
BAXTER TREE-LIKE TABLEAUX

Abstract. Tree-like tableaux are objects in bijection with alternative or permutation
tableaux. They have been the subject of a fruitful combinatorial study for the past few
years. In the present work, we define and study a new subclass of tree-like tableaux
enumerated by Baxter numbers. We exhibit simple bijective links between these ob-
jects and three other combinatorial classes: (packed or mosaic) floorplans, twisted Baxter
permutations and triples of non-intersecting lattice paths. From several (and unrelated)
works, these last objects are already known to be enumerated by Baxter numbers, and our
main contribution is to provide a unifying approach to bijections between Baxter objects,
where Baxter tree-like tableaux play the key role. We moreover get new enumerative re-
sults about alternating twisted Baxter permutations. Finally, we define a new subfamily
of floorplans, which we call alternating floorplans, and we enumerate these combinatorial
objects.

Keywords: Tree-like tableau; Baxter number; floorplan; twisted Baxter permutation; non-
intersecting lattice path.

1. Introduction

Baxter permutations are named after the mathematician Glen1 Baxter [5], who intro-
duced them in 1964 (in an analysis context). They are enumerated by Baxter numbers [25,
sequence a001181], whose formula was obtained by Chung et al. [10] (see also [26] for a
combinatorial proof):
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Since then, Baxter numbers have appeared to enumerate various classes of combinatorial
objects: pairs of twin binary trees [13], several kinds of standard Young tableaux with
three rows [14, 9], plane bipolar orientations [6, 7], and three other classes that we shall
present in more details, as they play important parts in our work.

The first one is the class of twisted Baxter permutations. These permutations were de-
fined a few years ago by Reading in an algebraic context [23]: they naturally index bases
for subalgebras of the Malvenuto-Reutenauer Hopf algebra of permutations. Like Baxter
permutations, twisted Baxter permutations may be characterized by pattern avoidance,
and West proved [29] (by a recursive bijection) that they are enumerated by Baxter num-
bers. These objects are also endowed with a nice Hopf structure, as revealed by the recent
works [20, 17].
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The second class we are interested in is a class of triples of non-intersecting lattice paths.
The Lindström-Gessel-Viennot lemma [21, 16] relates the enumeration of non-intersecting
lattice paths (NILP) to the computation of determinants of integer matrices. Because of
that, NILPs are ubiquitous objects that appear in many contexts in combinatorics. The
class we shall consider here is known [14] to be in bijection with pairs of twin binary trees,
see their precise definition in Section 5.

The third and last class we shall present here is the class of mosaic floorplans. The
notion of floorplans finds its origin in integrated circuits: a floorplan encodes the relative
positions of modules in a circuit. A mosaic floorplan may be defined as an equivalence class
of some rectangular partitions of a rectangle (called floorplans). They were proved to be
enumerated by Baxter numbers [24], and a bijection was found with pairs of twin binary
trees [30]. We introduce here combinatorial objects that we call packed floorplans: they
are canonical representatives of mosaic floorplans, in the sense that every mosaic floorplan
contains exactly one packed floorplan.

The goal of the present work is to link together these three combinatorial classes through
the use of new objects that we call Baxter tree-like tableaux. Tree-like tableaux (TLTs) are
combinatorial objects introduced in [3] as a new presentation of alternative or permutation
tableaux [22, 27], and have revealed interesting combinatorial properties [3, 4]. Baxter
TLTs are defined in a very simple way by avoidance of patterns (a notion to be defined
in Section 2) in TLTs. We mention here that Felsner et.al. also provide bijective links
between combinatorial structures enumerated by Baxter numbers in their paper [15]. But
whereas their work is focused on twin binary trees and leads to Baxter permutations, the
central objects of this present article are Baxter TLTs and our bijections lead to twisted
Baxter permutations.

The outline of the paper is as follows. Section 2 introduces our new class of Baxter
tree-like tableaux. Moreover, we recall in this section the recursive structure of tree-like
tableaux, which has already proved to be the key tool dealing with these objects, and will
be essential for the work reported here. Next, Sections 3, 4 and 5 are respectively devoted
to packed floorplans, twisted Baxter permutations and triples of non-intersecting lattice
paths: we define these three combinatorial classes and in each case, we build a simple
bijection with Baxter TLTs. In Section 6, we consider the restriction of our construction
to alternating objects. This allows us to obtain new combinatorial results, such as the
enumeration of alternating twisted Baxter permutations (see Corollary 48), and to identify
several enumerative questions which remain open.

2. Baxter tree-like tableaux

2.1. Tree-like tableaux: definitions and useful tools. We refer to [3] for a detailed
study of tree-like tableaux. Here, we shall only recall the main definition and a few impor-
tant properties.

Definition 1 (Tree-like tableau). A tree-like tableau (TLT) is a Ferrers diagram (drawn
in the English notation) where each cell is either empty or pointed (i.e., occupied by a
point), with the following conditions:
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(1) the top leftmost cell of the diagram is occupied by a point, called the root point;
(2) for every non-root pointed cell c, there exists a pointed cell p either above c in the

same column, or to its left in the same row, but not both; p is called the parent of
c in the TLT;

(3) every column and every row contains at least one pointed cell.

The size of a TLT is the number of pointed cells it contains.

These objects were named tree-like tableaux because of the underlying tree structure
they contain: recording the parent relations between the points of a TLT indeed produces
a tree, whose root is the root point of the TLT. In this tree, every internal (i.e., non-leaf)
vertex may have either a right child (shown by a horizontal edge), or a left child (shown
by a vertical edge), or both. We refer to such trees as binary trees (although they would
more appropriately be called incomplete binary trees). Figure 1 (left) shows an example
of TLT, with its underlying binary tree. The reader interested in more details about the
underlying trees of TLTs may find them in [4, 3].

Definition 2. A ribbon in a TLT T is a set R of cells along the Southeast border of T ,
that is connected (with respect to edge-adjacency), does not contain any 2× 2 square, and
consists only of non-pointed cells. Moreover it is required that the bottom leftmost cell of
R is to the right of a pointed cell with no cell of T below it, and that the top rightmost cell
of R is below a pointed cell.

Figure 1 (right) shows an example of a TLT of size 20 with a ribbon indicated by shaded
cells (of magenta color).

FIGURE A FAIRE

Figure 1. Left: A tree-like tableau T of size 20, with its underlying binary
tree. Right: The same tree-like tableau T with a ribbon in T .

In the article [3] that defines TLTs, the so-called insertion procedure InsertPoint is
defined. It allows to generate all TLTs unambiguously from the unique TLT of size 1 by
insertion of points (together with a row or column, and possibly a ribbon, of empty cells)
at the boundary edges of TLTs, that is to say at edges of their Southeast border. We refer
to [3] for details about this insertion procedure, and for proofs of statements about it in
the remainder of this subsection.
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This insertion procedure can also be interpreted as representing a generating tree of
TLTs. A generating tree (see [28]) for a combinatorial class C is simply an infinite rooted
tree, whose vertices are the objects of C, each appearing exactly once in the tree, and such
that objects of size n are at distance n − 1 from the root. An obvious remark that will
be useful for us is the following: if C and C ′ admit generating trees which are isomorphic,
then they are in size-preserving bijection. In terms of generating trees, the main result
(Theorem 2.3) of [3] can be interpreted as follows: the infinite tree with root , where all
children of a given TLT T are the TLTs obtained applying InsertPoint on T at each of the
boundary edges of T , is a generating tree for TLTs.

The insertion procedure on TLTs also induces a canonical labeling of the n points of a
TLT T of size n by the integers in {1, . . . , n}. It indicates the (unique) order in which the
points of T have been inserted to obtain T from the empty TLT. This labeling is essential
for the bijections that we define in Sections 3 and 4, and we review it now. Actually, this
labeling may alternatively be described as the order in which the points of T should be
removed with the procedure RemovePoint of [3] to go from T to (the unique TLT of size
1), and this is how we define it here. This is illustrated on Figure 2.

T = =

1 3 5

2 6 7 9

4

8

T = T9 = , T8 = , T7 = ,

T6 = , T5 = , T4 = , T3 = , T2 = , T1 = .

Figure 2. The labeling of the points of a TLT using the procedure Remove-
Point recursively. The special points together with the associated columns
(resp. rows) are denoted in boldface (of blue color), whereas the ribbons are
indicated by shaded cells (of magenta color).

Consider a TLT T of size n. We define the special point s of T as: the point at the
bottom of its column, which is Northeastmost among such points. (Notice that s always
exists, since the bottom row of T contains at least one point, by definition.) This special
point s gets the label n. To label the remaining n − 1 points of T , we compute from
T and s another TLT T ′ of size n − 1, by removing s and some empty cells in T . The
points of T ′ are in immediate correspondence with those of T except s, so that we may
label in T the special point of T ′ with n − 1, and proceed recursively. We will denote by
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(Tn = T, Tn−1 = T ′, Tn−2, . . . , T1 = ) the corresponding sequence of TLTs (each Ti having
size i).

We now explain how to build T ′ from T and s. Unless n = 1, s is not the root point of
T , and this implies that exactly one of the followings holds: either there is no point of T
above s in the same column, or there is no point of T to its left in the same row. In the
former (resp. latter) case, we define the column (resp. row) of s to be the cells above (resp.
to the left of) s in the same column (resp. row). If there is a cell adjacent to s on its right,
then this cell is empty (by definition of s). In this case, we claim that there is a ribbon in
T to the right of s. Indeed, this is derived from the two following facts: starting from the
empty cell to the right of s, and following the Southeast border of T , we eventually meet
a pointed cell p, since the last column of T contains a point; and p has been reached from
below, since otherwise s would not be the special point. We call this set of empty cells the
ribbon of s. Now, T ′ is obtained from T by removing s, together with its column (resp.
row) and its ribbon (when it exists).

From now on, when we speak of the ribbons of T , we mean the ribbons removed when
applying iteratively the procedure RemovePoint from T until is reached.

Observation 3. For a TLT T and two pointed cells c and c′ with respective labels i and
j. The following assertions are equivalent:

(1) c is (strictly) to the left and below c′ and i = j + 1;
(2) there is a ribbon of T between c and c′.

To conclude the general properties of TLTs, we observe a property of the cells of its
ribbons.

Definition 4. A crossing in a TLT T is an empty ( i.e., non-pointed) cell such that there
are pointed cells both above it in the same column and to its left in the same row.

This terminology has already been introduced in [3]. The choice of the word crossing is
explained because such cells are those where two edges of the underlying binary tree of T
cross each other.

will be used mostly in Sections 3 and 4, but also on a few occasions before.

Definition 5. Let T be a TLT of size n, and denote by (Tn = T, Tn−1, Tn−2, . . . , T1 = )
the sequence of TLTs (each Ti having size i) obtained iterating the procedure RemovePoint
starting from T . For any cell c of the ribbon removed from Ti to obtain Ti−1, we define the
label rib(c) = i.

This labeling is illustrated on Figure 3. It will be used in Lemma 27.
Notice that there are cells with no rib-label. Indeed, we have the following characteri-

zation of cells having a rib-label:

Observation 6. A cell has an rib-label if and only if it is a crossing.

Proof. Note that TLTs have no empty rows nor columns. Therefore the definition of
ribbons ensures that if a cell has a rib-label then it is a crossing. Conversely, considering
a crossing c and the smallest i such that the cell c belongs to Ti, we obtain that c belongs
to the ribbon removed from Ti to obtain Ti−1, hence has an rib-label (equal to i). �
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2 3 10

11 19
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Figure 3. The labeling (of blue color) and the rib-label (of magenta color)
of the TLTs of Figures 1 (left) and 2 (right).

2.2. A family of TLTs enumerated by Baxter numbers. In this work, we are inter-
ested in a family of TLTs restricted by pattern avoidance constraints. A TLT T is said to
contain the pattern · •• • if there exist 2 rows and 3 columns in T such that the restriction

of T to the 2× 3 = 6 cells at their intersection is equal to •• • or ••• •. We define in the same

way the pattern
· ••• . With this kind of notation, the condition that every pointed cell in

a TLT does not have pointed cells both above in the same column and to the left in the
same row is expressed by the avoidance of the pattern · ••• .

Definition 7 (Baxter tree-like tableau). A Baxter tree-like tableau is a TLT which avoids

(i.e., does not contain any of) the patterns · •• • and
· ••• . We shall denote by T(k,`) the set

of Baxter TLTs with k rows and ` columns and set: Tn = tk+`−1=nT(k,`) where t denotes
the disjoint union.

