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Abstract. We present a new definition of non-ambiguous trees
(NATs) as labelled binary trees. We thus get a differential equation
whose solution can be described combinatorially. This yield a new
formula for the number of NATs. We also obtain q-versions of our
formula. And we generalize NATs to higher dimension.

Introduction

Non-ambiguous trees (NATs for short) were introduced in a previous
paper [ABBS14]. We propose in the present article a sequel to this
work.

Tree-like tableaux [ABN13] are certain fillings of Ferrers diagram,
in simple bijection with permutations or alternative tableaux [Pos07,
Vie08]. They are the subject of an intense research activity in combina-
torics, mainly because they appear as the key tools in the combinatorial
interpretation of the well-studied model of statistical mechanics called
PASEP: they naturally encode the states of the PASEP, together with
the transition probabilities through simple statistics [CW07].

Among tree-like tableaux, NATs were defined as rectangular-shaped
objects in [ABBS14]. In this way, they are in bijection with permu-
tation σ = σ1 σ2 . . . σn such that the excedences (σi > i) are placed
at the beginning of the word σ. Such permutations were studied by
Ehrenborg and Steingrimsson [ES00], who obtained an explicit enu-
meration formula. Thanks to NATs, a bijective proof of this formula
was described in [ABBS14].

In the present work, we define NATs as labelled binary trees (see
Definition 1.1, which is equivalent to the original definition). This new
presentation allows us to obtain many new results about these objects.
The plan of the article is the following.
In Section 1, we (re-)define NATs as binary trees whose right and left
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children are respectively labelled with two sets of labels. We show
how the generating series for these objects satisfies differential equa-
tions (Prop. 1.8), whose solution is quite simple and explicit (Prop.
1.9). A combinatorial interpretation of this expression involves the
(new) notion of hooks in binary trees, linked to the notion of leaves
in ordered trees. Moreover this expression yields a new formula for
the number of NATs as a positive sum (see Theorem 1.19), where
Ehrenborg-Steingrimsson’s formula is alternating. To conclude with
Section 1, we obtain q-analogues of our formula, which are similar to
those obtained for binary trees in [BW89, HNT08] (see Theorem 1.21,
the relevant statistics are either the number of inversions or the inverse
major index).
Section 2 presents a generalisation of NATs in higher dimension. For
any k ≤ d, we consider NATs of dimension (d, k), embedded in Zd, and
with edges of dimension k 1. The original case corresponds to dimen-
sion (2, 1). Our main result on this question is a differential equation
satisfied by the generating series of these new objects. Finally, we
study the (new) notion of hooks on binary trees in Section 3. We prove
(through the use of generating series, and bijectively) that the num-
ber of hooks is distributed on binary trees as another statistics: the
childleaf statistic, defined as the number of vertices who has at least
one leaf as a child.

1. Non-ambiguous trees

1.1. Definitions. We recall that a binary tree is a rooted tree whose
vertices may have no child, or one left child, or one right child or both
of them. The size of a binary tree is its number of vertices. The empty
binary tree, denoted by ∅, is the unique binary tree with no vertices.
Having no child in one direction (left or right) is the same as having
an empty subtree in this direction. We denote by BT the set of binary
trees and by BT ∗ the set BT \{∅}. Given a binary tree B, we denote by
VL(B) and VR(B) the set of left children (also called left vertices) and
the set of right children (also called right vertices). We shall extend
this notation to NATs.

We now define the notion of non-ambiguous trees:

Definition 1.1. A non-ambiguous tree (NAT) T is a labelling of a
binary tree B such that :

• the left (resp. right) children are labelled from 1 to |VL(B)|
(resp. |VR(B)|), such that different left (resp. right) vertices

1A definition in terms of labelled trees is given in Subsection 2.1.
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Figure 1. A non-ambiguous tree, its geometrical pre-
sentation, and its left and right subtrees

have different labels. In other words, each left (right) label ap-
pears only once.
• if U and V are two left (resp. right) children in the tree, such

that U is an ancestor of V , then the label of U in T is strictly
greater than the label of V .

The underlying tree of a non-ambiguous tree is called its shape. The
size n(T ) of a NAT T is its number of vertices. Clearly n(T ) = 1 +
|VL(T )| + |VR(T )|. It is sometimes useful to label the root as well. In
this case, it is considered as both a left and right child so that it carries
a pairs of labels, namely (|VL(T )|+1, |VR(T )|+1). On pictures, to ease
the reading, we color the labels of left and right vertices in red and blue
respectively. Figure 1 shows an example of a NAT, and illustrates the
correspondence between the geometrical presentation of [ABBS14] and
Definition 1.1. The rectangle which contains the non-ambiguous tree
T is of dimension (wL(T ), wR(T )) = (|VL(T )|+ 1, |VR(T )|+ 1).

1.2. Differential equations on non-ambiguous trees. The goal of
this section is to get (new) formulas for the number of NATs with
prescribed shape. The crucial argument is the following remark: Let
T be a NAT of shape a non empty binary tree B =

L R
. Restricting
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the labellings of the left and right children of T to L and R gives non-
decreasing labelling of their respective left and right children. Note
that the root of L (resp. R) is a left (resp. right) child in T . By
renumbering the labels so that they are consecutive numbers starting
from 1, we get two non-ambiguous labellings for L and R, that is two
non-ambiguous trees TL and TR. See Figure 1 for an example.

