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Abstract. Using the combinatorial species setting, we propose two new operad struc-
tures on multigraphs and on pointed oriented multigraphs. The former can be con-
sidered as a canonical operad on multigraphs, directly generalizing the Kontsevich-
Willwacher operad, and has many interesting suboperads. The latter is a natural ex-
tension of the pre-Lie operad in a sense developed here and related to the multigraph
operad. We study some of the finitely generated suboperads of the multigraph operad
and establish links between them and the associative operad and the commutative
magmatic operads.

Abstract. Nous présentons ici deux nouvelles opérades: une sur les multigraphes et
une sur les multigraphes pointés orientés. La première peut être considérée comme
l’opérade canonique sur les multigraphes, généralisant l’opérade Kontsevich-Willwacher,
et a de nombreuses sous opérades d’intérêt. La seconde est une généralisation naturelle
de l’opérade pre-Lie, dans un sens développé ici et en lien avec l’opérade sur les multi-
graphes. Nous étudions certaines sous opérades finiement engendrées de l’opérade
sur les multigraphes et établissons des liens avec l’opérade associative et l’opérade
commutative magmatique.
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Introduction

Operads are mathematical structures which have been intensively studied in the context
of topology, algebra [11] but also of combinatorics [4] —see for example [7,13] for general
references on symmetric and non-symmetric operads, set-operads through species, etc.).
In the last decades, several interesting operads on trees have been defined. Amongst
these tree operads, maybe the most studied are the pre-Lie operad PLie [5] and the
nonassociative permutative operad NAP [10].
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However, it seems to us that a natural question to ask is what kind of operads can
be defined on graphs and what are their properties? The need for defining appropri-
ate graph operads comes from combinatorics, where graphs are, just like trees, natural
objects to study, but also from physics, where it was recently proposed to use graph
operads in order to encode the combinatorics of the renormalization of Feyman graphs
in quantum field theory [9].

Other graph operads have been defined for example in [6,8,12–14]. In this paper, we
go further in this direction and we define, using the combinatorial species [2] setting,
new graph operads. Moreover, we investigate several properties of these operads: we
describe an explicit link with the pre-Lie tree operad mentioned above, and we study
interesting (finitely generated) suboperads.

This paper is organized as follows. Section 1 contains elementary definitions of
species and operads. In Section 2 we define and study the main operad of interest
of this paper. Section 3 is devoted to the study of finitely generated suboperads.

This text is an extended abstract. The long version of this work [1] contains a more
general definition of graph insertion operads as well as new operad constructions and
all the proofs of the results presented here.

1 Species, operads and graphs

Most definitions, results and proofs of this section can be found with more details in [13].
We refer the reader to [2] for the theory of species and to [11] for the theory of operads.
In all the following, K is a field of characteristic zero. For any positive integer n, [n]
stands for the set {1, . . . , n}.

Definition 1. A set species S consists of the following data. For each finite set V a set
S[V], and for each bijection of finite sets σ : V → V′ a map S[σ] : S[V] → S[V′]. These
maps should be such that S[σ ◦ τ] = S[σ] ◦ S[τ] and S[I ] = I , where I is the identity
map.

A morphism of set species f : R → S is a collection of maps fV : R[V] → S[V] such
that for each bijection σ : V → V′, fV′ ◦ R[σ] = S[σ] ◦ fV . A set species S is positive if
|S[∅]| = 0 and connected if |S[{v}]| = 1 for any singleton {v}.

Switching sets with vector spaces, maps to linear maps and cardinality to dimension
in the previous definition, we obtain the definitions of linear species, morphisms of linear
species, positive linear species and connected linear species. The Hilbert series of a vector
species S is the formal series HS(t) = ∑n>0 dim S[[n]] xn

n! . For S a set species, we denote
by KS the linear species defined by (KS)[V] = KS[V], where KS[V] is the free K-vector
space on S[V]. The species KS[V] is naturally equipped with a scalar product (.|.)S[V]

by considering S[V] as an orthonormal basis. For x ∈ KS[V] we denote Supp(x) = {y ∈
S[V] | (x|y)S[V] > 0} the support of x.
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In all the following, V always denotes a finite set. Let R and S be two linear
species. We recall the classical constructions on species: (R + S)[V] = R[V] ⊕ S[V]
(sum), R · S[V] =

⊕
V1tV2=V R[V1]⊗ S[V2] (product), (R× S)[V] = R[V]⊗ S[V] (Hadamard

product), R′[V] = R[V t {∗}] (derivative), R•[V] = R[V] × V (pointing), and E(R)[V] =⊕
∼=
⊗

W∈V/∼= R[W] (assembly) where ∼= run over the set of the equivalence relations on V.
These definitions are compatible with the functor S 7→ KS, e.g., K(R + S) = KR + KS.

