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Abstract— We study the scalable management of XML data
in P2P networks based on distributed hash tables (DHTs). We
identify performance limitations in this context, and propose
an array of techniques to lift them. First, we adapt the DHT
platform’s index store and communication primitives to the needs
of massive data processing. Second, we introduce a distributed
hierarchical index and associated efficient algorithms to speed
up query processing. Third, we present an innovative, XML-
specific flavor of Bloom filters, to reduce data transfers entailed
by query processing. Our approach is fully implemented in
the KadoP system, used in a real-life software manufacturing
application. Our experiments demonstrate the benefits of the
proposed techniques.

I. INTRODUCTION

The current development of peer-to-peer (P2P) information
sharing has opened the way for supporting rich data manage-
ment applications in a distributed environment. Of particular
interest is the support of structured queries over distributed
XML data, as XML is well suited to represent the variety of
data that may be shared within a P2P system. In this direction,
a recent work has proposed the KadoP platform [1] that relies
on the well known technology of Distributed Hash Tables
(DHT) in order to support complex queries over the shared
XML data. In KadoP, the peers publish XML documents
and share the tasks of indexing the data and processing
queries. KadoP indexes the XML data in the form of postings,
where each posting encodes information on an element or a
keyword. The use of a DHT allows KadoP to implement a
“responsibility” mechanism, by which (typically) a single peer
stores all the postings for a given term, and this peer can be
efficiently identified by all other peers in the system. Given a
query, the system combines the postings stored in the index to
locate the peers that can contribute to the query, and forwards
the query to these peers where the final results are computed.

The potential problem faced by this efficient approach is
that posting lists for very popular terms grow very large and
limit the system’s scalability. More specifically, index con-
struction (equivalently, document publishing) becomes slower,
and, more critically, the transfer of large sets of postings

may be damaging in terms of query response time and
data transfer load. This paper presents techniques that we
have developed to address these issues. More concretely, the
technical contributions of our work can be summarized as
follows:

– To improve query response time, we introduce a novel
optimization technique that speeds-up the exchange of large
sets of postings, a main cause of poor query performance. We
employ a horizontal partitioning scheme, in which a large
set of postings is distributed among peers based on range
conditions. This scheme enables a highly parallel twig join
algorithm that can reduce significantly the total processing
time. It also allows the index to filter partitions irrelevant to
the query, thereby saving on data transfers.

– To limit data transfers, we introduce Structural Bloom Filters
for distributed structural XML joins. A Structural Bloom Filter
provides a compact representation of a set of postings that is
suitable for filtering the postings of another list. In brief, given
a Structural Bloom Filter on the postings of some term a, it
is possible to check (with a configurable error probability)
whether another posting has a descendant or an ancestor
element in the set of postings of a. We detail the mechanism
behind Structural Bloom Filters, and propose techniques that
integrate these filters in the evaluation of index queries.

The proposed techniques are fairly general, as they can be
applied to any XML system that follows the same general
architecture as KadoP. Moreover, they are largely orthogonal
and can thus be easily composed.

We have implemented the proposed techniques in KadoP
and present experimental results, on synthetic and real-life
data sets, demonstrating that the system scales gracefully to
large data volumes. Our study is among the first performed
on an actual XML data management platform over a P2P
network, as opposed to simulations. (Such studies for rela-
tional data sharing appear in [2], [3]). Implementing the actual
system allowed detecting a set of real performance bottlenecks
(see Section III), which simulations alone do not reveal. We
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view our development and the solutions we brought to these
problems as one of our contributions, that can benefit to any
DHT-based data management tool.

The modified system is currently being tested in coop-
eration with the Mandriva company (originally known as
Mandrake Software) with a real application entitled Edos.
In Edos [4], the peers are Mandriva Linux developers, so
potentially a population in the hundreds of peers, and the
indexed data comprises the XML descriptions of the software
packages in the Mandriva Linux distribution. (A distribution is
composed of about 10,000 software packages, which translates
to more than 100 megabytes of XML metadata.) One sample
query supported by the system is “find the packages that
provide a ‘terminal-emulator’ and that are compatible with
version ‘4.2’ of the ‘readline’ library”. Of course, the system
has to support simultaneously many (time-based) versions of
the distribution.

The paper is organized as follows. We review the existing
KadoP system [5] in Section II, and in Section III we describe
important techniques that address some of its scalability limi-
tations. Section IV introduces a technique based on partition-
ing and distributing index blocks, that greatly reduces query
response time. Bloom-based optimization techniques reducing
network traffic are described in Section V. We review related
works in Section VI, and conclude the paper in Section VII.

II. THE KADOP SYSTEM

Our work considers P2P applications with a possibly very
large number (millions) of XML documents stored in a large
number (up to the thousands) of peers. We assume that peer
volatility is moderate, i.e. a peer’s typical online span is of
the order of a few hours (as opposed to a few minutes). We
note that this model encompasses a wide range of real-life
applications, such as scientific data sharing platforms, shared
bookmarks, or virtual libraries (e.g., the French federated on-
line scientific library HAL 1).