Conversely, knowing the labelling of L and R, to recover the labelling
of T , one has to choose which labels among 1 . . .VL(T ) will be used for
L (including its root) and the same for right labels. As a consequence:

∣∣∣NAT (
L R

)∣∣∣ =

(
|VL(T )|
|VL(R)|

)(
|VR(T )|
|VR(L)|

)
|NAT (L) | |NAT (R) |. (1)

Our first step is to recover hook-length formula for the number of NATs
of fixed shape ([ABBS14]). We use the method from [HNT08], namely,
applying recursively a bilinear integro-differential operator called here
a pumping function along a binary tree.

First of all, we consider the space QNAT of formal sums of non-
ambiguous trees and identifies NAT (B) with the formal sum of its
elements. We consider the map M : NAT ×NAT 7→ QNAT sending
(T1, T2) to the formal sum of NATs T such that TL = T1 and TR = T2.
By linearity, we extend M to a bilinear map QNAT × QNAT 7→
QNAT . The main remark is that NAT (B) can be computed by a
simple recursion using M:

Lemma 1.2. The set NAT (B) of non-ambiguous tree of shape B
satisfies the following recursion:

NAT (∅) = ∅ and NAT
(
L R

)
= M (NAT (L) ,NAT (R)) .

(2)

To count non-ambiguous trees, and as suggested by the binomial
coefficients in (1), we shall use doubly exponential generating func-
tions in two variables x and y where x and y count the size of the
rectangle in which the NAT is embedded: the weight of the NAT

T is Φ(T ) := xwL(T )

wL(T )!
xwR(T )

wR(T )!
. We extend Φ(T ) by linearity to a map

QNAT 7→ Q[[x, y]]. Consequently, Φ(NAT (B)) is the generating se-
ries of the non-ambiguous trees of shape B. Thanks to (1) the image in
Q[[x, y]] of the bilinear map M under the map Φ is a simple differential
operator:
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Definition 1.3. The pumping function B is the bilinear map Q[[x, y]]×
Q[[x, y]] 7→ Q[[x, y]] defined by

B(u, v) =

∫
x

∫
y

∂x(u) · ∂y(v). (3)

We further define recursively, for any binary tree B an element B(B) ∈
Q[[x, y]] by

B(∅) = x+ y and B
(
L R

)
= B (B(L),B(R)) . (4)

Now (1) rewrites as

Proposition 1.4. For T1, T2 ∈ QNAT , one as Φ(M(T1, T2)) = B(Φ(T1),Φ(T2)).
As a consequence, for any non empty binary tree B, Φ(NAT (B)) =
B(B).

By de-recursiving the expression for B(B), we recover the hook-
length formula of [ABBS14] for non-ambiguous trees of a given shape:

Proposition 1.5. Let B be a binary tree. For each left (resp. right)
vertex U , we denote EL(U) (resp. ER(U)) the number of left (resp.
right) vertices of the subtree with root U (itself included in the count).
Then

|NAT (B)| = |VL(B)|! · |VR(B)|!∏
U :left child

EL(U) ·
∏

U :right child

ER(U)
. (5)

We consider now the exponential generating function of non-ambiguous
trees with weight Φ:

H :=
∑

T∈NAT

Φ(T ) =
∑

T∈NAT

xwL(T )

wL(T )!

xwR(T )

wR(T )!
. (6)

It turns out that we need to consider the two following slight modifi-
cations to get nice algebraic properties (because of the empty NAT).

G =
∑
B∈BT

B(B) and N =
∑

T∈NAT ∗

x|VL(T )| · y|VR(T )|

|VL(T )|! · |VR(T )|!
. (7)

The function H, N, G are closely related. Each function is used in
different situation. The first one is the natural definition we want to
give. The second one is convenient from a bijective point of view. The
last one is convenient from the algebraic and analytic point of view.
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They differ by their constant term and shift in the degree. Precisely,
N = ∂x∂yH so that

H = 1+

∫
x

∫
y

N and G = x+y+

∫
x

∫
y

N and G = H+x+y−1

(8)
The two last relations are consequences of Proposition 1.4.

Proposition 1.6. The generating function N and G can be computed
by the following fixed point differential equations:

G = x+y+

∫
x

∫
y

∂xG·∂yG and N =

(
1 +

∫
x

N

)
·
(

1 +

∫
y

N

)
(9)

Proof. The first equation is a just a consequence of the definition of
the bilinear map B:

G = x+y+
∑

L,R∈BT

B
(
L R

)
= x+y+

∑
L,R∈BT

B(B(L),B(R)) = x+y+B(G,G).

To prove the second equation, remark that the first can be rewritten
as ∂x∂yG = ∂xG.∂yG. So that, N = ∂x∂yH = ∂x∂yG. To conclude, it
suffices to remark that ∂xG = 1 +

∫
y
N �

Now, a closed formula can be computed for N and H.

Proposition 1.7. The exponential generating function for non-ambiguous
trees are given by

N =
ex+y

(1− (ex − 1)(ey − 1))2 , and H = − log(1− (ex − 1)(ey − 1)).

Proof.A VERIFIERA VERIFIER

(1) We know that

∂x∂yG = ∂xG× ∂yG, (10)

If we have a particular solution s(x, y) for G, then, for every
function s1(x) and s2(y), the function s(s1(x), s2(y)) is a solu-
tion of Equation 10.

(2) A particular solution can be obtained for G by studying Equa-

tion 9 and by setting Nx =
(
1 +

∫
x
N
)

and Ny =
(

1 +
∫
y
N
)
.