Definition 2. A (symmetric) set (resp. linear) operad is a positive set (resp. linear) species
O together with a unit e : X → O (resp. e : KX → O) and a partial composition map
◦∗ : O′ · O → O, such that the following diagrams commute

O′′ · O2 O′ · O O′ · O′ · O O′ · O

O′ · O O O′ · O O

◦∗1

◦∗2◦I·τ ◦∗2

◦∗1 ·I

I·◦∗2 ◦∗2
◦∗1 ◦∗1

O′ ·KX O′ · O KX′ · O

O

O′·e

p ◦∗

e′·O

∼=

where τV : x⊗ y ∈ O2[V] 7→ y⊗ x ∈ O2[V], and pV : x⊗ v 7→ O[∗ 7→ v](x) with ∗ 7→ v
the bijection that sends ∗ on v and is the identity on V \ {v}.

An operad morphism is a species morphism compatible with the units and the partial
composition maps.

Remark that if (S, e, ◦∗) is a set-operad then extending e and ◦∗ linearly makes
(KS, e, ◦∗) a linear operad. In all the following, e will often be trivial and we will not
mention it. From now on all the considered species will be positive and we will use
species and operad for linear species and linear operad and also write X for KX.

An ideal of an operad O is a sub-species S such that the image of the products O′ · S
and S′ · O by the partial composition maps are in S. The quotient species O/S defined by
O/S[V] = O[V]/S[V] is then an operad with the natural partial composition and unit.

We now need to recall the notion of free operad. For this we first introduce some
notations. For V a set, let T [V] be the set of the trees defined as follows.

• If V = {v} is a singleton then the sole element of T [V] is the tree reduced to a leaf
labelled with {v}.

• Else let π = (π1, . . . , πk) be a partition of V and t1, . . . , tk respectively be elements
of T [π1], . . . , T [πk]. Then the tree with root labelled by π and t1, . . . , tk as sub-trees
is an element of T [V].
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Let now G be a connected species and G2+ be the species such that G = X + G2+ .
The free operad FG over G is defined as follows.

• If V = {v} is a singleton, then FG[V] = Kv.

• Otherwise, the elements of FG[V] are elements of T [V] with an element in G2+ [{π1, . . . , πk}]
for each internal node labelled by π = {π1, . . . , πk}. SG:

pas
clair

SG:
pas
clairThe partial composition of FG is the grafting of trees: t1 ◦∗ t2 is the tree obtained by

grafting t2 on the leaf ∗ of t1 and by applying the necessary relabelings (i.e., map every
set V containing ∗ on the set V − {∗}+ V2).

If R is a sub-species of FG, we denote by (R) the smallest ideal containing R and
write that (R) is generated by R. We denote by F k

G the sub-species of FG of trees with k
internal nodes.

For any linear species S we denote by S∨ the linear species defined by S∨[V] = S[V]∗

and S∨[σ](x) = sign(σ)x ◦ S[σ−1].

Definition 3. Let G be a connected species and R a sub-species of FG. Let Ope(G, R) =
FG/(R). The operad Ope(G, R) is binary if the species of generators G is concentrated
in cardinality 2. This operad is quadratic if R is a sub-species of F 2

G.

Definition 4. Let O = Ope(G, R) be a binary quadratic operad. Let us define the linear
form 〈−,−〉 on F 2

G∨ ×F
2
G as follows. For V = {a, b, c}, f1 ∈ G∨′[{a}], f2 ∈ G[{b, c}], x1 ∈

G′[{a}] and x2 ∈ G[{b, c}]:

〈 f1 ◦∗ f2, x1 ◦∗ x2〉 = f1(x1) f2(x2). (1.1)

The Koszul dual of O is then the operad O! = Ope(G∨, R⊥) where R⊥ is the orthogonal
of R for 〈−,−〉.