We may remark that at each step of the procedure RemovePoint, one point is removed
and either a row or a column is removed. This implies that the size of a TLT is given by
its semi-perimeter−1. As a consequence, the size of any T ∈ Tn is n. Figure 4 shows all
Baxter TLTs (T i)1≤i≤22 of size 4.

We may also note that the generating tree for TLTs induced by the procedure Insert-
Point, can be restricted to Baxter TLTs, yielding a generating tree for Baxter TLTs.
Indeed, the procedure RemovePoint applied to any Baxter TLT produces a Baxter TLT

again (since applying RemovePoint cannot create any occurrence of · •• • or
· ••• ).

Sections 3 to 5 describe size-preserving bijections between Baxter TLTs and families of
objects that are known to be enumerated by Baxter numbers, hence their name. Specif-
ically, Section 3 (resp. 4, resp. 5) describes a bijection denoted ΦF (resp. ΦB, resp. ΦP)
between Baxter TLTs and (packed) floorplans (resp. inverses of twisted Baxter permuta-
tions, resp. triples of non-intersecting lattice paths). These bijections are illustrated in
size 4 by Figures 7, 15 and 21 (p. 10, 22 and 28), where each TLT T i of Figure 4 is sent to
F i, σi and πi by the bijections ΦF , ΦB and ΦP , respectively.
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T 1 = , T 2 = , T 3 = , T 4 = ,

T 5 = , T 6 = , T 7 = , T 8 = ,

T 9 = , T 10 = , T 11 = , T 12 = ,

T 13 = , T 14 = , T 15 = , T 16 = ,

T 17 = , T 18 = , T 19 = , T 20 = ,

T 21 = , T 22 = .

Figure 4. The 22 Baxter TLTs of size 4.

Before moving on to the announced bijections between Baxter TLTs and other Baxter
objects, we make an observation that relates the tree structure of Baxter TLTs and the
relative placement of their points.

Proposition 8. Let T be a Baxter TLT. Consider the bi-partition (L,R) of the non-root
points of T , where L (resp. R) contains all points of T that are in the left (resp. right)
subtree pending from the root of the underlying tree of T . Then all points of L are to the
left and below all points of R.

Proof. The proof is by contradiction. Assume that there is a point ` ∈ L that lies to the
right of a point r of R. Among all ancestors of r (including r) in the underlying tree of
T , there is one which lies to the left of ` and above `. Indeed, all ancestors of r are to the
left of r, ` does not lie in the first row of T (since in belongs to L), and r has at least one
non-root ancestor in the first row of T (since it belongs to R). Denote r′ such an ancestor
of r. We have then that r′ is above and to the left of `. Among all ancestors of ` (including
`), denote by `′ the one closest to the root of T such that r′ is above and to the left of `′.
This ensures that `′ cannot be the root of T , and that together with the parent of `′, `′

and r′ form a pattern · •• • or
· ••• , a contradiction.

Assuming instead that there is a point ` ∈ L that lies above of a point r of R, we derive
a contradiction in a symmetric fashion. �
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Several consequences of Proposition 8 will be useful in proving properties of our bijec-
tions.

Corollary 9. Any binary tree is the underlying tree of a unique rectangular Baxter TLT,

that is to say a TLT with rectangular shape and which avoids the patterns · •• • and
· ••• .

We point out that a detailed study of TLTs with rectangular shapes (or alternatively
of TLTs where we forget the underlying Ferrers diagram) is provided in [4], where these
objects are referred to as non-ambiguous trees.

Proof. Consider a binary tree B, and denote by B` (resp. Br) the left (resp. right)

subtree pending from the root of B: B = •
B` Br

. By induction (the base case of

the induction, which corresponds to a tree with just one vertex, being clear), there are
unique Baxter TLTs of rectangular shapes, denoted T` and Tr, whose underlying trees are
respectively B` and Br. We are looking for a Baxter TLT T of rectangular shape whose
underlying tree is B. Proposition 8 leaves us no choice but to place all points of T` below
and to the left of all points of Tr. That the resulting TLT (shown on the left of Figure 5) has
a rectangular shape is ensured by the construction, and the avoidance of the two patterns
is immediate to prove. �

Figure 5 (right) shows an example of rectangular Baxter TLT associated with a binary
tree by Corollary 9.

Tr

Tℓ

B = and T =

Figure 5. Left: Recursive construction of a TLT with rectangular shape.
Right: A binary tree B, and the unique Baxter TLT T with rectangular
shape whose underlying tree is B.

Corollary 10. Let T be a Baxter TLT, and B be its underlying binary tree. Denote by
B` (resp. Br) the left (resp. right) subtree pending from the root of B. Consider the bi-
partition (L,R) of the non-root points of T , where L (resp. R) contains all points of T
that are in B` (resp. Br).

We can split T with two lines V and H, uniquely defined by the following conditions: V
is a vertical line leaving all points of L to the left and all those of R to the right, and H is
a horizontal line leaving all points of L below and all those of R above.

Provided that both L and R are non-empty, V and H split T into four blocks, having the
following properties.

• The Northwest block is a rectangle of empty cells, except for the North-westernmost
cell, which contains the root of T .
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• The Southwest block is a Baxter TLT, denoted T`, whose underlying tree is B`.
• The Northeast block is a Baxter TLT, denoted Tr, whose underlying tree is Br.
• The Southeast block is a Ferrers diagram, possibly empty, and contains only cross-

ings of T .

Proof. The existence of V and H is guaranteed by Proposition 8. Their uniqueness in
ensured by the fact that there are no empty rows nor columns in TLTs. The properties of
the four blocks identified by V and H are immediate. We just note that the cells in the
Southeast block are indeed crossings because they are all empty, have a point of R above
them, and a point of L to their left (again, because every row and column of T contains
at least one point). �

3. Bijection with packed floorplans

3.1. Packed floorplans: Definition and basic properties.

Definition 11 (Packed floorplans). A packed floorplan (PFP) of size (k, `) is a partition
of a k× ` rectangle ( i.e. a rectangle of height k and width `) into k+ `−1 rectangular tiles

whose sides have integer lengths such that the pattern is avoided, meaning that: for

every pair of tiles (t1, t2), denoting (x1, y1) the coordinates of the bottom rightmost corner of
t1 and (x2, y2) those of the top leftmost corner of t2, it is not possible to have both x1 ≤ x2
and y1 ≥ y2.

The set of packed floorplans of size (k, `) will be denoted by F(k,`), and we set: Fn =
tk+`−1=nF(k,`).

Some examples and counter-examples of PFPs are provided by Figure 6, and Figure 7
shows all the packed floorplans of size 4. These PFPs are new combinatorial objects, but
they are in size-preserving bijection with mosaic floorplans [1, 24, 30]. Indeed, as shown in
the Appendix, mosaic floorplans are equivalence classes of objects, and PFPs are canonical
representatives of mosaic floorplans.

(a) Five packed floorplans.

(b) These seven are not packed floorplans.

Figure 6. Some examples and counterexamples of PFPs.

Some properties of PFPs follow easily from Definition 11. We first introduce notation.
A T-junction in a PFP F is a point where the sides of the tiles of F intersect in one of
the following configurations: , , and . A segment of a PFP F is a union of
sides of tiles of F which forms a segment and which is maximal for this condition. Figure 8
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F 1 = , F 2 = , F 3 = , F 4 = ,

F 5 = , F 6 = , F 7 = , F 8 = ,

F 9 = , F 10 = , F 11 = , F 12 = ,

F 13 = , F 14 = , F 15 = , F 16 = ,

F 17 = , F 18 = , F 19 = , F 20 = ,

F 21 = , F 22 = .

Figure 7. The 22 packed floorplans of size 4.

shows a PFP and its segments. A segment which is not a side of the bounding rectangle
is called internal.

All the horizontal segments of this PFP are (from bottom to top)
[(0, 0), (2, 0)], [(0, 1), (2, 1)], [(1, 2), (2, 2)], [(0, 3), (2, 3)] and [(0, 4), (2, 4)].
All its vertical segments are (from left to right) [(0, 0), (0, 4)], [(1, 1), (1, 3)]
and [(2, 0), (2, 4)].

Figure 8. A PFP of size (4, 2) and its segments.

Observation 12. Let F be a PFP.

(i) Every corner of any of the tiles of F either is a corner of the bounding rectangle of
F or forms a T-junction.

(ii) Every horizontal (resp. vertical) line of integer coordinate included in the bounding
rectangle of F contains exactly one segment of F .

(iii) Every horizontal (resp. vertical) line of integer coordinate included in the bounding
rectangle of F (except the bottom (resp. right) boundary of the bounding rectangle of
F ) contains the top left corner of at least one tile of F .

Proof. For the first item, assume there exists a corner of a tile which neither is a corner
of the bounding rectangle of F nor forms a T-junction. So, at this corner, either two or
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four tiles meet. In the first (resp. second) case, there exists then two tiles t and t′ placed

as
t

t
′

, up to rotation (resp.
t

t
′

). In both cases, we derive a contradiction. For

the first case, t creates an inner corner in t′, hence t′ is not of rectangular shape. In the
second case, the pair of tiles (t′, t) forms an occurrence of the pattern , which should
be avoided.

We prove the second item in two steps. First, we show that each line contains at most
one segment. This is clearly true for the boundaries of the bounding rectangle, which are
obviously segments themselves. Consider an internal line, that is to say a line which is
not a boundary of the bounding rectangle, and assume it contains at least 2 segments s
and s′. If s and s′ lie on the same horizontal (resp. vertical) line, with s to the left of

(resp. above) s′, then because of (i) the right (resp. bottom) end of s is a T-junction

(resp. ) and the left (resp. top) end of s′ is a T-junction (resp. ). Consider

the tile t whose bottom right corner is the right (resp. bottom) end of s, and the tile t′

whose top left corner is the left (resp. top) end of s′. The pair (t, t′) forms a pattern ,
a contradiction.

Next, we show that a PFP F of size (k, `) contains exactly k + ` + 2 segments. Since
this is also the number of lines considered in (ii), it follows from our first step that each of
them contains exactly one segment. Denote by nc (resp. nt, nj, ns) the number of corners
of tiles (resp. of tiles, of T-junctions, of segments) of F . Each tile having 4 corners, we
have 4nt = nc. Also, from item (i), and since there are exactly two corners of tiles at any
T-junction, nc = 2nj + 4. It follows that nj + 2 = 2nt. On the other end, every horizontal

(resp. vertical) internal segment connects T-junctions of the form and (resp.

and ). And every T-junction is an end of a segment. It follows that nj is twice the
number of internal segments, which is ns − 4 taking into account the boundaries of the
bounding rectangle of F . So, nj = 2(ns − 4). Combining this equality with nj + 2 = 2nt
obtained earlier gives nt = (ns−4) + 1 = ns−3. Since F is a PFP of size (k, `), it contains
nt = k + `− 1 tiles, and it follows that ns = k + `+ 2 as wanted.

Finally, the third item follows easily from the second one. Indeed, every line as in (iii)
contains one segment. This segment, if horizontal (resp. vertical) is the support of the top
(resp. left) side of at least one tile t, so it contains the top left corner of t. �

Our goal in this section is to describe a simple size-preserving bijection between Baxter
TLTs and PFPs. The definition of our map ΦF from Tn to Fn is given in Subsection 3.2. All
that is needed to define it is the numbering of the points of TLTs induced by the procedure
RemovePoint, and reviewed in Section 2. The proof that ΦF is a bijection requires a few
more properties of TLTs and PFPs. These are presented in Subsection 3.3, and allow to
describe the inverse of ΦF , proving that it is indeed a bijection.

3.2. Definition of ΦF : Tn → Fn. More precisely, we define ΦF : T(k,`) → F(k,`), for all
k, `.
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Let us consider T ∈ T(k,`). As noticed earlier, T contains n = k + ` − 1 points. These
may be labeled by the integers in {1, . . . , n} according to the insertion procedure of [3], as
explained in Section 2. We shall construct ΦF(T ) as follows.

We start from a rectangular k × ` box. We identify the unit cells of this box with the
cells of T . For each label j = n, . . . , 1, we iteratively add a tile, the largest possible, whose
top leftmost cell c is the one containing the point labeled by j in T (this tile is also said
to have label j). To build this largest possible tile, we only have to draw two segments:
one vertical and one horizontal, each starting from the cell c and going respectively to the
South and to the East. We denote the result by ΦF(T ). See Figure 9 for an example.

T = =
1 3 4

2 5

6

and ΦF(T ) =

Figure 9. The bijection ΦF .

Proposition 13. The mapping ΦF : T(k,`) → F(k,`) is well-defined.