Data and Query Model. Each document in the system is
identified by a pair (p, d), where p is the numerical identifier
of the peer that checked it in, and d the document identifier
within this peer. A document (p, d) is a labeled unranked tree,
comprising element and text nodes. (For simplicity, we do not
distinguish between elements and attributes.) Each element is
labeled with a string symbol from some alphabet Label and
is uniquely identified by a structural identifier (sid for short)
sid = (start, end, lev). Here, start (resp. end) is the number
assigned to the opening (resp. closing) tag of the element,
when reading the document and numbering its tags in the
order they appear in the document. The third value lev denotes
the element’s level in the tree. Structural ids allow deciding
if element e1 is an ancestor of element e2 by verifying if
e1.start<e2.start<e1.end. As we discuss later, this property
forms the basis of the techniques that we present in Section V.

1hal.archives-ouvertes.fr

In our work, we focus on the class of tree-pattern queries
over single documents. A tree pattern query q intuitively cor-
responds to the FOR/WHERE clause of a FLWR expression
and it can be modeled as a tree where: each node is labeled
with a symbol from Label ; and each edge is labeled with “/”
or “//” to denote the child or descendant axis respectively.
Moreover, a query node can specify whether the label is to
be matched as an element label, or as a word occurring in
a text node. We say that q matches a document (p, d) if
there exists a mapping from the nodes in q to nodes in (p, d)
that (i) preserves the parent/child and ancestor/descendent
relationships, and (ii) satisfies the query predicates on labels
and values. We refer to such a mapping as a binding tuple for
q.

Consider a FLWR query Q that is built around a cor-
responding tree pattern query q. Essentially, Q employs q
as its FOR clause, but it may add additional (non-textual)
predicates in the WHERE clause, or the computation of
complex functions in the RETURN clause. The queries Q
and q thus satisfy the following important property: if Q has a
non-empty result on a document (p, d), then q matches (p, d).
As we describe shortly, this property forms the crux of the
query evaluation mechanism in KadoP.

Indexing and Query Processing. KadoP indexes element
labels as well as words2 in documents. We henceforth use
term to refer to either of the two. The indexing scheme of
KadoP is based on the Term relation, defined as follows:

Term(p,d,sid,l) l is the label of element (p, d, sid)
Term(p,d,sid,w) w is a word under element (p, d, sid)

We refer to a tuple in Term as a posting. Given a term a, we
refer to the set of its postings as the posting list for a and
denote it as La.

In KadoP, XML documents are stored at their publishing
peer, whereas the Term relation is distributed among the
peers of the system using a distributed hash table (DHT for
short) [6]. At a high level, the DHT exposes the following
interface: locate(k) returns the id of peer in charge of key k;
put(k, α) enters a new value for k; get(k) returns the value for
k; and, delete(k) deletes the key k. Under the covers, the DHT
assigns the keys automatically among the peers (typically
through some hash function), and handles the redistribution of
keys when peers join or leave the network. In KadoP, the keys
of the relation are the terms and the values the corresponding
posting lists. Thus, Term is split horizontally among peers,
with peer p in charge of a portion Termp defined as follows:
Termp={Term(p’,d,sid,a) | locate(a)=p}. The posting lists in
Termp are clustered based on the term value, and the postings
of a term are ordered in the lexicographic order dictated by
the (p, d, sid) attributes.

The distributed Term relation essentially implements a data
catalog that enables KadoP to locate documents matching a

2For efficiency, stop words are excluded from the index.
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query Q. More specifically, assume that Q is submitted at
peer p and let q be the corresponding tree pattern query.
For each term a in q, p asks the peer in charge of a for
the posting list La, and performs a holistic twig join [7]
over all the received lists. For instance, assume that q ≡
//abstract[contains(., “xml”)]. The query peer p uses the Term
relation to find the sids of all elements labeled abstract and
all parents of text nodes containing the word xml. A structural
join on these sid collections computes the ids of documents
that match q, and in effect, a superset of the documents that
match Q. At this point, p can forward Q to the owning peers
and collect the answers.

As the previous discussion demonstrates, the distributed
index is key for efficient query evaluation in a P2P system.
An important property of the KadoP index is that it identifies
precisely the documents that contain results for q, which
in turn can limit considerably the set of peers to which
the complex query Q is forwarded. In contrast, other DHT-
based XML indexing systems [8], [9] become imprecise in
the presence of text predicates and may thus forward the
query to a larger set of peers. We find it crucial to efficiently
support index queries with text predicates, since XML blurs
the distinction between structure (tags) and content (text), and
such queries are thus frequent in practice.

Due to space constraints, we do not discuss here certain
aspects of the KadoP system, such as, handling ∗-labeled
queries, or index updates. The complete details can be found
in the full version of this paper [10].

III. SCALING KADOP

As discussed earlier, the distributed index is an inherent
component of query evaluation and its efficiency is thus cru-
cial for good system performance. However, our experiments
with an initial implementation of KadoP have demonstrated
that the index has severe scaling limitations, caused primarily
by the processing of long posting lists. (Similar points have
been raised by other works on DHT-based systems [11], [12],
[13].) Thus, for the remainder of the paper, we focus our
attention on the evaluation of index queries that involve long
posting lists since they represent the true challenge for a DHT-
based approach.

We identify three important metrics that assess the perfor-
mance of a distributed index (and essentially form the guiding
criteria behind our techniques): (i) indexing time, (ii) query
response time, and (iii) bandwidth consumption. (The latter
refers again to index query processing, since transferring the
results to the query peer is unavoidable.) In the remainder of
this section, we discuss technical improvements we brought
to the original KadoP system (that was described in [5]) that
already greatly enhance the performance of the system in
terms of (i) and (ii). The following sections discuss more
involved techniques that aim to reduce query response time

and bandwidth consumption.