When O is quadratic and its Koszul complex is acyclic [11], O is a Koszul operad. In
this case, the Hilbert series of O and of its Koszul dual are related by the identity:

HO(−HO!(−t)) = t. (1.2)

2 Graph operads

A multigraph on V is a multiset of pairs in V2 which we call edges. In this context the
elements of V are called vertices and the elements in V which are in no edge are called
isolated vertices. A multigraph on V is connected if it has no isolated vertex. A graph on V
is a multigraph on V which is a set and with no edge in {{v, v} | v ∈ V}. We denote by
MG the set species of multigraphs, by G its sub-species of graphs and by MGc and Gc
their connected counterparts.
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Proposition 2.1. The species of multigraphs KMG has an operad structure given by: for g1 ∈
MG[V1 + {∗}] and g2 ∈ MG[V2] the partial composition g1 ◦∗ g2 is the sum over all the
multigraphs obtained in the following way.
• Do the disjoint union of g1 and g2.
• Remove the vertex ∗. We then have some edges with a loose end.
• Connect each loose end to any vertex in V2.

This makes KG and KMGc suboperads of KMG and KGc a suboperad of KG. In
particular, this structure on KG is known as the Kontsevich-Willwacher operad [12]. In
the case of KG we can have a more formal definition of the partial composition:

g1 ◦∗ g2 = ∑
f :n(∗)→V2

g1 ∩V2
1 ∪

⋃
v∈n(∗)

{v, f (v)} ∪ g2, (2.1)

where n(∗) is the set of neighbours of ∗. This is illustrated in Figure 2.2.

a

∗

b

◦∗ c d =

a

b

c d +

a

b

c d +

a

b

c d +

a

b

c d (2.2)

We consider this operad structure as the canonical one on KMG and we call graph
insertion operads its suboperads. While KMG has an involved structure we will see that
it has many interesting sub operads. Let us start by giving some basic results on KG.

Let S be a species, I be a set, {Vi}i∈I be a family of finite sets, and xi ∈ S[Vi] for
all i ∈ I. Then we denote by SpeS({xi}i∈I) the sub-species of S generated by {xi}i∈I
i.e., the smallest sub-species of S containing the family {xi}i∈I . If S is furthermore an
operad, we denote by OpeS({xi}i∈I) the suboperad generated by {xi}i∈I i.e., the smallest
suboperad of S containing the family {xi}i∈I . We write that x is generated by {xi}i∈I if
x ∈ OpeS({xi}i∈I).

These definitions given, it is natural to search for a smallest family of generators of
KG. The search of such a family is computationaly hard. We computed the graphs
with less than five vertices of such a family. This is illustrated in Figure 2.3. While
Figure 2.3 does not provide to us any particular insight on a possible characterisation of
the generators, it does suggest that any graph with enough edges must be a generator.
This is confirmed by the following lemma.

Lemma 2.2. Let {Vi}i∈I be a family of non empty finite sets, gi be a graph in G[Vi] for all i ∈ I
and let g be a graph in G[V] with at least (n−1

2 ) + 1 edges, where n = |V|. Then g is generated
by {gi}i∈I if and only if g = gi for some i ∈ I.
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(2.3)

Proof. (sketch) Remark that the number of edges of the graphs in the support of g1 ◦∗ g2
is the sum of the number of edges in g1 and the number of edges in g2. Hence graphs
with too many edges cannot appear in the support of a partial product.

Proposition 2.3. The operad KG is not free and has an infinite number of generators.

Proof. The fact that KG has an infinite number of generators is a direct consequence of
the previous lemma. The following relation shows that KG is not free:

a ∗ ◦∗ b c + c ∗ ◦∗ b a − b ∗ ◦∗ a c − 2 a b c

= a b c + b c a + c b a + b a c

− b a c − a c b − 2 a b c

= 0

(2.4)

AS a consequence of Proposition 2.3, it seems particularly envolved to further inves-
tigate the structure of KG. Let us restrict further our study of graph insertion operads
to the suboperad of tree KT. In particular, we show that this suboperad has a non trivial
link with PLie. To show this we first need to introduce a new operad.

An oriented multigraph on V is a graph where each edge end is either unlabelled or
labelled with an arrow head. Denote by MGor the set species of oriented graphs, Gor the
set species of oriented graphs and MGorc and Gorc their connected counterparts.

Proposition 2.4. The species KMG•orc has an operad structure given by the following. For
(g1, v1) ∈ G•orc[V1 + {∗}] and (g2, v2) ∈ G•orc[V2] the partial composition (g1, v1) ◦∗ (g2, v2) is
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equal to (g3, v3) where v3 = v1 if ∗ 6= v1 and v3 = v2 else. The vector g3 is the sum over all the
graphs obtained in the following way.
• Do the disjoint union of g1 and g2.
• Remove the vertex ∗. We then have some edges with a loose end.
• Connect each non labelled loose end to v2.
• Connect each labelled loose end to any vertex in V2.

