almost) tests whether a document comes
from this particular scenario omitting ? f . Indeed, one can show
that ? f is relevant iff there exists an active document J such that
J |= (q̃ ∧ ¬q(u)), i.e. q̃ * q(u). Intuitively, from such a J, one

94

can construct an update that demonstrates that ? f is relevant. This
query containment can be tested in  in the size of I. To do
that, we eliminate the joins by considering all valuations of the join
variables. This results in replacing the containment test by many
“easier” containment tests.

Observe that this technique leads to a lot of computation for each
satisfiable tuple. One can avoid testing many of them using a notion
of “dominance”. For instance, in the previous example, the first
tuple dominates the others, so we find immediately that it is the
only scenario to consider and we derive that ? f is not relevant. This
suggest a necessary notion of relevance that we study to conclude
this section. It is the one that is used in our system [5].

A renaming of a generalized tuple t is a tuple t′ obtained by re-
naming (using a bijection) the variables of t. Let

t1 = (u1, ..., um,C1,P1), t2 = (u′1, ..., u
′
m,C2,P2)

be two tuples with provenance. (We assume without loss of gen-
erality that they have the same “data” part consisting of distinct
variables). We say that t1 is dominated by t2, denoted t1 ≺ t2 if (a)
(u1, . . . , um; C1) v (u′1, . . . , u

′
m; C2) and (b) for each p ∈ nodes(q),

either P2(p) = ? or P1(p) = P2(p) and there exists at least one p
such that P2(p) = ? and P1(p) , ?. The intuition is that any rele-
vant data needed by the dominating tuple to lead to satisfied tuples
is also needed by the dominated one. Thus, the dominated tuples
are useless because they lead to the same satisfied tuples.

We refine the set of candidates by eliminating the dominated tu-
ples. In the previous example, the second tuple and the third tuple
are eliminated. This leads to the notion of axlog-relevance. Let q, I
and ? f be a query, an active document and a call Id of I. Then ? f is
axlog-relevant for q if there exists a not dominated tuple p(u,C,P)
(i) that may derive new results and (ii) where ? f appears. In Fig-
ure 5, the first tuple gives a new result so only ?g is axlog-relevant.
Details omitted.

It is easy to see that axlog-relevance is much more refined than
lazy relevance. In particular, in Figure 5 for I and q, the Id call
? f is lazy-relevant but not axlog-relevant (neither relevant). On
the other hand, axlog-relevance falls short of capturing relevance:
In Figure 5, for I′ and q′, the call Id ? f is axlog-relevant but not
relevant. To summarize, relevance implies axlog-relevance implies
lazy-relevance, and none of the converses hold.

Relevance and axlog-relevance both have  complexity in
the size of the active document. Axlog-relevance is more tractable
in practice since the polynomial has a much smaller coefficient.

We conclude with an observation that turns out to be essential
for the optimization of axlog engines:

R 7. Observe that the computation of satisfiability with
provenance information tells us more than just relevance. For a
relevant call ? f , we also find precisely for what it is relevant, i.e.,
the list of subqueries pi for which it can bring relevant data. Based
on that, we can filter the stream of data brought by ? f to let only
relevant data enter the document. Indeed, we can even directly feed
the relevant data in the relation p̂i corresponding to each pi in the
datalog program. In the implementation, we use a YFilter [20] to
compute the tuples that are directly fed in the pi relations. This
presents the advantage of reducing processing (fewer data enters
the datalog program) and also communication (if the filtering is
performed in a remote source).

7. CONCLUSION
From a technical viewpoint, there are strong connections be-

tween our work on satisfiability and the problem of querying an

incomplete databases, e.g., [27, 28, 32]; in some sense, the func-
tion calls introduce incompleteness. When we consider types, we
are very close in spirit to the model of incomplete trees proposed in
[8]. In our study of satisfiability, we use previous works on the eval-
uation of tree pattern queries, notably, [25, 26, 35], and constraint
query languages [30].

Our notion of unordered DTD is inspired by other formalisms
proposed for unordered unranked trees, e.g., [9]. More general typ-
ings have been considered, e.g., [37]. Our results in presence of
DTDs use previous results on query satisfiability in presence of
DTDs; see, e.g., [12, 14, 19].