We obtain the following relation : ∂xNx · ∂yNy = N2
x · N2

y.
As we just want to compute one solution, we can suppose
that ∂xNx = N2

x and Ny = Nx(y, x) . Hence, for each con-
stant c, 1

(c+x+y)2
is a particular solution for Equation 9. So

s(x, y) = − ln(c + x + y) + x + y is a particular solution for
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Equation 10 and −∂x∂y ln(c+ s1(x) + s2(y)) is a family of solu-
tion for Equation 9.

(3) To find c, s1 and s2, we just need to consider the initial condi-
tions : N(x, 0) = ex, N(0, y) = ey.

�

Now, we will introduce two statistics : the number of right (resp.
left) vertices in the rightmost (resp. leftmost) branch of the root of a
tree. For a binary tree B, we will denote by R0(B) (resp. L0(B)) the
two previous statistics. We define now an (α, β)-generating function
for non-ambiguous trees:

N(α,β) =
∑

T∈NAT

x|VL(T )| · y|VR(T )| · αR0(T ) · βL0(T )

|VL(T )|! · |VR(T )|!
.

Proposition 1.8. A differential equation for N(α,β) is

N(α,β) =

(
1 + α

∫
x

N(α,1)

)
·
(

1 + β

∫
y

N(1,β)

)
,

Proof. We just have to define a new pumping function by setting B(α,β)(B) =
αR0(B)βL0(B) B(B) and deduce the expected differential equation. �

The solution of the new differential equation is given by Proposi-
tion 1.9.

Proposition 1.9. The (α, β)-exponential generating function for non-
ambiguous trees is equal to

N(α,β) =
eαx+βy

(1− (ex − 1)(ey − 1))α+β
.

1.3. Bijection with some labelled ordered trees. In what follows,
we will use rooted ordered trees. These are trees such that each node
has an ordered (possibly empty) list of children. We draw the children
from left to right on the pictures.

Note that the solution of Proposition 1.9 can be rewritten as :

N(α,β) = eαxeβye−α ln(1−(ex−1)(ey−1))e−β ln(1−(ex−1)(ey−1)). (11)

The purpose of this subsection is to explain this expression combina-
torially. Let us first describe objects “naturally” enumerated by the
RHS of (11). We recall that ex is the exponential generating series of
sets and − ln(1− x) is the exponential generating series of cycles. The
objects can be described as 4-tuples consisting of two sets of elements
and two sets of cycles whose elements are pairs of non empty sets. The
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Figure 2. Hooks on a non-ambiguous tree and associ-
ated ordered tree

elements considered will be of type X or of type Y and of colour a or
b. The objects can be described as 4-tuples consisting of :Utilité de cette

def ?
Utilité de cette
def ? • a set of elements of type X, each element coloured with colour

a,
• a set of elements of type Y , each element coloured with colour
b,
• a set of cycles whose elements are pairs, consisting of a non

empty set of elements of type X and a non empty set of elements
of type Y , each cycle coloured with colour a
• and a set of cycles whose elements are pairs, consisting of a

non empty set of elements of type X and a non empty set of
elements of type Y , each cycle coloured with colour b.

Let us denote by T4 the set of such 4-tuples.
We first link non-ambiguous trees with ordered trees. We need the

following definition:

Definition 1.10. Let B be a binary tree and v one of his node. The
hook of a vertex v is the union of {v}, its leftmost branch and its
rightmost branch. There is a unique way to partition the vertices in
hooks. The number of hooks in such a partition is the hook number of
the tree.

Remark 1.11. We can obtain recursively the unique partition of the
preceding definition by extracting the root’s hook and iterating the pro-
cess on each tree of the remaining forest.

Example 1.12. On the left part of Figure 2, we represented in red the
hook of 10. The partition of vertices in hooks is obtained by removing
the dotted edges. The hook number of the tree is 8.

We denote by NOT the set of ordered trees O such that:

• Each vertex, except the root, is labelled and coloured (in red or
blue). The root is labelled by a red label and a blue label, both
maximal.
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• The root has red and blue children, the red children being on
the left side of blue children. Blue (resp. red) vertices have only
red (resp. blue) children.
• The labels of red (resp. blue) descendants or right siblings of a

red (resp. blue) vertex v are smaller than the label of v.

Proposition 1.13. The set of non-ambiguous trees NAT on n nodes
is in bijection with the set of trees of NOT on n nodes. This bijection
is denoted by ξ.

Proof. Let us consider a non-ambiguous tree T and construct an or-
dered tree ξ(T ) = O. The root of T will be associated to the root of
O. Starting from the root r of the ordered tree, the red (resp. blue)
children of r are the set of left (resp. right) descendants of the root
of T . The expected ordered tree is then obtained recursively by the
following rule : if a node v in the ordered tree is a left (resp. right)
child in T , then its children in the ordered tree is the set of right (resp.
left) descendants of v in T , with every right (resp. left) child on the
right side of its parent.

We can reconstruct recursively the non-ambiguous tree associated to
such an ordered tree, by reversing the process from the children of the
root to the leaves in the ordered tree. �

Remark 1.14. Let us remark that the hook of a vertex v, different from
the root in the non-ambiguous tree, can be read off from the ordered trees
: it consists in the children of v in the ordered tree and the siblings of
v on the right side of v in the ordered tree.

Example 1.15. The ordered tree associated to the non-ambiguous tree
on the left part of Figure 2 is represented on the right part of the same
figure.

Proposition 1.16. The set of non-ambiguous trees NAT is in bijec-
tion with pairs of 2-coloured words, with blue letters on {1, . . . , |VR|}
and red letters on {1, . . . , |VL|}, where each letter appear exactly once
(in the first word or in the second word), letters in blocks of the same
colors are decreasing, the first (resp. second) word ends by a red (resp.
blue) letter and VR (resp. VL) is the set of right (resp. left) children
in the non-ambiguous tree. This bijection is denoted by ξ ◦ Ω. More-
over, the pairs of 2-coloured words are exactly described by the previous
4-tuples.