This makes KG•orc a suboperad of KMG•orc. An example of partial composition on
oriented pointed graphs is illustrated in Figure 2.5.

∗

a

b

◦∗ c a =

a

b

c d +

a

b

c d (2.5)

In a rooted tree, each edge has a parent end and a child end. Given a rooted tree
t with root r, denote by tr the oriented tree where each parent end of t is labelled and
each child end is non labelled. Then the monomorphism T• ↪→ G•orc which sends each
ordered pair (t, r), where t is a tree and r is its root, on (tr, r) induces an operad structure
on the species of rooted trees which is exactly the operad PLie [5].

Proposition 2.5. The monomorphism of species ψ defined by

ψV : KT[V] ↪→ KT•[V]

t 7→ ∑
r∈V

(t, r), (2.6)

is a morphism of operads from KT to PLie.

A natural question to ask is how to extend this morphism to Gc and MGc. Let us
introduce some notations in order to answer this question. For g ∈ MGc[V], r ∈ V, and
t ∈ T[V] a spanning tree of g, let −→g (t,r) ∈ MGorc be the oriented multigraph obtained
by labelling the edges of g in t in the same way as the edges of tr, and by labelling
both ends of the edges in g not in t. More formally, we have: −→g (t,r) = tr ⊕ ιG(g \ t),
where ι : KMG → KMGor sends a multigraph on the oriented multigraph obtained by
labelling all the edges ends.

Define KO2 ⊂ KO1 ⊂ KST three sub-species of KMG•orc by:

• ST[V] = {(−→g (t,r), r) | g ∈ MGc[V], r ∈ V and t a spanning tree of g},

• O1[V] = {∑r∈V(
−→g (t(r),r), r) | g ∈ MGc[V] and for each r, t(r) a spanning tree of g},

• O2[V] = {(−→g (t1,r), r)− (−→g (t2,r), r) | g ∈ MGc[V], r ∈ V and t1 and t2 two spanning trees of g}.

Lemma 2.6. The following holds:
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• KST is a suboperad of KMG•orc isomorphic to KMG× PLie,

• KO1 is a suboperad of KST,

• KO2 is an ideal of KO1.

We can see PLie as a suboperad of ST by the monomorphism (t, r) 7→ (tr, r). The
image of the operad morphism ψ of Lemma 2.5 is then KO1 ∩ PLie and we have that
KO2 ∩ PLie = {0} and hence KO1 ∩ PLie/KO2 ∩ PLie = KO1 ∩ PLie.

Proposition 2.7. The operad isomorphism ψ : KT ∼→ KO1 ∩ PLie extends to an operad iso-
morphism ψ : KMGc

∼→ KO1/KO2 given by

ψV : KMGc[V]
∼→ KO1/KO2[V]

g 7−→ ∑
r∈V

−→g (t(r),r), (2.7)

where for each r ∈ V, t(r) is a spanning tree of g. Furthermore, this isomorphism restricts itself
to an isomorphism KGC

∼→ KO1 ∩KGc/KO2 ∩KGc.

The last results are summarized in the following commutative diagram of operad
morphisms.

KT PLie ∩KO1/KO2 PLie ∩KO1 PLie

KGc KO1 ∩KGc/KO2 ∩KGc KG•orc ∩KO1 KG•orc ∩KST

KMGc KO1/O2 KO1 KMG× PLie

∼

∼

∼

(2.8)

3 Finitely generated suboperads

Let us now focus on finitely generated suboperads of KG. First remark that OpeKG(1 2)
is isomorphic to the associative algebra Ass. We have:

a ∗ ◦∗ b c = a b c = ∗ c ◦∗ a b (3.1)

Recall that the operad ComMag [3] is the free set-operad generated by one binary
and symmetric element. More formally, ComMag[V] is the set of all non planar binary
trees with set of leaves equal to V. Let s be the connected species defined by |s[V]| = 1
if |V| = 2, |s[V]| = 0 else. The action of transposition on the sole element of s[{a, b}] is
trivial. Then ComMag = Fs.
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Proposition 3.1. The operad < 1 2 >
Ope is isomorphic to KComMag.

Proof. We know from Proposition 2.5 that OpeKG(1 2) is isomorphic to the suboperad
OpePLie(1 2 + 1 2) of PLie. Then [3] gives us that this suboperad is isomorphic to
KComMag. This concludes the proof

Now the fact that we can see both Ass and ComMag as suboperad of KG gives us
natural way to define the smallest operad containing these two as suboperads. Denote
by SP the operad OpeKG(1 2, 1 2). Then SP has an interesting operad structure.