Improving indexing time. To index a document, the system
constructs in one traversal the element postings (Section II)
and routes each posting, via the DHT, to the peer in charge of
the corresponding term. Postings of the same term are buffered
and sent in batches, which reduces slightly the index latency
(the time it takes to index a document) compared to the naive
method of routing each posting separately. More important
gains are obtained by (i) extending the DHT API; and (ii)
replacing its data store. We discuss these two points next.

The original insert operation in a local DHT index is very
inefficient. According to the standard DHT API [6], when a
peer in charge of a key k receives a put request, it (1) reads the
old value for k, (2) applies a DHT-specific reconciliation of
the old value and the new entry, and (3) inserts the result in the
repository. Performing this operation for n successive entries
associated to key k leads to a total I/O complexity of n2, since
i entries must be read in order to append the (i+1)th entry.
To overcome this issue, we extend the DHT API described in
Section II with a new operation, namely append(key, entry),
to obtain an indexing of linear cost.

To speed up indexing, we tuned the DHT’s communication
buffers to cope with many small messages generated by small
posting lists. Another important improvement is the tuning
of the index storage. More precisely, Termp at peer p is
organized as a B+-Tree, using term as the search key, and the
postings associated with a given term are lexicographically
ordered by (p, d, sid). (KadoP is built on PAST [14] that by
default uses gzipped XML files.)

In our experiments, enhancing the API, buffer tuning, and
replacing the index storage has sped up publishing by two
to three orders of magnitude. As a side effect, replacing the
index storage has also reduced index query processing time
by one order of magnitude.

Improving query response time. As discussed earlier, the
peer p in charge of a query q performs a holistic twig join
on the posting lists received from other peers. Observe that
the only retrieval operation in the DHT API is get, which is
defined as a blocking operation, i.e., it returns only when the
content of the posting list has been fully retrieved. Therefore,
the holistic twig join must wait until at least two lists have
been entirely received before it can start processing. This
poses serious performance problems when evaluating index
queries and obviously limits system scalability. We therefore
modified the DHT API (and the actual DHT system) by
adding a pipelined get method, which transfers posting lists
asynchronously. This simple modification brought important
performance improvements. More concretely, KadoP imple-
ments a multi-threaded, block-based version of the holistic
twig join from [7]. For each term a of query q, the peer p
in charge of La runs a producer, whereas the query peer
p runs a consumer, which is the holistic join. (We detect
faulty peers with time-outs; when this happens, the answer is
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incomplete.) We assume that the consumer and the producers
can synchronize via network pipes. The consumer runs on
in-memory data-structures and is likely to run faster than
producers, which have to read (potentially large) posting lists
from disk and send them over the network. Since the join in
itself is pipelined, the index query is processed at the speed
of the slowest producer or at that of the slowest transfer.

IV. DPP ALGORITHM

The distribution of posting list sizes in real-life applications
is very skewed, since it follows the typically skewed frequency
distribution of terms. Moreover, the query distribution tends
to follow the data distribution, implying that the large posting
lists are accessed more frequently in index queries. These
phenomena lead to a situation where a small number of
very large posting lists become the dominant cost factor
in processing index queries. In this section, we describe a
novel data structure for managing long posting lists and a
modified holistic twig join algorithm taking advantage of
this structure. Together, they allow parallelizing posting list
transfers, thereby reducing query response time. As we shall
see, this will also result in reduced data transfers.

A. Distributed Posting Partitioning

The distributed posting partitioning (DPP for short) is a
distributed hierarchical data structure for managing posting
lists. The idea is to split the posting list for a popular
term horizontally based on range conditions, and to migrate
portions to other peers, in the style of distributed B-trees [15].

Consider a posting list La and in particular the lexicograph-
ical ordering dictated by its (p′, d, sid) attributes. A condition
C is an interval [α, β], with α the least tuple and β the largest.
In a slight abuse of notation, we use C to refer also to the
block of postings that satisfy the corresponding condition. For
each C,C ′, we define C ⊆ C ′ if each tuple satisfying C also
satisfies C ′, C ∩ C ′ if there exists a tuple that satisfies both,
and C < C ′ if each tuple satisfying C is lexicographically
less that all tuples satisfying C ′.

A DPP is used to split a posting list for a given term over
several peers. It comprises internal blocks and leaf blocks.
Each internal block consists of conditions and corresponding
“pointers” to other blocks, while a leaf block consists of a set
of postings. Similar to B-trees, the entries in one block satisfy
all the conditions from the root of the DPP-tree to that block.
Formally, a DPP block is denoted as (C1...Cn, ϕ), where:

1) C1...Cn is a sequence of conditions such that Ci <
Ci+1 for each i;

2) ϕ is a (pointer) function that assigns to each non-leaf Ci
a pseudo-key leading to the corresponding DPP-block;

3) if ϕ(Ci) = (C ′
1...C

′
m, ϕ

′), then C ′
j ⊆ Ci for each j.