Proof. Let T ∈ T(k,`). Applying the above described construction, we obtain a tiling of a
k× ` rectangle by n = k+ `− 1 tiles. So, to check that the mapping ΦF is well-defined, we
are just left with checking that at each step the tile we construct is actually of rectangular
shape, and that the pattern is avoided.

First assume that some tile is not of rectangular shape, i.e., has an inside corner (note
that it has to be an inside SE corner because the tiles are added the largest possible).
Denote by q the point of T in the top leftmost corner of this tile, c the point of T that creates
the inside corner, and p the parent of c in T (see Figure 10(a)). Denoting (X(z), Y (z)) the
Cartesian coordinates of any point z, this means that either X(c) = X(p) and Y (c) < Y (p),
or Y (c) = Y (p) and X(c) > X(p). In the former (resp. latter) case, we claim that
Y (q) < Y (p) (resp. X(p) < X(q)). Indeed, assuming the contrary, the insertion procedure
of [3] would insert the points q, p, and c in this order, contradicting that c is an inside
corner of a tile. From these inequalities, we deduce that the points q, p, and c form a

pattern
· ••• (resp. · •• • ) contradicting that T ∈ T(k,`).

Suppose now that there are two tiles t1 and t2 that form a pattern . Let us choose
this pair such that the distance between the bottom rightmost corner of t1 and the top
leftmost corner of t2 is minimal. By construction, there is a point c of T in the top leftmost
corner of t2. Also, because t1 is constructed as large as possible, there is a point q (resp.
u) of T immediately outside t1 along its bottom (resp. right) border (see Figure 10(b)).

Denote by p the parent of c in T . We have X(c) = X(p) and Y (c) < Y (p), or Y (c) =
Y (p) and X(c) > X(p). In the former (resp. latter) case, assume that Y (p) ≤ Y (q)
(resp. X(p) ≥ X(u)). Then t1 and the tile whose top leftmost corner is p would form a

pattern , contradicting the minimality of (t1, t2). Hence, we have Y (p) > Y (q) (resp.
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c

p

q

(a) Y (q) < Y (p), or c would not
be an inside corner.

c

p
q

ut1

t2

(b) Y (q) < Y (p), or (t1, t2) would
not be minimal.

Figure 10. Illustrating the proof by contradiction that ΦF(T ) ∈ F(k,`).

X(p) < X(u)), so that p, q, c (resp. p, u, c) form a pattern
· ••• (resp. · •• • ), contradicting

that T ∈ T(k,`). �

3.3. Bijection between TLTs and packed floorplans. The goal of the remainder of
this section is to prove the following:

Theorem 14. For any n, ΦF is a bijection between Tn and Fn.

We start with a property on the (tree) structure of packed floorplans. From now on we
will use the term corner for “top leftmost corner” (i.e., NW-corner).

Lemma 15. Let F be a PFP. The set of (top leftmost) corners of the tiles of F has a tree
structure: for any corner c (different from the top leftmost corner of the bounding box),
there exists another corner c′ either above c or to its left, but not both.

Proof. Let us consider the corner c of a tile t, different from the top leftmost tile of F . By
Observation 12 (i), the corner c has to be either a or a . In the first case, the tile
above t with common left side has its corner above c. If there were a corner c1 to the left
of c, then there would exist another segment supported by the same line as the top edge
of c, in contradiction with Observation 12 (ii). This proves our statement in the first case,
and a symmetric argument applies to the second case. �

Next, we define an order on the tiles of PFPs.

Definition 16. Let F ∈ Fn. We define the tile-order of F as the labeling of the tiles
obtained in the following way. We label the tiles from n to 1. After assigning the labels
n, . . . , k+ 1, we label with k the tile which is the rightmost among the unlabeled tiles whose
bottom border does not touch any unlabeled tile (equivalently, its bottom border touches only
labeled tiles or the bottom border of the bounding rectangle).

include a figure to illustrate the tile-order.
We shall now give another definition of the labeling of the pointed cells in a (Baxter)

TLT, T , which is easily seen to be equivalent to the one given in Section 2. Indeed, the
labeling of T is closely related to the tile-order of ΦF(T ), and this is better seen on this
equivalent definition of the labels of T .

Definition 17. Let T ∈ Tn. We define the point-order of T as follows. We label the
pointed cells from n to 1. After assigning the labels n, . . . , k + 1, we label with k the point
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which is the rightmost among those with no cells below it. If there is a cell to its right, we
consider the ribbon of cells up to encountering a pointed cell, and we declare all cells of
this ribbon “dead”. And in any case, we also declare “dead” the newly labeled pointed cell,
and its empty row or column. Dead cells should be ignored (i.e., treated as if they did not
exist) in later iterations of this labeling procedure.

Observation 18. For a given pointed cell c with label j, any pointed cell c′ which is weakly
to the right and below c has a label j′ > j.

We now define an application ΨF , which we will prove to be the inverse of ΦF .
Let F ∈ Fn. We associate to each tile a label k ∈ {1, . . . , n} using the tile-order, and

we will construct a TLT T = ΨF(F ) with the pointed cells at the same positions as the
corners of the tiles of F . Let us denote by U the object under construction. We start with
U = ∅, and for k = 1, . . . , n:

(1) we add a pointed cell to U at the same position as the corner of the tile labeled by
k in F ;

(2) we complete in such a way that the shape of U is still a Ferrers diagram (that is
we add empty cells to the NW of the added pointed cell);

(3) if the pointed cell labeled k is to the left of the pointed cell labeled k− 1, we place
a ribbon from k to k − 1.

After dealing with n, we let T := U .
Given the insertion of ribbons in the last item above, a straightforward induction allows

to prove the following observation.

Observation 19. In the computation of ΨF(F ), after dealing with the tiles labeled 1 to
j, the latest pointed cell added ( i.e., the pointed cell with label j for the tile-order) is the
rightmost among the pointed cell without any cell below it.

Proposition 20. For any F ∈ Fn, ΨF(F ) is in Tn.

Proof. Let F ∈ Fn, and T := ΨF(F ). By construction, the shape of T is a Ferrers diagram.
Because the position of the pointed cells in T corresponds to the position of the corners in
F , Lemma 15 implies that any pointed cell (with the exception of the root) has either a
pointed cell above it or to its left but not both. Observation 12(iii) implies that any row
or column contains at least one pointed cell. Since the sizes clearly match, T is a TLT of
size n.

To conclude the proof, it is enough to show that if T contains · •• • or
· ••• , then F

contains . So, assume T contains
· ••• (the other case being similar). Consider an

occurrence of
· ••• in T where the distance between the two vertically aligned points of this

occurrence is minimal. This implies that the topmost of these two points (denoted p) is
the parent of the bottommost one (denoted c). By assumption, we know that there exists
a point q to the left of p and c, which lies vertically between these two points. Consider
the topmost q among all such points. Denote by t1 the tile of F whose bottom side is
supported by the same segment as the top side of the tile containing q. And denote by t2
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the tile containing c. We claim that t1 and t2 form a pattern. Indeed, if it were not
the case, we would obtain a contradiction, either with the choice of q as topmost or with
the fact that t1 is of rectangular shape (the tile containing p then creating an inner corner
in t1). �

The following lemma is crucial in our proof of Theorem 14.

Lemma 21. Let F be an element of Fn. Let us denote by t and t′ two tiles in F , with
respective corners c and c′ and respective labels i and j according to the tile-order. The
following assertions are equivalent:

(1) c is (strictly) to the left and below c′ and i = j + 1;
(2) the upper side of t and the lower side of t′ are supported by the same segment, the

T -junction at the bottom-left corner of t′ is of the form , and the right sides of

t and t′ form a (see Figure 11 (left)).

t

t’

Figure 11. Left: The (tile-)ribbon configuration on packed floorplans.
Right: Illustrating the proof of Lemma 21.

By analogy between Lemma 21 and Observation 3, we shall say that the configuration
described by 2 is a tile-ribbon configuration for t and t′.

Proof. Let us prove that 2 implies 1. The configuration of the tiles t and t′ implies that
c is (strictly) to the left and below c′. Moreover, when building the tile-order on F , after
giving the label i to the tile t, the tile t′ becomes the rightmost among the tiles whose
bottom border does not touch any unlabeled tile. Hence j = i− 1.

Conversely, let us prove that 1 implies 2. Since c′ is to the right of c and j = i− 1, the
bottom border of t′ has to be in contact with t (otherwise it should be labeled first, i.e., we
would have j > i). Thus the upper side of t and the lower side of t′ are supported by the
same segment, and the T -junction at the bottom-left corner of t′ is of the form . Since
j = i − 1, the tile t′ is the next one to be considered after t when building the tile-order.
Thus t′ is the rightmost tile such that the upper side of t and the lower side of t′ meet
forming a in the bottom-left corner of t′. Moreover, the T-junction at the NE-corner

of t has to be a : indeed, a would give a forbidden pattern together with the

of the SW-corner of t′ (see Figure 11 (right)). �

Lemma 22. Let T ∈ Tn and F = ΦF(T ). When identifying the pointed cells of T and the
corners of the tiles of F , the point-order of T coincides with the tile-order of F .
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Proof. Assume that the orders coincide for labels n, . . . , k+ 1, but that the tile t of F with
tile-label k corresponds to a point of T with point-order `−1 for some ` ≤ k. Let c be this
point with point-order ` − 1. In addition, denote by c′ the point of T with point-order `,
and by t′ the tile of F whose corner is c′. Note that the tile-order of t′ is at most equal to
k.

We distinguish cases depending on the relative position of c and c′. In each case, we
shall derive a contradiction, hence proving the lemma.

Case 1: c is (weakly) below and to the right of c′. Given that c and c′ have respective
labels `− 1 and `, Observation 18 immediately provides a contradiction.

Case 2: c is above and to the right of c′. We readily check that c′ and c satisfy the first
item of Lemma 21. Therefore, this lemma guarantees that the bottom edge of t is entirely
supported by the top edge of t′ (see Figure 11 (left), with t and t′ exchanged w.r.t. the
notation in this figure). This contradicts that, at step k in the computation of the tile-
order, t is the rightmost among the unlabeled tiles whose bottom border does not touch
any unlabeled tile (indeed, t′ is unlabeled at this step).

Case 3: c is above and to the left of c′. Because t is the rightmost among the unlabeled
tiles whose bottom border does not touch any unlabeled tile, t must extend until below
and to the right of t′, contradicting that t is of rectangular shape.

Case 4: c is below and to the left of c′. Recall that at step k in the computation of
the tile-order, t is the rightmost among the unlabeled tiles whose bottom border does not
touch any unlabeled tile. So, because t′ is unlabeled at this step, and is to the right of t,
the bottom edge of t′ must be touching an unlabeled tile. We denote by t′′ the leftmost
such tile, and by c′′ its corner. To avoid the occurrence of a forbidden pattern in F , it is
necessary that either the right edges of t′ and t′′ are supported by the same segment, or
their left edges are (or both). In the first case, Lemma 21 ensures that the point-order of c′′

is larger than the point-order of c′; this also holds in the second case simply by definition
of the point-order.

Note that t′′ is also unlabeled. If c′′ is to the right of c, we repeat this reasoning
with t′′ instead of t′, and we iterate this procedure. This defines a sequence of points
(c1 = c′, c2 = c′′, . . . , ch), where ch is the corner of th, defined as the last unlabeled tile so
reached (considering t among the unlabeled tiles). By the above remarks, the point-order
is increasing along this sequence. Recalling that c′ has point-order ` and c has point-order
`− 1, we will reach a contradiction by showing that there exists an index j ≤ h such that
the point-order of c is at least that of cj. To prove this, we exhibit an index j such that cj
is (weakly) above and to the left of c. (Indeed, the definition of the labeling of the points
of a TLT then ensures that the point-order of c is at least that of cj.)

Because the construction of the sequence (c1, c2, . . . , ch) stops at ch, it holds that ch
is (weakly) to the left of c or that th has its bottom border which does not touch any
unlabeled tile. In this second case, by definition of t, it also holds that ch is (weakly) to
the left of c. This allows to define j as the smallest index such that cj is (weakly) to the
left of c. To conclude, we want to ensure that cj is (weakly) above c. Since c1 = c′ is to the
right of c, we know that cj−1 exists and is to the right of c, and that tj and tj−1 have their
right edges supported by the same segment, but not their left edges. Because t is labeled
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before tj, this leaves no other choice but to have c (weakly) below and to the right of cj,
concluding the proof. �

Figure 12. Illustrating the proofs of Lemmas 22 (left) and 23 (right).