Proof. We describe here the bijection Ω between the ordered trees ob-
tain in Proposition and such words. We can obtain such a pair of words
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from this ordered tree by a post-order traversal visit of the descendant
of the red children of the root for the first word and of the blue children
of the root for the second one. Indeed, the obtained pair of words sat-
isfies the expected properties because if two letters of the same colours
are adjacent in one of the words, then the second letter is the label of
a descendant of a right sibling of the node labelled by the first letter:
it is then smaller.

Let us show the injectivity of Ω. Suppose that there are two ordered
trees O1 and O2 having the same image by Ω. We compare these trees
from the root to the leaves and from left to right. Suppose that these
trees are different, then in O1 there exists a vertex v of parent p such
that the ancestors of p and branches on the left of p and v are the same
in both trees, but v is a child of p in O1 and not in O2. Then, in the
pair of words associated to the trees, v is before p. If v is adjacent to
p, then v must be in a branch on the left of p, which contradicts the
hypothesis. Otherwise, it means that v has right siblings in O1. Let
us denote by w the last descendant of the leftmost one, denoted by b.
Then v is before w in the word so v must be a child of w as it cannot
be on the left of it by hypothesis. However, v is one the left of b in O1,
which is ordered with a decreasing property, so v > b. Moreover, v is a
descendant of b in O2, therefore v < b : this is impossible so O1 = O2

and Ω is injective.
From such a word, we can build back recursively the associated or-

dered trees by reading each word from right to left. We begin from the
root of the ordered tree. Then, if the last added vertex is labelled by
l and the letter on the left of l in the considered word is p, we add a
vertex labelled p to the left of the closest ancestor of l whose label is of
the same colour as p and smaller than p. This enables us to preserve
the expected order of elements in the obtained ordered tree.

The consecutive maximal red (rep. blue) elements from right to left
in the first (resp. second) word correspond to the children of the root
in the ordered tree. The descendant of these vertices are elements in
front of them and before the next child of the root. We can defined the
first (resp. second) set of the 4-tuple to be the set of blue (resp. red)
children of the root in the ordered tree, or, translated in term of non
ambiguous trees, the set of right (resp. left) descendant of the root with
no child. Hence, each remaining subword, corresponding to one child
of the root and its descendants in the ordered tree, contains both blue
and red elements, the rightmost letter corresponding to the child of the
root. Then, given a blue (resp. red) child of the root f , the subword
associated to it can be viewed as a blue (resp. red) cycle, as f is the
biggest blue element in the subword and can be found again. This cycle
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is made of alternating sets of blue and red elements, corresponding to
right and left vertices in the non-ambiguous tree, which can be joined
in pairs of non empty sets, giving the two set of cycles of the 4-tuple.

�

Example 1.17. The pair of words associated with trees of Figure 2
is (4 8 3 6 6 1 10 9 10 2, 11 8 5 9 7 4 7 2 5 3 1). The associated 4-tuple is:
({2}, {1,4,11}, {({10 4 8}{36}{6110 9})}, {({85}{97}),({72}{53})).

Remark 1.18. The bijection Ω is similar to the “zigzag” bijection of
[SW07].

We may derive from our construction a bijective proof of the follow-
ing enumeration formula. detailler !detailler !

Theorem 1.19. The (α, β)-analogue of the number of non empty non-
ambiguous trees with w left vertices and h right vertices is given by:

NAT w,h =
∑
p≥1

(p− 1)! · (p− 1)(α+β) · S2,α(w + 1, p)S2,β(h+ 1, p) (12)

where p(q) is the rising factorial, and S2,q denotes the q-analogue of
the Stirling numbers of the second kind such that, if we consider a set
partition, q counts the number of elements different from 1 in the subset
containing 1. In this positive summation expression, each summand
corresponds to the number of NATs with prescribed size, and whose
number of hooks equals p.

1.4. q-analogs of the hook formula. As for binary trees, there ex-
ists q-analogues of the hook formula for NATs of a given shape asso-
ciated to either the number of inversions or the major index. There
are two ingredients: first we need to associate two permutations to a
non-ambiguous tree, and second we need to give a q-analogue of the
bilinear map B. It turns out that it is possible to use two different q
namely qR and qL for the derivative and integral in x and y.

The first step to formulate a q-hook formula is to associate to any non
empty non-ambiguous tree T a pair of permutations σ(T ) = (σL(T ), σR(T )) ∈
SVL(T ) ×SVR(T ).

Definition 1.20. Let T be a non-ambiguous tree. Then σL(T ) is ob-
tained by performing a left postfix reading of the left labels: precisely we
recursively read trees

L R
by reading the left labels of L, then the left

labels of R and finally the label of the root if it is a left child. The per-
mutation σR(T ) is defined similarly reading right labels, starting from
the right subtree, then the left subtree and finally the root.
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If we take back the example of Figure 1 we get the two permutations
σL(T ) = (2, 1, 4, 3, 6, 10, 8, 9, 5, 7) and σR(T ) = (1, 2, 3, 4, 5, 7, 11, 9, 6, 8, 10).

Recall that the number of inversions of a permutation σ ∈ Sn is the
number of i < j <= n such that σ(i) > σ(j). A descent of σ is a i < n
such that σ(i) > σ(i+ 1) and the inverse major index of σ is the sum
of the descents of σ−1. Finally for a repetition free word w of length
l we write Std(w) the permutations in Sl obtained by renumbering w
keeping the order of the letters. For example Std(36482) = 24351. We
define as usual the q-integer [n]q := 1−qn

1−q , and the q-factorial [n]q! :=∏n
i=1[i]q.