It is important to stress that the pointer function φ imple-
ments pointers as pseudo-keys, which implies that DPP relies
on the DHT in order to reach children blocks. In turn, this
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Fig. 1. The organization of Term

makes DPP oblivious to the placement of blocks at different
peers, and thus resilient to changes in the composition of the
P2P network. Moreover, as we discuss later, the DPP enables
a more efficient twig join operator, since a posting list can
be transferred in parallel, and, by using the range conditions,
the join can focus only on those blocks that may contain join
results.

The implementation of DPP in KadoP uses the general
organization for relation Term that is pictured in Figure 1.
Originally, the entries of one posting list are all in one data
block. The system sets a bound on the number of entries in
a data block and a bound on the number of conditions in a
condition block. When inserting entries, a block may overflow
and be split. The smallest and largest elements of each new
block determine the condition of the block. In principle, the
DPP may need re-balancing, just like a B-tree. For reasonable
block sizes (e.g., 1000 entries) of both the data and the
condition blocks, the posting lists of up to 106 entries require
a single level of indirection. Based on this observation, our
implementation does not set a bound on the size of a condition
block in KadoP and employs a two level DPP structure.

B. Query processing in DPP

We now describe a modification to the holistic twig join
algorithm that exploits the parallel transfer opportunities pro-
vided by the DPP. Consider a query q with n nodes and
assume that the postings for each query node, say i, are
split into several blocks (Ci1, ..., C

i
mi

). The idea is to perform
the join on a per-block basis, allowing up to K parallel-
running joins (where K is a parameter set in advance). The
processing starts with an initialization step where only the
conditions describing the DPP blocks are fetched, and a
description for each parallel join is generated. During the join,
the first K blocks for each posting are fetched in parallel,
e.g., C1

1 , . . . , C
1
K , C2

1 , . . . , C
2
K , and so on until Cn1 , . . . , C

n
K .

The meaningful (pipelined) joins are computed in parallel.
To increase the throughput, we do not require that results be
produced in lexicographical order, and return to the user the
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first results produced by each join. When an active block in a
posting list completes, the next block in this list is activated
etc.

An issue is whether the algorithm generates too many joins.
The answer is no, because the postings are lexicographically
ordered. Indeed, suppose we are joining n postings, consisting
respectively of m1, . . . ,mn blocks. Then one can prove that
we do not have to consider m1 × . . .×mn, but at most m1 +
. . .+mn joins, and in practice, much less.

Another important point of our approach is that the join
operator has to fetch a block only if the latter has a chance
to provide matches, i.e., the corresponding condition has a
non-empty intersection with the conditions of other blocks.
Moreover, the join operator can compute the portion of a block
which has a chance to find matches in the other blocks, and
only fetch that useful portion.

To conclude this section, we note that it is possible to
employ other well-known distributed query optimization tech-
niques [16]. For instance, some structural joins can be pushed
to the peer holding the longest posting list in the query,
thus reducing data transfers. Since such optimizations are
standard, we do not consider them here. Also, the transfer
of posting lists can be optimized by replicating them and
transferring fragments from different copies in parallel. Simi-
larly, DPP blocks can also be replicated based on their access
frequency. Although the DHT already does replicate its index
for reliability, this replication does not fit our needs. Its main
drawback is that the replication factor is fixed at the time of
the initialization of the DHT. In contrast, we need here a finer
control of the replication degree, on a block-by-block basis.
We plan to investigate this particular point as part of our future
work.

C. Experiments

In this section, we present an experimental study on the
effectiveness of the DPP scheme.

The study uses a deployment of actual KadoP peers on
the Grid5000 platform (www.grid5000.fr), a testbed for wide-
area distributed applications that spans 9 cites in France. Each
Grid5000 node has 2 CPUs, and the nodes are connected in
a 10GB network. As we could not reserve a large number of
nodes, we deployed 10 KadoP peers per Grid5000 node. We
report on experiments on up to 500 peers (so 50 Grid5000
nodes). Our implementation of DPP employs a maximum
block size of 4MB before it performs a split. In all our exper-
iments, we apply the optimizations described in Section III,
since they brought significant improvements.

We have used the Aug. 2006 version of the real-life DBLP
bibliographic data (340 MB, available at dblp.uni-trier.de).
To experiment with larger data volumes, we cut the DBLP
corpus in small XML documents of 20 KB each, and publish
several copies of the same documents when larger volumes
are needed. In all experiments, the data set is split evenly
among all the publishing peers. It is interesting to note that
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Fig. 2. Indexing time.

several tags in the DBLP data set generate large posting lists.
Even for a 200 MB fragment of DBLP data, there are posting
lists larger than 200K entries for inproceedings, 1M entries
for author, and 500K entries for title, to name a few. Observe
that these frequent tags are typically queried often.

Indexing time. Figure 2 reports the time to build the dis-
tributed index as we vary the total size of published data (over
all peers). We test several configurations for the size of the
KadoP network and for the number of peers that publish data.
Thanks to our robust replacement of the DHT’s index store,
publication now scales linearly in all settings. When 1 peer
publishes, the network size increase from 200 to 500 peers
brings a negligible overhead, demonstrating that locate() costs
incurred by the DHT are small. Also with 1 publisher, the
usage of a DPP brings a negligible overhead when compared
with the default KadoP index. This demonstrates that DPP
block splitting has a moderate cost. Most importantly, Figure 2
shows that many publishers drastically cut indexing time, as
they work in parallel.