La partie gauche de la figure n’est plus d’actualité. La remplacer par ce qui semble
nécessaire à la lecture de la nouvelle preuve en 4 cas.

Lemma 23. Let F ∈ Fn and T = ΨF(F ). When identifying the pointed cells of T and the
corners of the tiles of F , the point-order of T coincides with the tile-order of F .

Proof. This is a consequence of the definition of ΨF and can be proved by induction. Note
first that Observation 19 (applied for j = n) ensures that the tile of F with label n and
the point of T with label n coincide.

Now, let us suppose that the point-order in T coincides with the tile-order of F for labels
n, . . . , k. We shall prove that they also coincide for label k − 1.

Let us consider the TLT, denoted T̂ , obtained by removing the cells of labels n, . . . , k
from T , with the procedure RemovePoint. On the other hand, consider the object F̃
obtained from F by keeping only the tiles of tile-label strictly less than k. Observe that
F̃ is not a PFP, since it is not of rectangular shape. We can nevertheless apply to F̃ the
same construction as in the definition of ΨF , obtaining a TLT T̃ . By definition of ΨF , we
have that T̃ = T̂ . Consider the tile labeled by k − 1 in F̃ and the corresponding pointed
cell in T̃ , denoted c. (So, c has label k − 1 for the tile-order.) Because of Observation 19,
c is the rightmost of the pointed cell without any cell below it. In other words, it is the
special point of T̃ . Thus it gets the label k − 1 for the point-order, as required. �

We shall now conclude the proof of Theorem 14.

Proof of Theorem 14. We can now conclude that the two applications ΨF and ΦF are
inverse.

Indeed, let us consider T ∈ Tn. We have proved that ΦF(T ) is in Fn, thus we may define
T ′ = ΨF(ΦF(T )). By definition of ΨF and ΦF , the pointed cell are the same in T and T ′.
Moreover, the point-order of these pointed cells coincide (Lemmas 22 and 23). Hence the
ribbon configuration is the same in T and T ′, which implies that T = T ′. This proves that
ΨF ◦ ΦF = IdTn .

We prove in the same way that ΦF ◦ΨF = IdFn . �
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4. Bijection with twisted Baxter permutations

4.1. A bijection between TLTs and permutations. Recall that TLTs are in size-
preserving bijection with permutations. Indeed, [3] provides several bijections between
them. Here, we define yet another bijection between TLTs and permutations, which is
however related to the so-called code bijection of [3] – see Proposition 26.

Consider a TLT T of size n. As described in Section 2, its pointed cells may be labeled
by the integers 1, . . . , n, by the insertion procedure. We now describe a way to extend this
labeling to the empty cells of T . First, every empty cell c of the first column (resp. row)
of T takes the label of the closest pointed cell above (resp. to the left of) c in the same
column (resp. row). Notice that such a pointed cell always exists, because of the root of
T . Second, we propagate this labeling to all empty cells of T , going from Northwest to
Southeast, as follows. Consider an empty cell c that has not yet been labeled. Proceeding
iteratively, we can assume that c has North, West, and Northwest neighboring cells in T ,
and that these have already been labeled. Denote by y, z and x their respective labels (see
Figure 13, left). We then distinguish four cases to determine the label of c:

• if there is a point above c in the same column, and a point to the left of c in the
same row (recall that such cells are called crossings, a terminology that we will use
again in Lemma 27), then c receives the label x;
• if there is a point above c in the same column, but no point to the left of c in the

same row, then c receives the label y;
• if there is a point to the left of c in the same row, but no point above c in the same

column, then c receives the label z;
• if there is neither a point to the left of c in the same row, nor a point above c in

the same column, then an easy induction ensures that x = y = z, and c receives
this label.

Figure 13 (right) shows an example. We shall denote by iso(c) the label associated with
the cell c.

Recall that we have defined another (partial) labeling, denoted rib, in Definition 5 (p. 5);
note that it is defined for crossings c only, and that in general we have iso(c) 6= rib(c).

x y

z

cell c

For T = the labeling of T is

1 1 1 7 8 11 12

1 1 1 7 9

2 4 5 1 7

3 2 4 5

3 2 10 4

6 3

Figure 13. The iso-labeling of a TLT, which defines the bijection φ. Our
notational convention in the rightmost part of this figure is that pointed cells
of the TLT are indicated by circled entries.

When all cells of T are labeled, we define φ(T ) as follows. Starting from the bottommost
cell of the first column of T , we go along its Southeast border until the rightmost cell of
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the first row of T is reached (that is to say, at every step, we go one cell to the right if this
is a cell of the TLT, one cell up otherwise). Then φ(T ) is just the sequence of labels that
are met along this Southeast border. For example, for the TLT T of Figure 13, we have
φ(T ) = 6 3 2 10 4 5 1 7 9 8 11 12.

Proposition 24. φ is a size-preserving bijection between TLTs and permutations.

Proposition 24 is an immediate corollary of Proposition 26 below. Its proof uses the
following lemma:

Lemma 25. Let T be a TLT of size n+1 and T ′ be the TLT of size n (defined in Section 2)
obtained from T by deletion of the special point s of T with its row (resp. column) and
ribbon (if it exists). Let σ = φ(T ) and σ′ = φ(T ′). Then the deletion of n+1 in σ gives σ′.
Moreover, n+1 is located at the j-th position in σ where j is the number of cells (including
s itself) along the border of T that are located at the Southwest of s.

Proof. That n+ 1 is located at the j-th position in σ is clear by definition of φ. To prove
that σ and σ′ coincide up to the deletion of n+ 1 in σ, let us examine how the labeling of
all the cells of T (except s) is related to the labeling of all the cells of T ′.

Consider first the row (resp. column) of empty cells to the left of s (resp. above s).
The rules defining the labeling of T ensure that each such cell has the same label as the
one immediately above it (resp. immediately to its left). As a consequence, all cells of T
(except s) that are neither in the row (resp. column) nor in the ribbon of s have the same
label in T as in T ′. The only labels yet to determine are those of the cells of the ribbon
of s, when it exists. Because there are no empty rows nor columns, such a cell is always a
crossing, hence it has the same label as its Northwest neighboring cell.

Whether or not the ribbon of s exists, we can now compare the labelings of T and
T ′. And it follows immediately that, up to n + 1 which corresponds to s, the sequence of
integers defining σ that is read along the Southeast border of T is the same as the sequence
read along Southeast border of T ′, i.e., is σ′. �

Proposition 26. Denote by Φ1 the code bijection of [3, Theorem 3.4] between TLTs and
permutations. For any TLT T , denoting by τ the permutation such that Φ1(T ) = τ−1, we
have τ = φ(T ).

Proof. The proof is by induction on the size of T . The base case of the induction is clear.
Let T be a TLT of size n + 1 and T ′ be the TLT of size n obtained from T by deletion
of the special point s of T with its row (resp. column) and ribbon (if it exists). Consider
the permutations σ = φ(T ), σ′ = φ(T ′), τ = Φ1(T )−1 and τ ′ = Φ1(T

′)−1. By induction
hypothesis, σ′ = τ ′. Moreover, by Lemma 25, σ is obtained from σ′ by insertion of n + 1
at position j, where j is the number of cells along the border of T that are located at the
Southwest of s. From the definition of Φ1 in [3], we have similarly that τ is obtained from
τ ′ by insertion of n + 1 at the same position j. We deduce that σ = τ , concluding the
proof. �

4.2. Labels of crossings in the bijection φ. In the labeling of the cells of a TLT T that
defines the bijection φ, the integers labeling the crossings of T have a nice interpretation
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in the permutation φ(T ) – see Lemma 27. This interpretation is essential for the study
of the specialization of φ to Baxter objects, in Subsection 4.3. To explain it, we need to
review the classical notions of vincular and bivincular patterns in permutations [8].

• A (classical) pattern is simply a permutation; but for notational convenience, we
insert a dash between any two adjacent entries. An occurrence of a classical pattern
τ in a permutation σ is a subsequence of σ which is order-isomorphic to τ .
• A vincular pattern (or dashed pattern) is a permutation in which every pair of

adjacent entries may be linked by a dash. Occurrences of a vincular pattern τ in a
permutation σ are defined like in the case of classical patterns, with the additional
restriction that two adjacent entries of τ that are not separated by a dash must
correspond to adjacent entries in σ.
• Bivincular patterns are a generalization of vincular patterns, where adjacency con-

straints are allowed not only on positions but also on values.

Here, we will be interested in very simple bivincular patterns, with only one constraint
on values. Such patterns of size n can be represented as a vincular pattern whose entries
are {1, 2, . . . , n − 1} ∪ {i+}, for some i ∈ {1, 2, . . . , n − 1}. In an occurrence of such a
pattern in a permutation σ, we require that the entries of σ corresponding to i and i+ have
consecutive values (namely, that i+ corresponds to k + 1 when i corresponds to k). The
(bivincular) pattern 2+ − 1− 2 will be of particular interest to us, so let us rephrase: An
occurrence of a 2+ − 1− 2 pattern in a permutation σ is a subsequence σ(i)σ(j)σ(k) of σ,
with i < j < k such that σ(j) < σ(k) and σ(i) = σ(k) + 1.

For example, consider the classical pattern 3−1−2, the vincular pattern 3−12, and the
bivincular patterns 2+−1−2 and 2+−12. Their occurrences in σ = 6 3 2 10 4 5 1 7 9 8 11 12
are summarized in Figure 14. Notice that this permutation σ satisfies σ = φ(T ), where T
is the TLT of Figure 13.

τ Occurrences of τ in σ
3− 1− 2 6 3 4, 6 3 5, 6 2 4, 6 2 5, 6 4 5, 10 4 5, 10 4 7, 10 4 9, 10 4 8,

10 5 7, 10 5 9, 10 5 8, 10 1 7, 10 1 9, 10 1 8, 10 7 9, 10 7 8
3− 12 6 4 5, 10 4 5, 10 1 7, 10 7 9
2+ − 1− 2 6 3 5, 6 2 5, 6 4 5, 10 4 9, 10 5 9, 10 1 9, 10 7 9
2+ − 12 6 4 5, 10 7 9

Figure 14. Occurrences of several patterns in σ = 6 3 2 10 4 5 1 7 9 8 11 12.

Lemma 27. The crossings of any TLT T are in one-to-one correspondence with the oc-
currences of the pattern 2+ − 1− 2 in σ = φ(T ).
Under this correspondence, for any crossing c, the value of σ to which 1 is mapped is iso(c)
defined in Subsection 4.1 and the value of σ to which 2+ is mapped is rib(c) defined in
Definition 5 (p. 5).
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Proof. The proof is by induction on the size of T , the base case of the induction being
clear. Let T be a TLT of size n + 1 and T ′ be the TLT of size n obtained from T by
deletion of the special point s of T with its row (resp. column) and ribbon (if it exists).

The crossings of T are partitioned in two categories: the crossings of T ′ and the cells of
the ribbon of s. As explained in Observation 6, note that all the cells of the ribbon of s
are crossings.

Consider σ = φ(T ) and σ′ = φ(T ′). From Lemma 25, σ′ may be described as σ from
which n+1 has been deleted. Hence, the occurrences of 2+−1−2 in σ are also partitioned
in two categories: the occurrences of 2+−1−2 in σ′ and those were 2+ is mapped to n+1.

By induction, it follows that the crossings of T ′ are mapped to the occurrences of 2+−1−2
in σ′. The assertion about the values is readily checked, since for any such crossing c of
T ′, iso(c) (resp. rib(c)) is the same in T and in T ′.

Consider now a crossing of T which is a cell of the ribbon of s. Recall that the label of
s is n+ 1. Observe now that the pointed cell located at the right extremity of the ribbon
of s is the special point s′ of T ′, whose label is therefore n. From these observations, it is
now clear that the occurrences of 2+− 1− 2 where 2+ is mapped to n+ 1 are in one-to-one
correspondence with the cells of the ribbon of s. In this case, the assertion about the values
follows immediately by definition of iso(·) and rib(·). �

4.3. Specialization of this bijection on Baxter TLTs.

Definition 28 (Twisted Baxter permutations). A twisted Baxter permutation is a per-
mutation σ which avoids the two vincular patterns 2− 41− 3 and 3− 41− 2 (i.e., such that
none of these patterns has any occurrence in σ). We denote by Bn the set of inverses of
twisted Baxter permutations of size n.

Observation 29. The permutations of Bn may alternatively be characterized as the per-
mutations of size n avoiding the patterns 2+− 1− 3− 2 and 2+− 3− 1− 2, or equivalently
the patterns 3− 14− 2 and 3− 41− 2, i.e.,

Bn = Avn(2+ − 1− 3− 2, 2+ − 3− 1− 2) = Avn(3− 14− 2, 3− 41− 2).