Theorem 1.21. For a non-ambiguous tree T and a statistic S ∈
{Inv, iMaj}, define

wS(T ) := q
S(σL(T ))
L q

S(σR(T ))
R . (13)

Then, for any non empty binary tree B∑
T∈NAT (B)

wInv(T ) =
∑

T∈NAT (B)

wiMaj(T ) =
|VL(B)|qL ! · |VR(B)|qR !∏

U :left child

[EL(U)]qL ·
∏

U :right child

[ER(U)]qR
.

(14)

Going back to the non-ambiguous tree of Figure 1, the inversions
numbers are Inv(σL(T )) = 11 and, Inv(σR(T )) = 7 so that wInv(T ) =
q11
L q

7
R. For the inverse major index, we get the permutations σL(T )−1 =

(2, 1, 4, 3, 9, 5, 10, 7, 8, 6) and σR(T )−1 = (1, 2, 3, 4, 5, 9, 6, 10, 8, 11, 7).
Consequently, iMaj(σL(T )) = 1+3+5+7+9 = 25 and iMaj(σR(T )) =
6 + 8 + 10 = 24 so that wiMaj(T ) = q25

L q
24
R .

Note that it is possible to read directly wS(T ) on T . We do not give
the precise statement here to keep the presentation short.

The argument of the proof follows the same path as for the hook
formula, using pumping functions: recall that the q-derivative and q-
integral are defined as ∂x,qx

n := [n]qx
n−1 and

∫
x,q
xn := xn+1

[n+1]q
. Then

the (qL, qR)-analogue of the pumping function is given by

Bq(u, v) =

∫
x,qL

∫
y,qR

∂x,qL(u) · ∂y,qR(v). (15)

We also define recursively Bq(B) by Bq(∅) := x + y and Bq
(
L R

)
=

Bq (Bq(L),Bq(R)) . Then the main idea is to go through a pumping
function on pairs of permutations. We write QS the vector space of
formal sums of permutations. For any permutation σ ∈ Sn we write∫
σ = σ[n + 1] the permutation in Sn+1 obtained by adding n + 1 at

the end. Again we extend
∫

by linearity.
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Definition 1.22. The pumping function on permutation is the bilinear
map BS : QS × QS 7→ QS defined for σ ∈ Sm and µ ∈ Sn by
BS(σ, µ) =

∑
uv∈Sm+n+1

Std(u)=
∫
σ

Std(v)=µ

uv .

We define also a pumping function on pairs of permutations

BS2 ((σL, σR), (µL, µR)) := (BS(σL, µL),BS(µR, σR))

For example BS(21, 12) = 21345 + 21435 + 21534 + 31425 + 31524 +
41523 + 32415 + 32514 + 42513 + 43512. Note that for two non empty
non-ambiguous tree C,D.∑
T∈M(C,D)

σL(T ) = BS(σL(C), σL(D)) and
∑

T∈M(C,D)

σR(T ) = BS(σR(D), σR(C))

The central argument is the following commutation property:

Proposition 1.23. For a statistic S ∈ {Inv, iMaj}, and (σL, σR) ∈
Sm ×Sn, define

ΨS((σL, σR)) := q
S(σL)
L

xm+1

[m+ 1]qL !
q
S(σR)
R

yn+1

[n+ 1]qL !
. (16)

Then for any pairs σ = (σL, σR) and µ = (µL, µR), one has ΨS(BS2(σ, µ)) =
Bq(ΨS(σ),ΨS(µ))

As a consequence, noting that wS(T ) = ΦS(σ(T )), one finds that for
any non empty non-ambiguous trees C and D,∑

T∈M(C,D)

wS(T ) = ΦS

(
BS2(σ(C), σ(D)

)
= Bq(wS(C), wS(D)) .

Applying this recursively on the structure of a binary tree B, we have
that

∑
T∈NAT (B) wS(T ) = Bq(B) . Unfolding the recursion for Bq(B),

gives finally Theorem 1.21.
We conclude this section by an example. Let B = . Then

one finds that the q- hook formula gives (qx3 + qx2 + qx+1)(qy2 + qy+
1)(qx+ 1). Expanding this expression, one finds that the coefficient of
qx2qy is 2. For the iMaj statistic it corresponds to the two following
non-ambiguous trees which are shown with their associated left and
right permutations:

(4,5)

3 4

2 2 1 1

3

((2, 3, 1), (1, 3, 4, 2)) ,

(4,5)

3 4

2 2 1 3

1

((2, 3, 1), (3, 1, 4, 2))
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2. Non-ambiguous trees in higher dimension

In this section we give a generalisation of NATs to higher dimensions.
NATs are defined as binary trees whose vertices are embedded in Z2,
and edges are objects of dimension 1 (segments). Let d ≥ k ≥ 1 be
two integers. In higher dimension, binary trees are replaced by

(
d
k

)
-ary

trees embedded in Zd and edges are objects of dimension k. As in
Section 1.2 we obtain differential equations for these objects.

2.1. Definitions. We call (d, k)-direction a subset of cardinality k of
{1, . . . , d}. The set of (d, k)-directions is denoted by Πd,k. A (d, k)-
tuple is a d-tuple of (N ∪ {•})d, in which k entries are integers and
d− k are •. For instance, (•, 1, •, 5, 2, •, •, 3, •) is a (9, 4)-tuple.
The direction of a (d, k)-tuple U is the set indices of U corresponding
to entries different from •. For instance, the direction of our preceding
example is {2, 4, 5, 8}.