Query response time. Figure 3 reports index-query evaluation
times for the query: //article//author//Ullman. The query was
chosen to stress test our approach as it involves the process-
ing of the long posting list for author. The results clearly
demonstrate the benefits of the DPP: query processing is cut
by a factor of three, and its growth is really slow as the data
volumes grow. With or without the DPP, query processing is
network-bound. When the DPP is used, the largest posting list
fragment stored on a peer is of moderate size, thus transfer
time does not grow much as the size of the indexed data
grows.

Traffic consumption. The next experiment measures the vol-
ume of network traffic during query execution. In particular,
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Fig. 3. Query response time.

we examine a scenario where several data-intensive queries
are executed concurrently, as follows: we create a workload
of 50 queries, each of which involves at least one term with a
long posting list, and submit them for execution at 50 distinct
nodes in intervals of 5 minutes. (This results in a medium
throughput of one query every 6 seconds.) We repeat the
test for several values of the total indexed XML data (DBLP
documents).

The total traffic registered for 200MB, 400MB, 600MB, and
800MB of published XML data is 32MB, 66MB, 95MB, and
127MB respectively. Clearly, these volumes are not a problem
for the 10GB network of our experimental platform. On the
other hand, they can be prohibitively high for other network
deployments. (This is precisely what motivated the work on
Structural Bloom Filters that we present in the next section.)
We mention that these values are registered using a simple
query execution plan, where all postings are transferred at the
peer that executes the query. We are currently developing a
cost model and an optimizer to select the best execution plan
that minimizes query response time or traffic consumption,
depending on the setting.

V. STRUCTURAL BLOOM FILTERS

We introduce Structural Bloom Filters, a mechanism for
reducing the volume of transferred data during the evaluation
of index queries. Our techniques are inspired by the use of
simple Bloom Filters in the evaluation of distributed relational
joins. The details are more involved, however, as we deal with
structural joins over tree-structured data.

The proposed mechanism includes two kinds of filters,
namely, the Ancestor Bloom Filter and the Descendant Bloom
Filter (AB Filter and DB Filter for short respectively). In
the sequel, we describe in detail AB and DB Filters and
introduce strategies that integrate them in query processing.
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Fig. 4. Dyadic decompositions for [1, 23].

Before continuing with our presentation, we discuss briefly
two key mechanisms on which we develop our framework: a
canonical base for representing arbitrary intervals (a dyadic
base), and conventional Bloom Filters.

Dyadic Intervals. Let l be a positive integer and consider the
interval [1, 2l]. The dyadic decomposition of [1, 2l] at level
j, 0 ≤ j ≤ l, is its partition in 2l−j disjoint intervals of
length 2j , termed dyadic intervals. Figure 4 shows an example
of this decomposition for l = 3. We use Iij to refer to
the i-th dyadic interval at level j and I = {Iij} to refer
to the complete set of dyadic intervals. It is easy to see
that an arbitrary interval [x, y] ⊆ [1, 2l] can be represented
as the union of at most 2 · l disjoint intervals from I.
Moreover, there is a unique representation that contains the
least number of intervals, termed the dyadic cover of [x, y]
and denoted as D[x, y]. Returning to the example of Figure 4,
D[1, 7] is {[1, 4], [5, 6], [7, 7]}. A dyadic interval containing an
interval [x, y] is called a dyadic container of [x, y]. The set of
dyadic containers of [x, y] is denoted Dc[x, y]. For instance,
Dc[3, 4] = {[3, 4], [1, 4], [1, 8]}.

Bloom Filter. A Bloom Filter [17] provides a concise repre-
sentation of a set S in a form that is suitable for membership
queries. The filter consists of a vector F of n bits (initialized
to zero) and a set of hash functions H1, . . . , Hk. An element
e ∈ S is inserted in the Bloom Filter by setting bit F [Hi(e)]
to 1, for every 1 ≤ i ≤ k. Similarly, a membership query for
an element e is answered positively if all bits F [Hi(e)] are
equal to 1. We refer to these operations as an insert and a
look-up respectively.

Clearly, the Bloom Filter always returns true for the look-
up of an inserted element. On the other hand, a look-up of an
element not in S may return a false positive answer due to
collisions in the hash functions. The probability of obtaining
a false positive, denoted as fp, is termed the false positive
rate of the filter and it can be computed based on |S| and
the parameters n and k. For a given set and a given false
positive rate, it is possible to choose k so that n is minimal,
i.e., communications are minimized. An essential aspect of a
Bloom Filter is that the vector is typically much smaller than
the set that it encodes, so its transmission costs much less.
The trade-off is the introduction of false positive errors when
the filter is used for membership queries.

A. Filter Definition

We now present the details of the proposed bloom filter
mechanism. We begin with the AB Filter, and then sketch the
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ideas behind the DB Filter.

AB Filter. Consider two tags a and b and the respective
posting lists La and Lb. The AB Filter for La, denoted as
ABF (a), enables the filtering of Lb and the computation of
a sub-list F (b,ABF (a)) that contains a superset of b[\\a],
i.e., the set of Lb postings that have an ancestor in La. The
main idea is that F (b,ABF (a)) can be used in lieu of Lb in
the structural join a//b, without compromising the accuracy
of the result.