Proof. When taking the inverse, the adjacency constraints in a vincular pattern are turned
into constraints that two elements should have consecutive values, (which can be repre-
sented by a bivincular pattern). This proves the first statement of Observation 29.

The second statement of Observation 29 is proved using classical arguments of permu-
tation patterns analysis. We prove that a permutation σ contains a pattern 3 − 14 − 2 if
and only if it contains a pattern 2+ − 1− 3− 2, the case of 3− 41− 2 and 2+ − 3− 1− 2
being similar.

Suppose that σ contains a pattern 3− 14− 2 where the 2 is mapped to the entry i and
the 3 is mapped to the entry j of σ. We consider the integers in the interval {i, . . . , j}.
They stand in σ either to the left or to the right of the subpattern 14, with j to the left
and i to the right. Thus, considering these integers in decreasing order, there exist two
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consecutive of them, k and (k+ 1) with i ≤ k < j, which stand as: (k+ 1) . . . 14 . . . k. This
gives a pattern 2+ − 1− 3− 2.

Conversely, if σ contains a pattern 2+−1−3−2, we consider the entries in the subword
1−3. They are either strictly greater than 2+ or smaller than 2, thus there are two of them
which are at adjacent positions and form a pattern 2+ − 13− 2 and hence 3− 14− 2. �

Figure 15 lists all permutations of B4.

σ1 =1234, σ2 =1243, σ3 =1324, σ4 =1342, σ5 =1423, σ6 =1432,
σ7 =2134, σ8 =2143, σ9 =2314, σ10=2341, σ11=2413, σ12=2431,
σ13=3124, σ14=3214, σ15=3241, σ16=3421, σ17=4123, σ18=4132,
σ19=4213, σ20=4231, σ21=4312, σ22=4321.

Figure 15. The 22 permutations of B4.

There are several bijective proofs in the literature that |Bn| = Baxn for all n, or more
precisely that (some symmetry of) twisted Baxter permutations are enumerated by Baxter
numbers. See [19] for a recursive bijection between Baxter permutations and permutations
avoiding 2 − 14 − 3 and 3 − 14 − 2 (whose reverses are twisted Baxter permutations),
or [29, 17] for more recent bijections between Baxter permutations and twisted Baxter
permutations. In these articles, the pattern-avoiding families of permutations are defined
by the avoidance barred patterns rather than by excluded dashed patterns; but in each case
the equivalence between both descriptions is easily proved, with simple arguments similar
to those in the proof of Observation 29.

Let us denote by ΦB the restriction of the bijection φ of Subsection 4.1 to the set of
Baxter TLTs.

Our goal is to prove the following:

Theorem 30. For any n, ΦB is a bijection between Tn and Bn.

This is an immediate consequence of the following proposition.

Proposition 31. Let σ be a permutation, of size n, and T be the TLT defined by T =
φ−1(σ). Then σ ∈ Bn if and only if T ∈ Tn.

Proof. The key point is Lemma 27. Let σ and T be as in the statement of the proposition,
and consider the sequence of TLTs (Tn = T, Tn−1 = T ′, Tn−2, . . . , T1 = ) defined in
Section 2.

We first prove that if σ contains a pattern 2+ − 3 − 1 − 2 or 2+ − 1 − 3 − 2, then T

contains a pattern
· ••• or · •• • . For this purpose, we consider the occurrence of one of

the patterns 2+ − 3 − 1 − 2 and 2+ − 1 − 3 − 2 in σ such that the value j of the “2+” is
maximal among all possibilities, and such that the value k of the “3” is minimal among
these occurrences. From [3], this guarantees that the ribbon R from j (the “2+”) to j − 1
(the “2”) is exactly the same in Tj and Tk−1. In Tk, the pointed cell labeled by k is either
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to the South or to the East of a crossing which belongs to R, thus giving a pattern
· ••• or

· •• • pattern in T .

Conversely, we prove that if T contains a pattern
· ••• or · •• • , then σ contains a pattern

2+− 3− 1− 2 or 2+− 1− 3− 2. We consider the smallest i such that Ti contains a pattern
· ••• or · •• • . The Southeasternmost point of this pattern in Ti is the special point si of Ti

(because Ti−1 avoids the two patterns). Moreover, it is to the South or to the East of a
crossing of Ti, which we denote c. Let us denote σi = φ(Ti). We claim that σi contains a
2+ − 3 − 1 − 2 or 2+ − 1 − 3 − 2 pattern. Indeed, such a pattern can be identified using
Lemma 27. More precisely, it is enough consider the entries of σi corresponding to the
following cells of Ti: the pointed cell labeled iso(c) (which corresponds to the “1” in the
pattern), si (which is the“3”) and the two extremities of the ribbon of c (which are the
“2+” and “2”). To conclude, Lemma 25 implies that σi is a pattern of σ, so that σ also
contains a 2+ − 3− 1− 2 or 2+ − 1− 3− 2 pattern. �

Figure 16 shows an example of a Baxter TLT T with the corresponding permutation
ΦB(T ).

1 1 1 1 3 4 4 4 4 4 4 4 4 15 23

1 1 1 1 3 5 5 5 14 16 16 16 16 4 15

1 1 1 1 3 5 5 5 14 17 17 17 24 16 4

1 1 1 1 3 5 5 5 14 18 20 21

1 1 1 1 3 6 8 19 5 14 18 20

1 1 1 1 3 6 8 22 19 5 14

1 1 1 1 3 7 6

2 9 9 9 1 3 7

2 10 10 12

2 11 13 10

2 11 13 10 12 9 1 3 7 6 8 22 19 5 14 18 20 21 17 24 16 4 15 23

Figure 16. A Baxter TLT T (circled entries represent pointed cells), its
labeling by iso(·), and the permutation ΦB(T ).

4.4. ΦB and classical permutation statistics. It it interesting to note that the iso-
labeling of a Baxter TLT allows to interpret some classical statistics on the permutation
ΦB(T ) directly on the Baxter TLT T . We describe here these interpretations for the
descents and the left-to-right minima.

4.4.1. Descents. Our notational convention in Figures 17 to 20 is that x or represents

a pointed cell, is a region of empty cells, is a region of pointed and/or empty
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cells, and is a region of cells containing at least a point. Note that some regions
contain only empty cells because of the excluded patterns that define Baxter TLTs.

Lemma 32. Let T be a Baxter TLT. Let c be a (pointed or empty) cell of T that does not
belong to the first column (resp. row) and without any pointed cell below it (resp. to its
right). Denote by a the iso-label of c and by b the iso-label of the cell2 immediately to the
left of (resp. above) c. Then ba (resp. ab) is a factor3 of σ = ΦB(T ).

Proof. If c is the bottom-most (resp. rightmost) cell in its column (resp. row), then the
claim immediately holds by definition of ΦB. Otherwise, we prove that the cell immediately
below (resp. to the right) of c satisfies the same conditions as c, induction giving then the
conclusion.

Suppose that c does not belong to the first column and has no pointed cell below it.
Consider the cell immediately below c, denoted c′. Note that our assumptions ensure that
c′ is empty. Two cases may occur, as shown on Figure 17 (left): either there is no pointed
cell to the left of c′, or there is at least one. In the first case, c′ has no pointed cell below it,
is labeled by a and the cell to its left by b, so that we can proceed inductively, and obtain
that ba is a factor of σ. In the second case, let us first notice that there is at least a point
above c′ (since the column of c′ contains at least a point). This implies that there is no
point to the right of c′ in its row (or otherwise, we would obtain a pattern · •• • , with a
point above c′ and two points to the left and right of c′). This also implies that the label of
c′ is b (by the first case of the rule for the propagation of the iso-label). The cell above c′ is
nothing but our original cell c, so it is labeled by a. We can therefore apply our inductive
statement on c′, obtaining that ba is a factor of σ.

In the case where c does not belong to the first row and has no pointed cell to its right,
we proceed similarly, distinguishing cases as shown on Figure 17 (right). �

b a

b a

b a

b

b

a

b

a

b

a b

Figure 17. Proof of Lemma 32 when c has no pointed cell below it (left),
and when c has no pointed cell to its right (right).

dans la deuxième et la quatrième figure, la case contenant le b bleu devrait être en grisé
clair.

2Note that this cell exists, because of our assumption that c does not belong to the first column (resp.
row).

3As in words, a factor in a permutation is a sequence of symbols which appear consecutively.
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Definition 33. A point of a Baxter TLT is column-extremal (resp. row-extremal) if it
does not belong to the first column (resp. row) and there is no pointed cell below it (resp.
to its right).

The column-ancestor (resp. row-ancestor) of a column-extremal (resp. row-extremal)
point x is the parent of the top-most (resp. left-most) point in the column (resp. row) of
x.

Figure 18 illustrates this definition.
In Definition 33, note that the top-most (resp. left-most) point in the column (resp. row)

of x is not the root of the TLT, since x does not belong to the first column (resp. row). This
ensures that it has a parent so that column- and row-ancestors are well defined. Note also
that the column-ancestor (resp. row-ancestor) of a column-extremal (resp. row-extremal)
point x is located in a column to the left of x (resp. in a row above x).

y

x y x

y

x

y

x

Figure 18. The column-ancestor (resp. row-ancestor) y of a column-
extremal (resp. row-extremal) point x in a Baxter TLT, with the special
case where x is the only point in its column (resp. row) shown on the right.

Proposition 34. In a Baxter TLT T , consider a column-extremal (resp. row-extremal)
point x and its column-ancestor (resp. row-ancestor) y. Denote by a the label of x and by
b the label of y. Then ba (resp. ab) is a factor of σ = ΦB(T ) and forms an ascent (resp.
descent) in σ.

Proof. First, we will see that the cell immediately to the left of (resp. above) x has iso-label
b. Lemma 32 will then ensure that ba (resp. ab) is a factor of σ. The claim we actually
prove is a bit more general: it states that all the cells in the rectangle extending from y
to the cell immediately to the left of (resp. above) x have iso-label b. (See Figures 19 and
20.)

Assume that x is a column-extremal point and that y is its column-ancestor, and consider
the rectangle extending from y to the cell immediately to the left of x. This case is
illustrated on Figure 19. For the cells of the top row of this rectangle, our claim follows
easily from the third case defining the propagation of the iso-labels, since such cells have no
point of T above them (or a pattern · •• • would be created). It is just as easy for the cells
of the leftmost column of this rectangle, for which the second case of the propagation rule

applies, since they have no point of T to their left (or a pattern
· ••• would be created). For



26 BAXTER TREE-LIKE TABLEAUX

the remaining cells of this rectangle, the last case of propagation rule applies, all together
proving our claim.

The case where x is a row-extremal point and y is its row-ancestor is handled similarly,
as shown by Figure 20.

Finally, the parent of any point x in an TLT has a label smaller than the one of x, and
so do all ancestors of x. This proves that ba (resp. ab) is an ascent (resp. descent) of
σ. �

b

a

. . . b

.

.

.

b

.

.

.

. . .

.

.

.

b

b . . . b b a. . . b b a

Figure 19. Propagation of the iso-label of the column-ancestor of a column-
extremal point, in all possible configurations.

b

a

.

.

.

b

. . . b

.

.

.

.

.

.

. . . b

b

.

.

.

b

b

a

.

.

.

b b

a

Figure 20. Propagation of the iso-label of the row-ancestor of a row-
extremal point, in all possible configurations.

Corollary 35. For a Baxter TLT T , all the ascents and descents of σ = ΦB(T ) are those
described in Proposition 34.

Proof. Denote by n the common size of T and σ. From Definition 7, T has in total n+1 rows
and columns, so that there are n−1 distinct pairs (x, y) where x is a column-extremal (resp.
row-extremal) point and y is its column-ancestor (resp. row-ancestor). Proposition 34 then
gives n−1 distinct factors of length 2 in σ, which are either ascents or descents as described
in Proposition 34, so that the ascents and descents of σ are completely described. �

4.4.2. Left-to-right minima.

Proposition 36. Let T be a Baxter TLT, and denote by T` and Tr the Baxter TLTs
defined in Corollary 10 (p.8). Let σ = ΦB(T ), and decompose σ around its minimum value
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as σ = σ`1σr. The permutations ΦB(T`) and ΦB(Tr) are order-isomorphic to the sequences
σ` and σr respectively.