Definition 2.1. A
(
d
k

)
-ary tree M is a tree whose children of given

vertex are indexed by a (d, k)-direction.

A (d, k)-ary tree has at most
(
d
k

)
children. A

(
d
k

)
-ary tree will be

represented as an ordered tree where the children of a vertex S are
drawn from left to right with respect to the lexicographic order of their
indices. If a vertex S has no child associated to an index π, we draw
an half edge in this direction. An example is drawn on Figure 3.

Definition 2.2. A non-ambiguous tree of dimension (d, k) is a labelled(
d
k

)
-ary tree such that:

(1) a child of index π is labelled with a (d, k)-tuple of direction π
and the root is labelled with a (d, d)-tuple;

(2) for any descendant U of V , if the i-th component of U and V
are different from •, then the i-th component of V is strictly
greater than the i-th component of U ;

(3) for each i ∈ J1, dK, all the ith components, different from •, are
pairwise distinct and the set of ith components, different from
•, of every vertices in the tree, is an interval, whose minimum
is 1.

The set of non-ambiguous trees of dimensions (d, k) is denoted by
NAT d,k.

We write NATd,k for a non-ambiguous tree (of dimensions (d, k)).
Figure 3 gives an example of a NAT3,1 and a NAT3,2.

Definition 2.3. The geometric size of a NATd,k is the d-tuple of inte-
gers (w1, . . . , wd) which labels the root of the NATd,k, it is denoted by
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(5,7,6)

(4,•,•)

(1,•,•) (•,•,5)

(•,5,•)

(•,3,•) (•,•,4)

(•,•,2)

(•,4,•)

(•,•,1)

(•,•,4)

(2,•,•) (•,6,•)

(3,•,•)

(•,2,•)

(•,1,•)

(6,5,4)

(5,3,•)

(3,1,•)(2,•,2)

(1,•,1) (•,4,3)

(4,2,•)

Figure 3. A NAT of dimension (3, 1) and a NAT of
dimension (3, 2).

w1 × · · · ×wd. The π-size of a NATd,k is the number of vertices in the
tree of direction π, the set of such vertices is denoted by Vπ.

Proposition 2.4 gives the relation between the geometric size and the
π-size of a non-ambiguous trees.

Proposition 2.4. Let M be a
(
d
k

)
-ary tree, the root label is constant

on NAT d,ks of shape M (NAT d,k(M)):

wi(M) := wi =
∑

π∈Πd,k | i∈π

|Vπ(M)|+ 1.

2.2. Associated differential equations. In this section, we denote
by x{i1,...,ik} the product xi1×. . .×xik , by ∂{i1,...,ik} the operator ∂xi1∂xi2 . . . ∂xik
and by

∫
{i1,...,ik}

the operator
∫
xi1

∫
xi2
. . .
∫
xik

. As for non-ambiguous

trees (Proposition 1.5), there is a hook formula for the number of non-
ambiguous trees with fixed underlying tree. Let M be a

(
d
k

)
-ary tree,

for each vertex U we denote by Ei(U) the number of vertices, of the
subtree whose root is U (itself included in the count), whose direction
contains i.

|NAT d,k(M)| =
d∏
i=1

(wi(M)− 1)!

( ∏
U : child of direction containing i

Ei(U)

)−1

.

(17)
There is a (d, k)-dimensional analogue of the fixed point differential

Equation 9:
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Proposition 2.5. The exponential generating function Nd,k of gener-
alized non-ambiguous trees satisfies the following differential equation

Nd,k :=
∑

T∈NAT ∗d,k

d∏
i=1

x
wi(T )−1
i

(wi(T )− 1)!
=
∏

π∈Πd,k

(
1 +

∫
π

Nd,k

)
(18)

Proof. The method is analogue to the method of Section 1.2, and goes
through the use of a

(
d
k

)
-linear map and a pumping function for

(
d
k

)
-ary

trees. �

The family of differential equations defined by Equation 18 can be
rewritten using differential operators instead of primitives. We need to
introduce the function Gd,k =

∫
{1,...,d}Nd,k +

∑
π∈Πd,d−k

xπ. Then, we

show that Gd,k satisfies the following differential equations:

Proposition 2.6. The differential equation satisfied by Gd,k is ∂1 . . . ∂dGd,k =∏
π∈Πd,d−k

∂πGd,k.

In the generic case, we are not able to solve those differential equa-
tions. We know that setting a variable xd to 0 gives the generating
function of NATs of lower dimension.

Proposition 2.7. Let d > k ≥ 1, then Nd,k|xd=0 = Nd−1,k.

For some specific values of d and k we have (at least partial) results.

Proposition 2.8. Let k = d − 1, if we know a particular solution
s(x1, . . . , xd) for

∂1 . . . ∂dGd,d−1 = ∂1Gd,d−1 × . . .× ∂dGd,d−1

then, for any function s1(x1), . . . , sd(xd), the function s(s1(x1), . . . , sd(xd))
is also a solution.

Proposition 2.9. Some non trivial rational functions are solutions of
∂1 . . . ∂dGd,1 =

∏
π∈Πd,d−1

∂πGd,1.