We now describe the theoretical underpinnings of
the AB Filter mechanism. Consider a posting ea =
(pa, da, starta:enda:leva) ∈ La and a posting eb =
(pb, db, startb:endb:levb) ∈ Lb. Clearly, eb is a descendant of
ea iff pa = pb, da = db and [startb, endb] ⊆ [starta, enda].
The key observation is that we can express the previous
containment condition in terms of the dyadic covers of the two
intervals. More concretely, one can show that [startb, endb] ⊆
[starta, enda] iff for each interval I ∈ D[startb, endb] there
exists an interval I ′ ∈ D[starta, enda] that contains it, i.e.,
such that I ⊆ I ′. Alternatively, this can be expressed as
Dc(I) ∩ D[starta, enda] �= ∅ and can thus be realized by
probing D[starta, enda] with every interval in Dc(I). This
suggests the following generalization to postings. We define
the cover of a posting ea = (pa, da, starta:enda:leva) as
D(ea) = {(pa, da, I) | I ∈ D[starta, enda]}, and D(La) =
∪ea∈La

D(ea). The containers Dc(ea) and Dc(La) are defined
similarly. The following theorem formalizes a condition so
that eb ∈ b[\\a] and provides the foundation for the AB Filter:

Proposition 1: For each eb ∈ Lb, eb ∈ b[\\a] iff for
each (pb, db, I) in D(eb), there exists I ′ in Dc(I) such that
(pb, db, I ′) in D(La).

We are now ready to define the AB Filter mechanism. The
AB Filter comprises: (a) a tracing function ψ : [0, l] → [1,∞]
(whose role we will describe shortly), (b) a Basic Bloom Filter
that encodes the set D(La), and (c) an integer DCLev that
records the highest level j ≤ DCLev such that an interval Iij
appears in D(La).

To insert a posting ea in the AB Filter, we compute its cover
D(ea) and insert its elements in the Basic Bloom Filter. More
precisely, given an element (pa, da, I) ∈ D(ea) such that I is
at level j of the dyadic decomposition, we insert ψ(j) replicas
(or, traces) of it in the Basic Bloom Filter. The intuition is
that an increased ψ(j) makes it less likely to observe a false
positive interval at level j and thus controls the accuracy of
the filtering mechanism. To check a posting eb against the AB
Filter, we proceed as follows. For each interval (pb:db:I) in the
cover D(eb), we test whether (pb:db:I ′) is in the Bloom Filter
for some I ′ in the container Dc(I ′). Note that this implies
ψ(j) probes to the Basic Bloom Filter if I ′ is at level j.
Moreover, it suffices to test container intervals up to level
DCLev , since the AB Filter does not contain intervals past
this recorded level. If we cannot find any such I ′, then I is

not covered by any interval in D(La) and we can decide by
Proposition 1 that eb is not in b[\\a]. If every I in D(eB)
is covered then we conclude that eb is in b[\\a], and this is
correct up to collisions in the Bloom Filter.

As noted earlier, the tracing function ψ(j) controls the
accuracy of the filter at level j of the dyadic decomposition.
Intuitively, a false positive interval at a high level provides
coverage for more intervals in Lb and thus increases the error
rate of the filter. At the limit, a collision with (pb, db, [1, 2l])
will cause the AB Filter to falsely select every b-element
in document (pb, db). This connection suggests using more
“traces” at higher levels to boost the accuracy of the filter.
We describe our choice of ψ at a later point, after we analyze
the false positive probability of an AB Filter.

We now examine the error probability of an AB Filter. We
define the Ancestor false positive rate (for a and b), denoted
fpA(a, b) (or simply fpA when a, b are understood), as the
probability that an AB Filter falsely identifies a b posting
as a member of b[\\a]. Let fp[ψ] be the false positive rate,
i.e. the probability that the underlying Bloom Filter returns a
false positive answer. Note the dependency of the probability
to ψ, since the latter affects the number of insertions in the
Bloom Filter. The following theorem captures the relationship
between fp and fpa:

Proposition 2: The Ancestor false positive rate is bounded
as follows: fpA ≤ 1 − ∏

0≤j≤l
(1 − fp[ψ])ψ(j).

It becomes clear that function ψ encodes a trade-off: as
we increase ψ(j), we increase the number of insertions and
thus fp[ψ], but we also increase the number of probes and
thus decrease fp[ψ]ψ(j). One interesting observation is that
the AB filter is not likely to encode many dyadic intervals
at high levels, since the structural ids for real-life data sets
tend to have narrow intervals. (This happens because XML
data tends to be shallow and bushy.) As a result, an increased
ψ(j) for high levels is not likely to affect significantly the
total number of insertions in the filter. At the same time,
decreasing fp[ψ]ψ(j) is crucial as j increases, due to the
increased coverage of the corresponding dyadic intervals (see
also our earlier discussion). We adopt these ideas in our work
and we employ the function ψ[j] = �1+j/c (for some integer
c ≥ 1) that essentially adds one extra trace every c levels. As
we show in the full version of the paper, this function ensures
that every interval Iij has the same expected effect3 on the
error rate provided that fp[ψ] < 1/2c. In our experiments, we
set c = 4 as we expect the basic false positive rate to be less
than 1/16.