Proof. The claim obviously holds when T` or Tr is empty, so assume they are not.
Notice first that the points of T` (resp. Tr) may be equipped with two different labelings:

one labeling is inherited from the labeling of the TLT T , and one is its own labeling as
TLTs. These are not identical, but by construction, they are “order-isomorphic” (that is
to say, the comparison between the labels of any two points is the same in both labelings).

Now, both labelings may be propagated following the rules of propagation of the iso-
labeling, yielding two order-isomorphic labelings of the cells of T` (resp. Tr).

To conclude, it is enough to prove that σ` (resp. σr) is the word that is read along
the Southeast border of T` (resp. Tr), in the iso-labeling propagated from the original
labeling of T . And this claim holds because all cells in the Southeast block identified by
Corollary 10 are crossings, and because the iso-labels of crossings are inherited following
Northeast-Southwest diagonals. �

Corollary 37. Let T be a Baxter TLT, and let σ = ΦB(T ). The left-to-right minima of σ
are the labels of the points of the left-most column of T .

Proof. It follows easily from Proposition 36 by induction.
Given T , denote by T` and Tr the Baxter TLTs defined in Corollary 10. Decompose

also σ as σ`1σr like in the statement of Proposition 36. The claim clearly holds when T` is
empty: indeed, the only point of T in the first column is the root of T , labeled by 1, and
σ starts with 1. If T` is not empty, the left-to-right minimal of σ are those of σ` and 1.
Induction ensures that the left-to-right minima of σ` are the labels of the points in its first
column. And 1 is the label of the root of T , which is the only point in the first column of
T that is not in the first column of T`. �

5. Bijection with non-intersecting lattice paths

Definition 38 (Triples of non-intersecting lattice paths). A triple of non-intersecting lat-
tice paths of size n is a set of three lattice paths, with unitary N = (0, 1) and E = (1, 0)
steps, that never meet, which respectively start at (1, 0), (0, 1) and (−1, 2) and end at
(n− i, i), (n− i− 1, i+ 1) and (n− i− 2, i+ 2) for some i ∈ [0..(n− 1)] (thus each of the
three paths has n− 1 steps).

Let us denote by Pn the set of triples of non-intersecting lattice paths of size n.

Figure 24 (p. 31) (right) shows an example of triple of non-intersecting lattice paths of
size 18, and Figure 21 shows all triples of non-intersecting lattice paths of size 4. On these
figures, the extremities of the paths are indicated by circles; an additional E (resp. N)
step has been represented at the beginning (resp. end) of the middle and lower paths. The
reason for this choice will appear clearly later.

From the general techniques developed in [21, 16] (and applied to the case of interest to
us in [26]), we know that triples of non-intersecting lattice paths are enumerated by Baxter
numbers. In the following, we exhibit a size-preserving bijection between these objects and
Baxter TLTs.
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π1 = , π2 = , π3 = ,

π4 = , π5 = , π6 = ,

π7 = , π8 = , π9 = ,

π10 = , π11 = , π12 = ,

π13 = , π14 = , π15 = ,

π16 = , π17 = , π18 = ,

π19 = , π20 = , π21 = , π22 = .

Figure 21. The 22 triples of non-intersecting paths of P4.

5.1. A bijection between binary trees and pairs of non-intersecting lattice paths.
The announced bijection actually extends a bijection between binary trees and pairs of
non-intersecting lattice paths, which we describe below. In our context, a pair of non-
intersecting lattice paths of size n is a pair of lattice paths with unitary N and E steps,
which never meet, starting at (1, 0) and (0, 1) and ending at (n− i, i) and (n− i− 1, i+ 1)
for some i ∈ [0..(n− 1)] (thus each of the two paths has n− 1 steps).

To any binary tree B, we associate a word w(B) on the alphabet {L`, Lr, E`, Er} as
follows. We complete B by leaves, i.e., we compute the complete binary tree Bc whose
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internal nodes form the tree B. We perform the depth first traversal of Bc, starting on
the left. We start with an empty word w = ε. Whenever a left leaf (resp. right leaf, left
internal edge, right internal edge) is first encountered, we append L` (resp. Lr, E`, Er) to
the end of w (except for the first and the last leaves of Bc, in which case we do nothing).
When the traversal of Bc is over, we set w(B) = w.

We define w1(B) from w(B) by deleting the letters L` and Lr and by replacing letters
E` (resp. Er) by N (resp. E). Similarly, we define w2(B) from w(B) by deleting the
letters E` and Er and by replacing letters L` (resp. Lr) by E (resp. N). Finally, we set
ϕ(B) = (w1(B), w2(B)). Our notational convention is that the word w1(B) (resp. w2(B))
designate the upper (resp. lower) path of the pair, starting at (0, 1) (resp. (1, 0)).

Note that treating the first and last leaves of Bc like all others does not change much
in the pair of words produced: it only results in replacing w2(B) by E · w2(B) · N . In
figures, we usually indicate those additional steps, before and after the circles marking the
extremities of the paths.

B = and ϕ(B) =

Figure 22. The bijection ϕ. On the left, a binary tree B is shown in blue,
and the leaves added to obtain Bc are drawn in green. On the right, the two
paths w1(B) and w2(B) that define ϕ(B) are shown respectively in blue and
green.

In this figure, I would add the first and the last leaves of Bc, and the E and N step at
the ends of the green path.

Figure 22 provides an example of this construction. For this particular tree B, we have
w(B) = E`E`LrErE`L`LrErL`ErL`LrErE`E`L`LrLr, so that w1(B) = NNENEEENN
and w2(B) = NENEENENN .

Proposition 39. ϕ is a bijection between binary trees having n nodes and pairs of non-
intersecting lattice paths of size n.

Notice that ϕ has already been defined in [14], where it is stated that it provides an
alternative description of the bijection of [12] between binary trees and parallelogram
polyominoes. Proposition 39 follows directly from this statement, which is however not
proved in [14]. For this reason, we prefer to give here a proof of Proposition 39.

Proof. Denoting Cn = 1
n+1

(
2n
n

)
the n-th Catalan number, we know that there are Cn binary

trees with n nodes as well as Cn pairs of non-intersecting lattice paths of size n [21, 16].
Therefore, to prove that ϕ is a bijection as claimed, it is enough to prove that the image
of ϕ is included in the set of pairs of non-intersecting lattice paths, and that ϕ is injective.

Let B be a binary tree with n nodes. We want to prove that ϕ(B) is a pair of non-
intersecting lattice paths of size n. For this purpose, let us define the correspondence (?)
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between the left (resp. right) internal edges and the right (resp. left) leaves of Bc (except
the first and the last leaves) as follows: to any left (resp. right) internal edge whose lower
node is x, associate the right (resp. left) leaf that is reached when following (in Bc) only
right (resp. left) edges from x until a right (resp. left) leaf is reached. A simple observation,
which is however a key fact, is that this correspondence is a bijection. This is illustrated
on Figure 23. For the green labels, change x to x? and i to i? for all i?

x

x and

x

x

2

1

4

3

5

6

9

8

7

2

3 4 5

6 1

7 9

8

Figure 23. The correspondence (?): its definition (left) and an illustration
with the example of Figure 22 (right). On the right, the correspondence is
indicated by a labeling of the nodes by integers: the leaf labeled by i is in
correspondence with the internal edge whose lower node is labeled by i.

Now let us denote by i ∈ [0..(n−1)] the number of N steps of w1(B). Since w1(B) starts
at (0, 1), it ends at (n− i− 1, i+ 1). Because (?) is a bijection, w1(B) and w2(B) have the
same number of N (resp. E) steps, so that w2(B), starting at (1, 0), ends at (n− i, i).

Next, we claim that w1(B) is always strictly above w2(B). To prove this claim, let us
consider the coordinates of the points visited by w1(B). They are of the form (number of
right edges visited, 1+ number of left edges visited) when we consider all instants of the
depth first traversal of Bc. Similarly, the coordinates of the points of w2(B) are of the
form (1+number of left leaves visited, number of right leaves visited) (always leaving aside
the first and last leaves). So the claim will follow if we prove that at any instant of the
traversal of Bc, if the number of left leaves visited (including the first one) is equal to the
number of right edges visited, then the number of left edges visited is larger than or equal
to the number of right leaves visited. This is easily proved using the correspondence (?)
between leaves and edges of B. Indeed, in the traversal of B, any left (resp. right) edge is
visited before the corresponding right (resp. left) leaf.

It remains to prove that ϕ is injective. Consider B and B′ two different binary trees
with n nodes. Of course, the words w(B) and w(B′) encoding the depth-first traversals of
Bc and B′c are different. We prove that w(B) 6= w(B′) implies that ϕ(B) 6= ϕ(B′).

Consider the first time w(B) and w(B′) differ: w(B)j 6= w(B′)j while w(B)k = w(B′)k
for all k < j. The possible values for the pair of letters (w(B)j, w(B′)j) (up to the order)
are described in the following table, together with the subsequent difference between ϕ(B)
and ϕ(B′). In this table, we denote by i1 (resp. i2) the number of letters Er or E` (resp.
Lr or L`) among the first j letters of w(B). Therefore, the letter w(B)j corresponds either
to w1(B)i1 or to w2(B)i2 (depending on whether w(B)j ∈ {Er, E`} or w(B)j ∈ {Lr, L`}).
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w(B)j w(B′)j Difference Fact(s) used
E` Er w1(B)i1 = N and w1(B

′)i1 = E (obvious)
E` L` w1(B)i1 = N and w1(B

′)i1 = E (a)
E` Lr w1(B)i1 = N and w1(B

′)i1 = E (a)
Er Lr w2(B)i2 = E and w2(B

′)i2 = N (b)
Er L` In this case, w(B)j−1 6= w(B′)j−1, (c) and (d)

contradicting the minimality of j.
Lr L` w2(B)i2 = N and w2(B

′)i2 = E (obvious)

All these cases follow from the following facts:

(a) When the traversal reaches a leaf, then the next edge to be discovered is a right
edge.

(b) When the traversal reaches an edge, then the next leaf to be discovered is a left
leaf.

(c) In any depth-first traversal word w(B), any letter Er follows a letter Lr or L`.
(d) In any depth-first traversal word w(B), any letter L` follows a letter Er or E`. �

5.2. Extension to a bijection between Tn and Pn. To any TLT T ∈ Tn, we may
associate a binary tree B(T ) with n nodes, as explained in Section 2 (see also an example
in Figure 24, left). We define ΦP(T ) = (wtop(T ), wmiddle(T ), wbottom(T )) as follows:

• wtop(T ), from (−1, 2) to (n− i− 2, i+ 2), is w1(B(T )).
• wmiddle(T ), from (0, 1) to (n− i− 1, i+ 1), is w2(B(T )).
• wbottom(T ), from (1, 0) to (n − i, i), is the Southeast border of T , except the first

and the last edge.

Figure 24 illustrates this construction. Note that the TLTs of Figures 24 and 5 (right)
(p.8) differ only by their underlying Ferrers diagrams.

T = and ΦP(T ) =

Figure 24. The bijection ΦP .

Recall from Corollary 9 that any binary tree is the underlying tree of a unique rectangular
Baxter TLT. This fact will be useful both for proving that ΦP is well-defined and that it
is a bijection between Tn and Pn.

Lemma 40. ΦP is well-defined, i.e., for any T ∈ Tn, ΦP(T ) is a triple of non-intersecting
lattice paths of size n.
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Proof. From Proposition 39, we know that wtop(T ) and wmiddle(T ) are a pair of non-
intersecting lattice paths of size n. So the conclusion will follow if we prove that wmiddle(T )
and wbottom(T ) also form a pair of non-intersecting lattice paths of size n. This is an im-
mediate consequence of the following claim (which we then prove): E · wmiddle(T ) ·N can
also be interpreted as the Southeast border of the thinnest Ferrers diagram containing all
the points of T (see Figure 24, left).

From Corollary 9, we know that there is a unique TLT T ′ of rectangular shape avoiding

the patterns · •• • and
· ••• whose underlying binary tree is B(T ). Moreover, the proof of

Corollary 9 provides a description of T ′. By uniqueness, the points of T and T ′ are located
in the same cells. Consequently, it is enough to show that the Southeast border of the
thinnest Ferrers diagram containing all the points of T ′ is E · wmiddle(T ) ·N .

From the description of T ′ in the proof of Corollary 9, we see that the Southeast border
of the thinnest Ferrers diagram containing all the points of T ′ is nothing but the reading
of the leaves of B(T ′)c in the depth-first traversal of B(T ′)c (with the encoding E for a
left leaf and N for a right leaf). By definition, E · wmiddle(T ) · N describes the leaves of
B(T )c that are visited in the depth-first traversal of B(T )c. Because B(T ) = B(T ′), the
conclusion follows. �

Theorem 41. For any n, ΦP is a bijection between Tn and Pn.