(sketch). We define G(i) = ∂πGd,1 where i ∈ J1, dK and π = J1, dK \
{i}. We get the relation ∂iG(i) =

∏d
j=1 G(j) and then

∏d
i=1 ∂iG(i) =∏d

i=1 G
d
(i). To obtain a particular solution, we just need to identify,

in the previous equation, the term ∂iG(i) to the term Gd
(i). We thus

obtain some non trivial solutions for our equation, which are rational
functions. �

Since dimension (2, 1) is the unique case where Proposition 2.8 and
Proposition 2.9 can be applied at the same time, and the computation
of Nd,d is straightforward, we have the following proposition.
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Proposition 2.10. We have the closed formulas: N2,1 = N and Nd,d =∑
n≥0

(x1·...·xd)n

(n!)d
.

We see Nd,d as is a kind of generalized Bessel function because N2,2(x/2,−x/2) =
J0(x) where Jα is the classical Bessel function. This supports our feel-
ing that the general case leads to serious difficulties.

2.3. Geometric interpretation. As for non-ambiguous trees, we can
give a geometric definition of non-ambiguous trees of dimensions (d, k)
as follows. We denote by (e1, . . . , ed) the canonical basis of Rd and
(X1, . . . , Xd) its dual basis, i.e. Xi is R-linear Xi(ei) = δi,j. Let
P ∈ Rd and π = {i1, . . . , ik} a (d, k)-direction, we call cone of ori-
gin P and direction π the set of points C(P, π) := {P + a1ei1 + · · · +
akeik | (a1, . . . , ak) ∈ Nk}.

Definition 2.11. A geometric non-ambiguous tree of dimension (d, k)
and box w1 × · · · × wd is a non empty set V of points of Nd such that:

(1) J1, w1K× · · · × J1, wdK is the smallest box containing V,
(2) V contains the point (w1, . . . , wd), which is called the root,
(3) For P ∈ V different from the root, there exists a unique (d, k)-

direction π = {i1, . . . , ik} such that the cone c(P, π) contains at
least one point different from P . We say that P is of type π.

(4) For P and P ′ two points of V belonging to a same affine space of
direction Vect(ei1 , . . . , eik), then, either ∀j ∈ J1, kK, Xij(P ) >
Xij(P

′), or ∀j ∈ J1, kK, Xij(P
′) > Xij(P ).

(5) For each i ∈ J1, dK, for all l ∈ J1, wi − 1K, the affine hyperplane
{xi = l} contains exactly one point of type π such that i ∈ π.

Proposition 2.12. There is a simple bijection between the set of geo-
metric non-ambiguous tree of box w1 × · · · × wd and the set of non-
ambiguous tree of geometric size w1 × · · · × wd.

Proof. If k = d, V is of the form {(w, . . . , w), (w−1, . . . , w−1), . . . , (1, . . . , 1)},a verifiera verifier
which corresponds to a exactly to non-ambiguous trees of dimensions
(d, d) defined in 2.2.

Let us now suppose that k < d.
2.2 implies 2.11:
Let T be a non-ambiguous tree of dimension (d, k)-defined with Def-

inition 2.2and let w1 × · · · × wd be its geometric size. The first step
is to define the completed label of a vertex U by replacing the • by
integers in the vertices labels, we do it as follows. Let U be a vertex
of T such that its ith component is a • and let V be his parent. If the
ith component of V is not a •, then replace the ith component of U by
the ith component of V . Else replace recursively the ith component of
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V and then do the replacement. It is equivalent to say that we replace
the ith component of U with the ith component of the first ancestor of
U with a ith component different from •. Such an ancestor exists since
the root has no • component. As a consequence, using 2 we deduce
that for a vertex V of completed label (v1, . . . , vd), if V has a child
U indexed by a (d, k)-direction π and of completed label (u1, . . . , ud),
then for i ∈ π, vi > ui and for i 6∈ π, vi = ui.

Let V be a vertex of T of completed label (u1, . . . , ud). We de-
note by PV ∈ Nd the point (u1, . . . , ud). Let V be the set of points
{PV | V vertex of T}. Let us prove that V satisfies the conditions of
2.11.

(1) It is a consequence of 2, 3 of Definition 2.2, and of the definition
of the geometric size (2.3).

(2) V contains (w1, . . . , wd), since (w1, . . . , wd) is T ’s root’s label.
(3) Let PU be a point of V different from (w1, . . . , wd). Since U is

not the root, it is the child indexed by a (d, k)-direction π, of
a vertex V . Hence for i 6∈ π, Xi(PV ) = Xi(PU) and for i ∈ π,
Xi(PV ) > Xi(PU). So PV is in the cone of origin PU and direc-
tion π, in particular, PU is of type π. Suppose there is another
(d, k)-direction π′ such that the cone of origin PU and direction
π′ contains a point PV ′ different from PU . By definition of V ′

∀i ∈ J1, dK Xi(PV ′) > Xi(PU) which is in contradiction with V ′

being U ’s descendant.
(4) Let us show this condition by contradiction. Suppose there

are two points PU and PU ′ contradicting 4. We denote by
π = {i1, . . . , ik} the (d, k)-direction corresponding to the di-
rection of the affine space. Let (V0, V1, . . . , Vm) be the sequence
of ancestors of U , i.e V0 = U for all j, Vj is a child of Vj+1

and Vm is the root of T . If m = 0, then l = 0, else let l
the index such that Vl−1 is a child of Vl not indexed by π and
∀j ∈ J0, l − 1K, Vj is the child indexed by π of Vj+1. We de-
note Vl by V and in the same way, we define V ′. U cannot be
an ancestor of U ′ and vice versa, hence, V and V ′ are differ-
ent, furthermore, V cannot be an ancestor of V ′ and vice versa.
Since V is not a child indexed by π, there exists i such that the
ith component vi of V is not • and i is in π. As a result, by
Condition 3 of Definition 2.2 and the construction of completed
labels, Xi(PV ′) 6= vi = Xi(PV ), yet, by construction, as i ∈ π,
Xi(V ) = Xi(U) = Xi(U

′) = Xi(V
′).