The relevance of an update for a query/view has been intensively
studied in relational databases, e.g., [15, 33]. In active document
contexts, function call relevance has also been studied [1, 2, 8].
The notions of relevance we introduce here (relevance and axlog
relevance) are both more refined than previous notions such as lazy
relevance. In our study of relevance, we use previous results on
query containment [35, 12, 19]. Interesting results of this nature
for trees may also be found in [13].

There have been previous works on the verification of temporal
properties for active documents. One work [34] also studies active
document satisfiability for tree-pattern queries. However, it deals
with ordered trees, which is, as mentioned in the introduction, a
much more complex issue. The paper is rather imprecise and the
results seem to contradict well-known results [36]. [2, 24] study
reachability for positive AXML systems (with no deletions). [9]
studies a rather general class of non monotone AXML systems and
a very large class of temporal formulas. Our model is in many
aspects more limited than those used in these previous works. This
is the price to pay to obtain  data complexities. However, it
should be noted that the setting we consider allows unbounded runs
(which is not the case in [9]) and infinite data values (which is not
the case in [24]).

We mentioned the system that motivated this paper [5, 6, 7]. Sat-
isfiability and relevance are used in the system to optimize change
monitoring. Other usages of satisfiability, such as garbage collect-
ing data that becomes useless, may be worth investigating. The
work presented here also suggests other directions of research. The
introduction of aggregate functions in an active document setting
raises interesting issues. In particular, one could consider aggre-
gate functions with time windows, e.g., find the services that are
called more than 25 times within 500 time units. Also, our posi-
tive results mostly concern the monotone case, i.e., insertions only
and monotone queries. It would be interesting to further investigate
satisfiability for queries with negation and updates including dele-
tions. This could lead to studying tractable cases for the model of
[9]. Finally, it would interesting to investigate tractable cases for
ordered trees, possibly based on the decidable cases of [36].

Acknoledgements.
We wish to thank Victor Vianu, Claire David and Evgeny Khar-

lamov for discussions on this paper.

95

8. REFERENCES
[1] S. Abiteboul, O. Benjelloun, B. Cautis, I. Manolescu,

T. Milo, and N. Preda. Lazy query evaluation for Active
XML. In SIGMOD Conference, pages 227–238, 2004.

[2] S. Abiteboul, O. Benjelloun, and T. Milo. Positive Active
XML. In PODS, pages 35–45, 2004.

[3] S. Abiteboul, O. Benjelloun, and T. Milo. The active XML
project: an overview. VLDB J., 2008.

[4] S. Abiteboul, P. Bourhis, and B. Marinoiu. Satifiability and
relevance for queries over active documents (full version).
ftp://ftp.inria.fr/INRIA/Projects/gemo/gemo/GemoReport-
10019.pdf.

[5] S. Abiteboul, P. Bourhis, and B. Marinoiu. Efficient
maintenance techniques for views over active documents. In
EDBT, 2009.

[6] S. Abiteboul and B. Marinoiu. Distributed monitoring of
peer to peer systems. In Workshop On Web Information And
Data Management, pages 41–48, 2007.

[7] S. Abiteboul, B. Marinoiu, and P. Bourhis. Distributed
Monitoring of Peer to Peer Systems (demo). In ICDE, 2008.

[8] S. Abiteboul, L. Segoufin, and V. Vianu. Representing and
querying xml with incomplete information. ACM Trans.
Database Syst., 31(1):208–254, 2006.

[9] S. Abiteboul, L. Segoufin, and V. Vianu. Static analysis of
Active XML systems. In PODS, pages 221–230, 2008.

[10] Active XML. http://activexml.net.
[11] C. Beeri and R. Ramakrishnan. On the power of magic. J.

Log. Program., 10(3-4):255–299, 1991.
[12] M. Benedikt, W. Fan, and F. Geerts. Xpath satisfiability in

the presence of dtds. In PODS ’05, pages 25–36, New York,
NY, USA, 2005. ACM Press.