Proof. Lemma 40 ensures that the image of Tn by ΦP is included in Pn. In addition,
from Theorem 30 and [17, for instance], the cardinality of Tn is Baxn, and the same
holds for Pn [26]. So it is enough to prove that ΦP is a bijection. By Corollary 9,
a Baxter TLT T ∈ Tn is uniquely characterized by the pair (B(T ), wbottom(T )). More-
over, by Proposition 39, we may associate with B(T ) the pair (wtop(T ), wmiddle(T )), and
this correspondence is bijective. Therefore, the correspondence between T ∈ Tn and
(wtop(T ), wmiddle(T ), wbottom(T )) ∈ Pn is a bijection. �

5.3. Refined enumeration using the Lindström-Gessel-Viennot lemma. We derive
easily from the Lindström-Gessel-Viennot lemma [21, 16] a refined enumeration of triples
of non-intersecting paths, according to the parameters shown on Figure 25. This yields a
refined enumeration of Baxter TLTs via ΦP , and subsequently of PFPs and permutations
avoiding 3− 14− 2 and 3− 41− 2 via ΦF and ΦB.

Lemma 42. The number of triples of non-intersecting paths of size n such that each path
has k E steps and n− 1− k N steps, the upper path starts with r− 1 N steps followed by
an E step, and ends with p − 1 E steps preceded by a N step, and the lower path starts
with s − 1 E steps followed by a N step, and ends with q − 1 N steps preceded by an E
step (see Figure 25) is given by the determinant:

LGV (n, k, r, p, s, q) =

∣∣∣∣∣∣
(
n−1−r−p
k−p

) (
n−1−p
k−p

) (
n−1−s−p
k−s−p

)(
n−1−r
k

) (
n−1
k

) (
n−1−s
k−s

)(
n−1−r−q

k

) (
n−1−q
k

) (
n−1−s−q
k−s

)
∣∣∣∣∣∣ .

Proof. This is a simple application of the results of [21, 16]. �
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n− k

r − 1

p− 1

s− 1

q − 1

k

Figure 25. Parameters for the refined enumeration of triples of non-
intersecting paths in Lemma 42.

Corollary 43. The determinant LGV (n, k, r, p, s, q) also counts the number of Baxter
TLTs of size n, with k + 1 columns, r points in the first column, and p− 1 columns to the
right of the rightmost column containing at least two points4, and such that the Southeast
border of the Ferrers diagram of the TLT starts with s horizontal steps and ends with q
vertical steps.

For example, the TLT T of Figure 24 has parameters n = 18, k = 10, r = 3, p = 2,
s = 5, and q = 2.

Proof. It can be easily checked that all parameters in Lemma 42 are translated on TLTs
through ΦP as stated in Corollary 43. For instance, the upper path of ΦP(T ) ends with
exactly p − 1 E steps if and only if exactly the last p − 1 internal edges of B(T ) in the
depth-first search are right edges, which translates into exactly the p−1 rightmost columns
of T containing a single point. �

Corollary 44. The number of PFPs of size n, in a bounding rectangle of height n−k and
width k+1, with r tiles whose left edge is supported by the left edge of the bounding rectangle,
and such that the rightmost vertical line that supports the left edge of at least two tiles is
at distance p from the right edge of the bounding rectangle is

∑
q,s LGV (n, k, r, p, s, q).

The number of permutations of size n, avoiding 3−14−2 and 3−41−2, with k ascents
and r left-to-right minima is

∑
p,q,s LGV (n, k, r, p, s, q).

Proof. It is enough to check that the parameters n, k, r and p in Corollary 43 are translated
on PFPs and permutations avoiding 3− 14− 2 and 3− 41− 2 via ΦF and ΦB as expressed
in the statement of Corollary 44.

4Necessarily, each of these p− 1 columns contains a single point.
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Because ΦF maps T(n−k,k+1) to F(n−k,k+1), we are only left with the interpretation of the
parameters r and p on PFPs. They follow easily from the description of ΦF , since any
point x of T is associated with a tile whose top-left corner is the cell containing x.

Consider now T ∈ Tn and σ = ΦB(T ) ∈ Bn. From Corollary 35, the number of ascents
in σ is the number of column-extremal points in T . Since there is one such point in each
column except the first, this solves the case of parameter k. From Corollary 37, there is
one left-to-right minimum for each point in the first column, proving the statement for the
parameter r. �

6. Specializations of the bijections

Using the underlying tree structure of TLTs, we define a subfamily (denoted T̂ ) of Baxter
TLTs whose nice combinatorial properties are explained in this section.

For each of the studied bijections, ΦP , ΦF and ΦB, we consider its restriction to the
domain T̂ . These restrictions, denoted Φ̂P , Φ̂F and Φ̂B, provide bijections between T̂n and
subclasses of Pn, Fn and Bn, which we denote P̂n, F̂n and B̂n. As we shall see, the family
P̂n is well-known, giving easy access to the enumeration of these restricted families, the
definition of F̂n involves a new type of constraint in floorplans, and the permutations of
B̂n are natural combinatorial objects. In particular, the enumeration of the permutations
of B̂n triggers some intriguing enumerative problems, which we discuss at the end of this
section.

For now, we define the subfamily T̂ and state a lemma which is essential to analyze the
restrictions of our bijections.

Definition 45. A complete Baxter TLT is a Baxter TLT whose underlying tree is a
complete binary tree.

An almost complete Baxter TLT of size n is a Baxter TLT of size n whose underlying
tree is almost complete: namely, it is complete binary tree from which the following have
been removed:

• the leaf ` that is reached from the root when following only left edges, if n is even;
• ` and the leaf r that is reached from the root when following only right edges, if n

is odd;

We denote by T̂n the set of almost complete Baxter TLT of size n.

Figures 26 and 27 show some examples.

Lemma 46. Let T be a Baxter TLT, and define its leaves as its points which correspond
to leaves of the underlying tree of T . The followings are equivalent:

• T is a complete Baxter TLT;
• the leaves of T form a staircase shape, i.e., they are located on the Southwest-

Northeast diagonal which starts at the bottommost point of the first column of T ,
and occupy every cell of this diagonal.

Proof. We note that a complete Baxter TLT is necessarily of odd size. We also observe
that a TLT satisfying the second condition above is also necessarily of odd size: indeed,
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The complete binary tree with 3 vertices (denoted t3),
with all the complete Baxter TLTs of size 3,

and all the almost complete Baxter TLTs of size 2 and 1 (obtained from t3).

The complete binary trees with 5 vertices (denoted t5 and t′5),
with all the complete Baxter TLTs of size 5,

and all the almost complete Baxter TLTs of size 4 and 3 (obtained from t5 and t′5).

Figure 26. Small complete and almost complete Baxter TLTs. (For con-
sistency with TLTs, the roots of binary trees are drawn in the top left.)

Figure 27. Left: A complete Baxter TLT of size 9. Right: Two almost
complete Baxter TLTs, of respective size 10 and 7.

recalling that there are no empty rows nor columns in TLTs, it is forced to have n rows
and n columns for some n, and therefore 2n− 1 points.

We prove the claimed statement for all Baxter TLTs of size 2n+ 1 by induction on n.
The base case n = 0 is obvious.
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Let T be a Baxter TLT of size 2n + 1 for n > 0. Consider the bi-partition (L,R) of
the non-root points of T where L (resp. R) contains all points of T in the left (resp.
right) subtree pending from the root of the underlying tree of T . From Proposition 8 and

Corollary 10, T can be decomposed into 4 blocks as
A
BC
D

, with A containing only the

root of T , B (resp. D) containing all points of L (resp. R), and C containing no points.
We recall that a binary tree is complete if and only if the left and right subtrees pending
from its root are also complete binary trees.

It follows that, if T is a complete Baxter TLT, then B and D are also complete Baxter
TLTs. They are smaller than T , and by induction have their leaves which form a staircase
shape. This consequently also holds for the leaves of T , which form a staircase shape
obtained from the concatenation of those of B and D. Conversely, if the leaves of T form
a staircase shape, then it also holds for those of B and D, which are therefore complete
Baxter TLTs, implying that T also is a complete Baxter TLT. �

6.1. Restriction on lattice paths.

Proposition 47. Let P̂n be the set of pairs of Dyck paths with n steps, if n is even (resp.
with n+ 1 and n− 1 steps respectively, if n is odd). Define Φ̄P as follows:

• if n is even, then for all T ∈ T̂n, writing Φ̂P(T ) = (wtop, wmiddle, wbottom), we set
Φ̄P(T ) = (N · wtop, wbottom ·N);

• if n is odd, then for all T ∈ T̂n, writing Φ̂P(T ) = (wtop, wmiddle, wbottom), we set
Φ̄P(T ) = (N · wtop · E,wbottom).

Then, it holds that Φ̄P is a bijection between T̂n and P̂n.

Proof. To prove this statement, we must keep in mind the interpretation of the three paths
of Φ̂P(T ) = (wtop, wmiddle, wbottom) for T ∈ Tn explained in the proof of Lemma 40. In
particular, the following holds.

• wtop encodes the underlying tree structure of T . In the present case where T ∈ T̂n,
this implies that N · wtop when n is even and N · wtop · E when n is odd encodes
the complete binary tree from which T was built (hence, in particular, is a generic
Dyck path).
• wmiddle has been obtained from the path which follows the leaves of T by removing

the first and the last steps. For T ∈ T̂n, Lemma 46 implies that wmiddle is an
alternation of N and E steps starting with an E.
• wbottom is the Southeast border of T from which the first and last steps have been

removed. Since wbottom is a path located to the Southeast of wmiddle, and given the
very specific form of wmiddle in our case, this implies that wbottom · N if n is even
(resp. wbottom if n is odd) is the symmetric of a generic Dyck path w.r.t. the main
diagonal.

Summing up, this shows that pairs (dt, db) of Dyck paths in P̂n are (up to removing
initial and/or final steps as described above) in bijection with triples of non-intersecting
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paths of size n whose middle path is an alternation of single N and E steps starting with
E, which are themselves in bijection with T̂n by Lemma 46, thus concluding the proof. �

Figure 28 shows the triples of non-intersecting paths and the corresponding pairs of Dyck
paths of the two almost complete Baxter TLTs of even and odd size given in Figure 27.

and and

Figure 28. Two triples of non-intersecting paths and the corresponding
pairs of Dyck paths.

Voir si c’est opportun de mettre certains pas en pointillé (et le faire de manière
cohérente).

Proposition 47 has an immediate enumerative consequence:

Corollary 48. For any n, the cardinality of T̂2n is C2
n, and the one of T̂2n+1 is Cn · Cn+1,

where Cn = 1
n+1

(
2n
n

)
is the n-th Catalan number.

6.2. Restriction on floorplans. In the characterization of the image of T̂n under the
bijection ΦF between Baxter TLTs and packed floorplans, we are led to defining a new
class of floorplans with constraints along the Southwest-Northeast diagonal.

Recall from Section 3 that floorplans are rectangular partitions of a rectangle such that
every pair of segments with non-empty intersection forms a T-junction.

Definition 49. An alternating floorplan of size n is a partition of a rectangle R of width
dn+1

2
e and height bn+1

2
c into n rectangular tiles whose sides have integer lengths such that

the path from the Southwest corner to the Northeast corner of R which moves alternately
one unit step East and one unit step North (starting with East) is included in the boundaries
of partitioning rectangles of F . We call this path the alternating path of F .

We denote by F̂n the set of alternating floorplans of size n.

Figure 29 (left) shows an example of an alternating floorplan.

We will show that F̂n is indeed included in the family Fn of packed floorplans. To this
end, we first state an important property of the alternating paths of alternating floorplans.

Lemma 50. In any alternating floorplan F , every tile has either its bottomright corner or
its topleft corner on the alternating path of F .
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Figure 29. Left: An alternating floorplan F of size 26. Right: The almost
complete Baxter TLT T of size 26 such that Φ̂F(T ) = F .

Proof. Let us denote by n the size of F . By definition, the alternating path of F contains
dn/2e factors EN and bn/2c factors NE, each corresponding to a bottomright corner or a
topleft corner of a tile of F , respectively. This gives a total of n tiles, necessarily all distinct,
and therefore all tiles of F have their bottomright or topleft corner on the alternating path
as claimed. �

When a tile t of an alternating floorplan F has its topleft (resp. bottomright) corner on
the alternating path of F , we say that t is below (resp. above) the alternating path of F .

Lemma 51. Every alternating floorplan is a packed floorplan.