DB Filter. The DB Filter for Lb, denoted as DBF (b), can
filter the postings in La to obtain a sublist F (a,DBF (b))
that contains a superset of a[//b], that is, the postings in La
that have at least one descendant in Lb. The key idea remains

3We measure the effect of Iij as the expected number of covered
descendant intervals if Iij is false positive.
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Fig. 5. AB Reducer Fig. 6. DB Reducer

essentially the same: we send a Bloom Filter that traces of the
dyadic intervals of b postings, and then perform membership
tests for the a postings. The filtering mechanism is formalized
by the following theorem:

Proposition 3: For each ea ∈ La, ea ∈ a[//b] iff
D(ea) ∩ Dc(Lb) �= ∅.

Essentially, the DB Filter consists of a Basic Bloom Filter.
To insert a posting eb in Lb, we insert in the Basic Bloom
Filter every interval in Dc(eb). To check membership for a
posting ea in La, it suffices to perform a look-up in the
filter for each element in D(ea). We observe that a posting
typically entails more insertions in the DB Filter than in the
AB Filter, since the dyadic cut tends to contain more intervals
compared to the dyadic cover. So, intuitively we should expect
a DB Filter to have a higher space overhead compared to the
AB Filter or, equivalently, less accuracy for the same storage
space.

We do not discuss the technique further as it is very similar
to that of the AB Filter. The complete details can be found in
the full version of this paper.

B. Query Evaluation with Bloom Filters

We introduce three query processing strategies based on
Structural Bloom Filters, namely, Ancestor Bloom Reducer,
Descendant Bloom Reducer, and Bloom Reducer that can be
seen as a hybrid of the previous two. The proposed strategies
proceed in two phases: in the first phase, the peers exchange
structural Bloom Filters and reduce their posting lists; in the
second phase, the reduced lists are sent to the query peer for
the final join. The strategies essentially differ in the realization
of the first filtering phase. Figure 5 depicts the filtering phase
of Ancestor Bloom Reducer (AB Reducer, for short) on the
example query //a//b[//c][//d]. In a nutshell, each peer receives
an AB Filter from its parent, filters its postings, and forwards
an AB Filter of the reduced postings to its children peers.
Thus, peers (except the root) filter their postings according
to the corresponding incoming path from the root query
variable. Descendant Bloom Reducer (DB Reducer, for short)
follows an inverse process, forwarding DB Filters along the
leaf-to-root paths and essentially filtering based on outgoing

paths. (This is shown in Figure 6.) Finally, Bloom Reducer
performs a combination of the two previous strategies: it
initially forwards AB Filters top-down, and then DB Filters
bottom-up.

Clearly, the filter-based strategies are efficient if the savings
in the transfer of the reduced list can offset the cost of
building, transferring, and processing the Bloom Filters. As
with relational bloom filters, we expect these factors to depend
heavily on the data and query characteristics. We examine this
point in more detail in the next section.

C. Experiments

In this section, we present the results of an experimental
study to evaluate the performance of AB and DB Filters.

Filter Sensitivity Analysis. The first set of experiments
performs a sensitivity analysis of the structural filters. We use
the simple query a//b and consider two scenarios: filtering
b with ABF (a), and filtering a with DBF (b). We measure
filter performance as the fraction of false positive answers.
We term this metric the empirical false positive rate of the
filter.

Due to space constraints, we only present a brief overview
of our findings. (The complete experiments can be found in
the full version of this paper.) Our experiments have indicated
that the AB Filter achieves a lower error probability compared
to the DB Filter when they both use an equally accurate
Basic Bloom Filter. For instance, the error rate of the AB
filter remains below 10% even when fp[ψ] reaches 20%,
whereas the error rate of the DB Filter remains below 10%
only when fp[ψ] < 5% and rises to over 50% as fp[ψ]
increases. The difference is due mainly to the tighter probing
mechanism of the AB Filter. Recall that the answer of the
AB Filter is generated through a conjunction of containment
predicates, which in turn reduces exponentially the probability
of committing an error. The DB Filter, on the other hand,
relies on a disjunction of probes that proves detrimental for
the overall error rate. Our results have also demonstrated the
benefits of the proposed ψ function for the AB Filter. For a
filter of the same size, the proposed function achieved a lower
error rate compared to the default function that uses a single
trace per level.

Performance of Filter-based Query Strategies. In the next
set of experiments, we examine the performance of the three
query evaluation strategies that we have introduced earlier,
namely, AB Reducer, DB Reducer, and Bloom Reducer. We
use the total volume of transferred data as the performance
metric for each strategy, since this is the major cost factor
in distributed query evaluation over wide-area networks. For
each strategy, we report its total data volume normalized
by the amount of data shipped by the conventional query
processing strategy. Thus, a normalized data volume of 0.4
implies that the strategy transfers 60% less data overall. We
base our evaluation on the real-life DBLP data set described in
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Fig. 7. Performance of Bloom-based strategies for different queries

Section IV. In all cases, AB and DB Filters are initialized with
a basic false positive rate of 20% and 1% respectively. The
idea is to allocate fewer bits to AB filters since our previous
experiments have shown their resilience to errors in the Basic
Bloom Filter.

Figure 7(a) shows the performance of the three strategies
on the simple query //article[.contains "Ullman"]. (The graph
breaks down the normalized data volume in terms of the size
of AB and DB filters, and the size of the filtered posting
lists.) We observe that DB Reducer is very effective in filtering
postings that are irrelevant to the query, leading to a reduction
of more than 90% in transfer load. Essentially, the keyword
predicate is very selective as there are relatively few Ullman
postings (compared to the number of article postings) , and
this leads to a DB Filter that can select very effectively the
matching postings of article. In contrast, Bloom Reducer and
AB Reducer are less effective as they transfer a large AB
filter on article, without getting any significant benefits from
filtering the small list of Ullman.