[13] H. Björklund, W. Martens, and T. Schwentick. Conjunctive
query containment over trees. In DBPL, pages 66–80, 2007.

[14] H. Björklund, W. Martens, and T. Schwentick. Optimizing
conjunctive queries over trees using schema information. In
MFCS, pages 132–143, 2008.

[15] J. A. Blakeley, N. Coburn, and P.-Å. Larson. Updating
derived relations: Detecting irrelevant and autonomously
computable updates. In VLDB’86, pages 457–466, 1986.

[16] J. A. Blakeley, P.-A. Larson, and F. W. Tompa. Efficiently
updating materialized views. SIGMOD Rec., 15(2):61–71,
1986.

[17] A. Calì and D. Martinenghi. Querying data under access
limitations. In ICDE, pages 50–59, 2008.

[18] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard,
D. Lugiez, S. Tison, and M. Tommasi. Tree automata
techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 1997.
release October, 1rst 2002.

[19] C. David. Complexity of data tree patterns over xml
documents. In MFCS, 2008.

[20] Y. Diao, P. M. Fischer, M. J. Franklin, and R. To. Yfilter:
Efficient and scalable filtering of XML documents. In ICDE,
pages 341–, 2002.

[21] DTD. http://www.w3.org/tr/rec-xml/#dt-doctype.
[22] R. Ennals and D. Gay. User-friendly functional programming

for Web mashups. In ICFP, pages 223–234, 2007.
[23] A. Finkel and Ph. Schnoebelen. Well-structured transition

systems everywhere! Theoretical Computer Science,
256(1-2):63–92, Apr. 2001.

[24] B. Genest, A. Muscholl, O. Serre, and M. Zeitoun. Tree
pattern rewriting systems. In ATVA, pages 332–346, 2008.

[25] G. Gottlob and C. Koch. Monadic queries over
tree-structured data. In LICS, pages 189–202, 2002.

[26] G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for
processing XPath queries. ACM Trans. Database Syst.,
30(2):444–491, 2005.

[27] G. Grahne. Problem of Incomplete Information in Relational
Databases. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 1991.

[28] T. Imielinski and J. W. Lipski. The relational model of data
and cylindrical algebras. In PODS ’82: Proceedings of the
1st ACM SIGACT-SIGMOD symposium on Principles of
database systems, pages 170–170, New York, NY, USA,
1982. ACM.

[29] C. A. K. and V. M. Y. The implication problem for functional
and inclusion dependencies is undecidable. SIAM journal on
computing, 14(3):pp. 671–677, 1985.

[30] P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz. Constraint
query languages. J. Comput. Syst. Sci., 51(1):26–52, 1995.

[31] R. Kapuscinski, R. Q. Zhang, P. Carbonneau, R. Moore, and
B. Reeves. Inventory decisions in Dell’s supply chain.
Interfaces, 34(3):191–205, 2004.

[32] A. Y. Levy. Obtaining complete answers from incomplete
databases. In In Proc. of the 22nd Int. Conf. on Very Large
Data Bases (VLDB’96, pages 402–412, 1996.

[33] A. Y. Levy and Y. Sagiv. Queries independent of updates. In
VLDB ’93: Proceedings of the 19th International Conference
on Very Large Data Bases, pages 171–181, San Francisco,
CA, USA, 1993. Morgan Kaufmann Publishers Inc.

[34] A.-T. Ma, Z.-X. Hao, and Y. Zhu. Checking satisfiability of
tree pattern queries for active xml documents. In
INFOCOMP, pages 11–18, 2008.

[35] G. Miklau and D. Suciu. Containment and equivalence for a
fragment of XPath. J. ACM, 51(1):2–45, 2004.

[36] A. Muscholl, T. Schwentick, and L. Segoufin. Active
context-free games. In STACS, pages 452–464, 2004.

[37] H. Seidl, T. Schwentick, and A. Muscholl. Numerical
document queries. In PODS ’03: Proceedings of the
twenty-second ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems, pages 155–166, New
York, NY, USA, 2003. ACM.

[38] What Is Web 2.0. http://www.oreilly.com/.
[39] WSDL. http://www.w3.org/tr/wsdl.

96