(5) The uniqueness comes from the fact that if the type π of a point
PU contains i, since the index of U is π, the ith component of
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Figure 4. Geometric representation of the NATs of Fig-
ure 3.

U is not •. Hence, using 3 and 3, we proved that this condition
is satisfied.

2.11 implies 2.2:
Let T be a non-ambiguous tree defined with Definition 2.11. We start

by constructing the underlying
(
d
k

)
-ary tree M of T . The vertices of M

correspond to the points of V , in particular, the root of M corresponds
to the root of T . Let P be a point of V different from the root, we denote
by VP the corresponding vertex of M . Consider the cone defined by
Condition 3 in Definition 2.11. By Condition 4, we can define the point
P ′ of the cone which is the closest to P , we set VP ′ to be the parent
of VP . We index the child VP by the (d, k)-direction π corresponding
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to the cone. By 4, a point cannot have more than one child of the
same direction. The labelling is done as follows. We start by labelling
the vertices VP by the coordinates of P . Then for each vertex V and
each (d, k)-direction π, for all i 6∈ π, we replace the ith component of
the child of V indexed by π, by •. Let us prove that the condition of
Definition 2.2 are satisfied. Thus, if the ith component of a vertex VP
is equal to l then for a descendant VP ′ of VP , if Xi(P

′) = l, then the
ith component of VP ′ is •.

(1) By construction of the labels.
(2) It is a consequence of Condition 2 of Definition 2.11.
(3) If VP is the child of VP ′ of direction π. For i ∈ π, Xi(P

′) >
Xi(P ) and for i 6∈ π, Xi(P

′) = Xi(P ). Hence, for a vertex VP
of ith component different from •, the ith component of one of
his descendant is either smaller or •.

(4) Let VP be a vertex of M such that its ith component is different
from •. If VP is the root, then all the vertices of M are its
descendants, hence its ith label appears only once. Else, VP is
the child indexed by π of a vertex VP ′ . In particular, π contains
i since the ith component of VP is not •. Hence, by Condition
5 of Definition 2.11, the ith component of VP is unique.

(5) Condition 5 implies that for each i ∈ J1, dK, for all l ∈ J1, wi −
1K there is a point P of V such that Xi(P ) = l. Moreover,
the coordinates of the root are (w1, . . . , wd) and T is contained
in the box J1, w1K × · · · × J1, wdK. Therefore, the set of ith
components, different from •, is the interval J1, wiK.

�

3. A new statistic on binary trees : the hook statistic

We present in this section a bijection between binary trees and or-
dered trees, sending the vertices to edges and the hook statistic defined
in Definition 1.10 to the number of vertices having at least a child which
is a leaf, what we will call the child-leaf statistic. The corresponding
integer series appears as [Slo, A127157] in OEIS.

We denote by Bp and Op respectively the exponential generating
series of these trees, with these statistics, the variable x indexing the
number of vertices and t, the statistic.

Then, these generating series satisfy :



NON-AMBIGUOUS TREES: NEW RESULTS AND GENERALISATION 21

Proposition 3.1. The generating series of binary trees with hook statis-
tic and ordered trees with the child-leaf statistic are given by the follow-
ing functional equations:

Bp = 1 + xt×
(

1

1− xBp

)2

Op =
1

1− x(Op − 1))
×
(

1 + xt× 1

1− xOp

)
These generating series are equal.

Proof. The first functional equation is obtained by considering the ver-
tices in the hook of the root : there can be none or there is a root, a
list of left descendant (whose right child is a binary tree) and a list of
right descendant (whose left child is a binary tree).

The second functional equation is obtained by considering, if the
ordered tree is not reduced to a vertex, the first leaf of the root from
left to right, if it exists. Then, on the left side of this leaf, there is a
list of non empty ordered tree and on the right side also, if there is a
leaf.

Then, by multiplying the preceeding equations by 1 − xBp and 1 −
x(Op − 1)) respectively, they are equivalent to:

Bp − xB2
p = 1− xBp + xt

1

1− xBp

Op − xO2
p + xOp = 1 + xt

1

1− xOp
.

�

Let us now exhibit a bijection between these two objects. This bi-
jection comes from the following equation:

(Bp − 1)− x(Bp − 1)− x(Bp − 1)2 = xt
1

1− xBp
.

This equation can be viewed as considering only binary trees whose
root has no left descendants or ordered trees such that the leftmost
child of the root is a leaf.

We obtain the following bijection:

Proposition 3.2. The map ζ sends a binary tree B to an ordered tree
O by mapping:

• the leftmost descendant of the root, if it is a leaf, to an edge
between the root and its only child
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⇔

1

2

⇔ 2

1

1

2

3

⇔

1 2 3

Figure 5. Bijection ζ

binary trees •

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

•

ordered trees

•

•

•

•

•

•

• •

•

•

• •

•

•

•

•

•

• ••

•

• •

•

•

•

•

•

Table 1. First terms of the bijection ζ

• the leftmost descendant of the root v to an edge between the root
of the tree associated with the descendants of v and the root of
the tree obtained from what is left
• the set of right descendants of the root to the set of children of

the root.

It is a bijection between binary trees and ordered trees, sending the
vertices to edges and the hook statistic to the child-leaf statistic.

We sum up this bijection on Figure 4.
We present in Table 1 the first terms in the bijection.

Conclusion

a fairea faire
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