Proposition 3.2. We have SP = Ope(SpeKG(1 2, 1 2), SpeKG(r1, r2)) with

r1 =

{1, 2} {3}

{1} {2}

1 2

3 −

{1} {2, 3}

1 {2} {3}

2 3

(3.2)

r2 =

{1} {2, 3}

{2} {3}1

2 3

−

{2} {1, 3}

{1} {3}2

1 3

−

{3} {1, 2}

{1} {2}3

1 2

. (3.3)

Hence SP is a binary quadratic operad.

For the readers familiar with Koszulity (see [11]), remark that SP is a Koszul operad.

Proposition 3.3. SP admits as Koszul dual SP! = OpeKG∨(1 2, 1 2), SpeKG∨(r
′
1, r′2, r′3))

with

r′1 = 1

2 3

{1} {2, 3}

{2} {3} , r′2 =

{1} {2, 3}

{2} {3}1

2 3

−

{2} {1, 3}

{1} {3}2

1 3

−

{1} {2, 3}

{2} {3}1

2 3

(3.4)

and r′3 = 1

2 3

{1} {2, 3}

{2} {3} + 3

{3} {1, 2}

{1} {2}

1 2

+ 2

3 1

{2} {1, 3}

{3} {1} . (3.5)
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Proof. (sketch) Denote by I the ideal generated by the relations r1 and r2. Then as a
vector space I[[3]] =< r1,FKG[(23)](r1), r2,FKG[(123)](r2),FKG[(123)2](r2) > is a sub-
space of dimension 5 of FSpeKG(1 2,1 2)

[[3]] which is of dimension 12. Hence, since as a

vector space F∨SpeKG(1 2,1 2)
[[3]] ∼= F ∗SpeKG(1 2,1 2)

[[3]] ∼= FSpeKG(1 2,1 2)
[[3]], I⊥[[3]]

must be of dimension 7.
Denote by J the ideal generated by r′1, r′2 and r′3. Then as a vector space

J =< r′1,−FKG∨ [(12)](r′1),−FKG∨ [(13)](r′1), r′2,−FKG∨ [(123)](r′2),−FKG∨ [(123)2](r′2), r′3 >
is of dimension 7. To conclude we need to show that for any x ∈ I and y ∈ J, < x, j >= 0.
For example, denoting p1,2 = 1 2, s1,2 = 1 2 and p∨1,2 and s∨1,2 their duals in kG[[2]]∗ we
have:

< r′1, r1 > =< s∨1,∗ ◦∗ s∨2,3, p∗,3 ◦∗ p1,2 − p1,∗ ◦∗ p2,3 >

=< s∨1,∗ ◦∗ s∨2,3, p∗,3 ◦∗ p1,2 > − < s∨1,∗ ◦∗ s∨2,3, p1,∗ ◦∗ p2,3 >

= s∨1,∗(p∗,3)s∨2,3(p1,2)− s∨1,∗(p1,∗)s∨2,3(p2,3)

= 0.

Proposition 3.4. The Hilbert series of SP! is HSP!(x) =
(1− log(1− x))2 − 1

2
.

Before ending this section let us mention the operad OpeKMG( 1 , 1 2). This operad
presents a clear interest. THis comes from the fact that the elements 1 and 1 2 can be
considered as minimal elements in the sense that a partial composition with 1 2 adds
exactly one vertex and no edges and a partial composition with 1 adds exactly one
edge and no vertex. A natural question to ask at this point is what is the description
of OpeKMG( 1 , 1 2), i.e the description of the multigraphs generated by the minimal
elements.

Proposition 3.5. The following holds:

• the operad SP is a suboperad of OpeKMG( 1 , 1 2),

• the operad OpeKG( 1 , 1 2) is a strict suboperad of KMG. In particular 1 2 3 is not in
OpeKG( 1 , 1 2)[[3]].

Proof. • The first item is a direct consequence of the following identity:

◦∗ 1 2
=∗ 1 2

− −
1 2

2
. (3.6)

• Samuele: si tu veux developer une justification avec les calculs de generateurs...
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Concluding remarks We defined in this extended abstract a notion of graph insertion
operad. In the long version [1] of this paper, we give an even more general definition of
graph insertion operads which also naturally extends to hypergraphs.

There are two main questions, with reciprocical goals, raised by this paper: the de-
scription of the multigraphs generated by 1 and 1 2 and the description of the gen-
erators of the various operads defined here (KG•orc, KGc, KT etc). Another question
intersting perspective for future work is to study appropriate examples of algebras on
SP and SP!.
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