Figure 7(b) depicts the performance of the three strategies
on the slightly more involved query //article//author[.contains
"Ullman"]. The injection of author is interesting, as it represents
one of the largest posting lists in this data set. We observe
that AB- and Bloom Reducer become more efficient than in
the previous experiment, since the overhead of the AB filter
on article is now offset by the savings of reducing author, the
dominant list in this query. DB Reducer remains the dominant
strategy, as the DB filter on Ullman is still the most cost-
effective filter for this query.

The final experiment, shown in Figure 7(c), evaluates the
performance of the three strategies on the branching query
//article[//title]//author[.contains "Ullman"]. (The Figure also de-
picts a fourth strategy that we will discuss later.) Clearly,
the proposed strategies do not enable any savings for this
particular query. This is due to the existence of the title branch,
which has a detrimental effect on the performance of each
strategy. For DB Reducer, the branch leads to the creation of
a large DB Filter that is not useful in filtering article elements.
(Essentially, all articles have a title.) For AB Reducer, the AB
filter on article is not sufficient to filter the title postings, and

this leads to a high number of unfiltered postings. Finally,
Bloom Reducer suffers from a combination of the previous
two factors as it is a hybrid strategy.

Overall, Structural Bloom Filters can enable a significant
reduction in the volume of transferred data. Our results
indicate that there is no dominant strategy, as the performance
depends heavily on the characteristics of the query and the
data. In our current work, we employ the following simple
heuristic in order to select the filtering strategy: we identify the
subset of the query that has a guaranteed low selectivity factor,
by examining the sizes of the stored posting lists, and we apply
Structural Bloom Filters on the specific subset. Of course,
this implies that only lists that correspond to the selected
sub-query will be filtered, but this can still yield significant
savings if the lists are large. To verify this, we have applied the
DB Reducer strategy on the subset //article//author[.contains
"Ullman"] of the previous query and have thus excluded title
from filtering. (Thus, title is sent to the query peer in its
entirety.) The performance of this approach is plotted in
Figure 7(c) as the fourth strategy. As shown, the modified
strategy offers close to 70% of savings in total transfer load.
As part of our future work, we plan to investigate more
principled optimization techniques that select the optimal
strategy based on a formal cost model.

VI. RELATED WORK

Earlier works [18], [3] have studied P2P data sharing over
unstructured networks, where queries may be multi-cast to
all peers, significantly increasing network traffic. IrisNet [19]
uses a hierarchical peer network. In contrast, the structured
network architecture of KadoP allows the system to maintain
a data index and thus route the query only to a subset of
relevant peers. Other studies of P2P keyword search [20], [21]
have observed the difficulty of handling long posting lists on
DHTs. Our work addresses the same problem, albeit in the
context of tree queries over XML data.

XML data management based on DHT networks is consid-
ered in [8], [9], [22]. Indexing in [8] is based on XML linear
paths, which makes the index imprecise (i.e., leading to false
positives) for tree queries. Essentially, the index query returns
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an answer for a document if the latter contains independent
matches for the paths in the tree query. In contrast, KadoP
indexes the complete structure and thus achieves a more
precise routing of queries to peers. Indexing in [9] and [22]
does not consider words occurring in text, thus the index
cannot help for such queries. Moreover, query processing in
these systems is affected by query syntax, e.g., "//a//b" can be
more expensive to process than "/a/b" even if the results are
the same. This is not the case in KadoP.

Recent works have proposed DHT structures which, unlike
Pastry used in KadoP, also support range searches [12].
Integrating such a DHT in KadoP would allow it to process
index queries with range conditions.

The proposed structural Bloom filters are inspired by the
use of basic Bloom filters for distributed relational joins. Our
mechanism is more involved, as we are dealing with structural
joins over hierarchical data. The dyadic decomposition frame-
work has been used in several applications, such as, the es-
timation of quantiles over streams [23], or approximating the
selectivity of spatial joins [24]. None of the previous works,
however, has considered the application of this mechanism
and its analysis in the context of XML filtering with one-
sided errors. Finally, earlier studies have considered the use of
Bloom Filters as XML document summaries that can estimate
the selectivity of linear path expressions [25], evaluate the
similarity between documents [26], or identify documents
that do not match a given path query [26]. Our proposed
filtering mechanism, on the other hand, tackles a very different
problem, namely, building a concise summary of a posting list
that can be used to filter any other posting list with respect to
the “//” axis.

VII. CONCLUSIONS

Our work is motivated by the scalable indexing of dis-
tributed XML data. The techniques that we presented are
implemented in the KadoP system, which is currently being
deployed in the context of the Edos application. As part of
our ongoing work, we are investigating several improvements
on the KadoP system. We have started designing a query
optimizer able to support standard distributed database op-
timization techniques as well as the Bloom-based strategies
presented in this paper. Answering queries using a cache of
queries similar to [27], is a future challenging problem in the
distributed setting of KadoP . We are also exploring techniques
to improve index construction time, as it remains significant
when a large collection of documents is published. Finally,
we are working to improve the system’s existing support for
peers joining and leaving the network.
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