Proof. Let F be an alternating floorplan of size n. To prove that F is a packed floorplan,
comparing with Definition 11, we only need to check that F avoids the pattern .

Assume that two tiles t and t′ of F form a pattern. Using Lemma 50, we distinguish

three cases (w.l.o.g. up to exchanging t and t′) : either t is above the alternating path
and t′ is below it, or t and t’ are both above the alternating path, or they are both below.
In the first case, because of the alternating path condition, the bottomright corner of t is
forced to sit either above and to the right, or below and to the left, of the topleft corner
of t′. But this is impossible when t and t′ form a pattern . In the second case, the

bottomright corners of t and t′ are forced to sit as yy by the alternating path condition,

but as yy by the occurrence of , also yielding a contradition. The third case is

similar, considering the topleft corners of t and t′. This concludes the proof that F avoids
, hence is a packed floorplan. �

Proposition 52. Φ̂F is a bijection between T̂n and F̂n .
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Proof. Consider an alternating floorplan F ∈ F̂n and its preimage T under ΦF . We know
that T is a Baxter TLT. To prove that it is almost complete, we use Lemma 50 to ensure
that T as bn/2c points on the main diagonal (shifted by one unit to the right): namely,
those corresponding to the topleft corners of the tiles below the alternating path of F .
Then, Lemma 46 ensures that T is an almost complete Baxter TLT.

Conversely, for an almost complete Baxter TLT T , we show that ΦF(T ) is an alternating
floorplan by ensuring that it contains a valid alternating path. Lemma 46 forces the
placement of the topleft corners of some tiles of F , namely, those whose topleft corner is
a leaf of T . As a consequence, the path E(NE)bn/2cN δ is supported by the sides of the
tiles of F , for δ = 0 if n is even and δ = 1 is n is odd. More precisely, the first E step is
supported by the bottom edge of the bounding rectangle of F (hence by its bottomleftmost
tile), each NE factor surrounds the topleft corner of a tile corresponding to a leaf of T ,
and, in case n is odd, the final N step is supported by the right edge of the bounding
rectangle of F (hence by its toprightmost tile). �

Figure 29 (right) shows an example of an almost complete Baxter TLT which is in

bijection by Φ̂F with the alternating floorplan on the left of this figure.

6.3. Restriction on permutations. We recall that a permutation σ is alternating if the
comparisons between consecutive elements alternate between ascents and descents, that
is to say if σ(1) > σ(2) < σ(3) > σ(4) < . . . or σ(1) < σ(2) > σ(3) < σ(4) > . . . .
Alternating permutations arise naturally when studying the restriction of our bijection ΦB
to T̂n.

Proposition 53. Let B̂n be the set of permutations in Bn that are alternating and start
with an ascent. Φ̂B is a bijection between T̂n and B̂n .

Proof. We first prove that the image of T̂n by Φ̂B is included in B̂n. So, consider T ∈ T̂n
and its image σ = Φ̂B(T ). We know that σ is in Bn, and want to prove that σ is alternating
starting with an ascent.

By construction, σ is the sequence of iso-labels read along the Southeast border of
T . Recalling the rule for propagation of iso-labels (and in particular, the first item in
Subsection 4.1), and the placement of the leaves of T (see Lemma 46), it follows that σ
is also read on the path “inside” T along the boundary determined by the leaves. More
precisely, we mean that σ is obtained by reading the iso-labels of the following cells of T ,
in this order: the bottommost cell of the first column, then its right neighbor (which is the
first leaf), then the cell above it, then its right neighbor (which is the second leaf), and all
cells subsequently met by moving alternately one cell to the top and one cell to the right,
until the rightmost cell of the top row is reached. See Figure 30 for an illustration of this
fact.

So, σ alternates between reading iso-labels of leaves and iso-labels of pointed or empty
cells corresponding to internal nodes. The two leaves surrounding a pointed or empty cell
with iso-label x have larger iso-labels, because the pointed cell of T carrying the iso-label
x is an ancestor of both leaves. So σ is alternating. Moreover, σ starts with an ascent
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because the first leaf is the second cell whose iso-label is read when building σ (the first
cell read carrying as above the iso-label of an ancestor of this first leaf).

1 1 3 5 5 10

1 1 3 6 7

1 1 3 8 6

1 1 4 3

2 9 1 4

=

1 1 3 5 5 10

1 1 3 6 7

1 1 3 8

1 1 4

2 9

7→ 2 9 1 4 3 8 6 7 5 10

1 2 2 6

1 2 2 7

1 3 4

1 5 3

=

1 2 2 6

1 2 2 7

1 3 4

1 5

7→ 1 5 3 4 2 7 6

Figure 30. The two almost complete Baxter TLTs of Figure 27 with their
iso-labeling, and the corresponding permutations. (The bold elements in
permutations correspond to the leaves in the TLTs.)

Conversely, let σ ∈ B̂n, and let T = Φ̂−1B (σ). T is a Baxter TLT, and we want to prove
that T is almost-complete. To this end, using Lemma 46, it is enough to prove that the
leafs of T occupy all cells on the main diagonal starting at the second cell of the bottom
row of T (which we refer to as staircase shape). To do so, our first step is to show that the
points of T with iso-labels σ(2i) (for 1 ≤ i ≤ bn/2c) are all leaves of T .

For any 1 ≤ i ≤ bn/2c, it holds that σ(2i − 1) < σ(2i) > σ(2i + 1) by the alternating
condition (the second inequality being undefined in the case n is even and i = n/2). Denote
by ` the point of T with iso-label σ(2i). By Proposition 34 and Corollary 35, and according
to Definition 33, σ(2i− 1) < σ(2i) > σ(2i+ 1) implies that ` is both column-extremal and
row-extremal (except for the case n is even and i = n/2, in which case ` is column-extremal
and is the rightmost point in the first row). In particular, such points ` are leaves of T .

Our next step is to show that these leaves form a staircase shape. We start by noticing
that for any point c of T which is both column-extremal and row-extremal, all cells of T
below and to the right of c must be empty. Indeed, assuming that a cell c′ below and to
the right of c were pointed, and considering w.l.o.g. c′ topmost and leftmost among such

cells, c, c′ and the parent of c′ would form a pattern
· ••• or · •• • .

Therefore, all pointed cells of T with iso-label σ(2i) for 1 ≤ i ≤ bn/2c must be in
different columns and in different rows (by “extremality”). Moreover, considering these
points from left to right gives a sequence of points which have increasing y-coordinates
(since they have no point below and to their right).

As a consequence, the number of columns of T is at least 1 + bn/2c, the 1 accounting
for the first column, and bn/2c accounting for the column-extremal points σ(2i) for all
i ∈ [1; bn/2c]. Similarly, the number of rows must be at least bn/2c + 1 if n is odd (resp.
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bn/2c if n is even, the point with iso-label σ(n) not being row-extremal in this case),
yielding a total of at least n + 1 rows and columns in total (both in the even and in the

odd case). Since T ∈ T̂n, we know that T has exactly n + 1 rows and columns in total,
implying that all the columns (except the leftmost) and all the rows (except the topmost
when n is odd) are occupied by leaves of T , so that the leaves of T must form a staircase
shape. Lemma 46 then concludes the proof. �

From Proposition 53 and Corollary 48, we immediately deduce the enumeration of B̂n.

Corollary 54. For any n, there are C2
n (resp. Cn · Cn+1) permutations of size 2n (resp.

2n+ 1) which avoid the patterns 3−14−2 and 3−41−2 and are alternating starting with
an ascent.

6.4. Enumerative problems opened the enumeration of alternating twisted Bax-
ter permutations. Corollary 54 provides an enumeration result which we have not been
able to find in the literature. Our proof is bijective, and obtained as the result of composing
two bijections: one between B̂n and T̂n and the other one between T̂n and P̂n. While this
shows that TLT can be useful to prove meaningful results on other combinatorial objects,
this also raises the question of whether B̂n could be enumerated directly, without appealing
to TLTs. It is not hard to observe that, for any permutation σ of B̂n, its pattern σodd (resp.
σeven) corresponding to the odd (resp. even) positions in [1, n] is a permutation avoiding
312 (resp. 231) as classical patterns. And it is well-known that the families Av(312) and
Av(231) are enumerated by the Catalan numbers. Therefore, considering also the enumer-
ation obtained in Corollary 54, it is tempting to conjecture that the map σ 7→ (σodd, σeven)

is a bijection between B̂n and Avdn/2e(312)× Avbn/2c(231). We leave this question open.
In addition, we wish to point out that the permutations appearing in Corollary 54 are

enumerated like the alternating Baxter permutations (i.e., alternating permutations that
avoid the patterns 2− 41− 3 and 3− 14− 2). Indeed, in [11], the authors give a bijective
proof that the number of alternating Baxter permutations of size 2n (resp. 2n + 1) is C2

n

(resp. Cn · Cn+1). Another combinatorial proof using triples of non-intersecting paths is
given in [14].

Another important observation is that, unlike Baxter permutations, the permutations
that avoid 3− 14− 2 and 3− 41− 2 are not stable under the reverse symmetry, nor under
the complement symmetry. Therefore, Corollary 54 does not solves the enumeration of
alternating permutations avoiding 3− 14− 2 and 3− 41− 2 and starting with a descent,
whereas the results of [11, 14] do solve the analogous problem for Baxter permutations.

In view of these two very similar enumeration results, it is natural to look for a (hopefully
simple) bijection between alternating Baxter permutations and alternating (inverses of)
twisted Baxter permutations starting with an ascent. We leave this problem open, but point
out one possible direction for finding such a bijection. In [15], the authors describe several
bijections between families of Baxter objects, and in particular a bijection Θ1 between
Baxter permutations and pairs of twin binary trees, and a bijection Θ2 between pairs of
twin binary trees and rectangulations. These objects are exactly our packed floorplans, up
to a rotation of 90◦. The restriction of Θ1 to alternating Baxter permutations provides a
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bijection with pairs of twin binary trees with additional restrictions. A first task would
be to examine how these restrictions are translated on the rectangulations (or packed
floorplans) via Θ2, and then on the Baxter TLTs via Φ−1F . These restricted Baxter TLTs
are equinumerous with the almost complete Baxter TLTs. It is actually possible that they
are exactly the almost complete Baxter TLTs. If it is not the case, a second task would be to
identify a bijection Λ between these two families of TLTs. A bijection between alternating
Baxter permutations and alternating (inverses of) twisted Baxter permutations starting

with an ascent would then be the composition Φ̂B ◦ Λ ◦ Φ−1F ◦ Θ2 ◦ Θ1. Describing this
bijection directly would be the third task in this search of a simple bijection.

Appendix: Size-preserving bijection between PFPs and mosaic floorplans

Mosaic floorplans were defined as follows by Hong et.al. [18].
In a rectangular partition of a rectangle, a segment is a straight line, not included in

the boundary of the partitioned rectangle, that is the union of some rectangle sides, and is
maximal for this property. Let us call floorplans the rectangular partitions of a rectangle
such that every pair of segments with non-empty intersection forms a T-junction (defined
on p. 9). Two floorplans are said R-equivalent if one can pass from one to the other by
sliding the segments to adjust the sizes of the rectangles. A mosaic floorplan is defined as
an equivalence class of floorplans under R.

In [1], the authors describe a bijection between mosaic floorplans and Baxter permuta-
tions, i.e., permutations avoiding the patterns 2− 41− 3 and 3− 14− 2 (see the definition
of dashed patterns in Section 4). This implies that mosaic floorplans are enumerated by
Baxter numbers. From Theorems 14 and 30, and since twisted Baxter permutations are
also enumerated by Baxter numbers, it follows that PFPs are in size-preserving bijection
with mosaic floorplans. This correspondence can be made more precise:

Proposition 55. Every mosaic floorplans (i.e., every equivalence class of floorplans under
R) contains exactly one PFP.

Proof. Recall that there are as many mosaic floorplans of size n as PFPs of size n (namely,
Baxn). Thus, it is enough to prove that every mosaic floorplan contains at least one PFP.

To prove this statement, we show that every floorplan containing some patterns is
R-equivalent to a floorplan containing strictly fewer such patterns.

Let F be a floorplan containing . Consider two tiles t1 and t2 forming a pattern

, with t1 located Northwest from t2, and such that the distance between the bottom
rightmost corner of t1 and the top leftmost corner of t2 is minimal among all such patterns
in F . Necessarily, the two segments meeting at the bottom rightmost corner of t1 form a
T-junction, of type or . We assume that it is of type . The case is easily

deduced by symmetry (applying reflection along a Northwest-Southeast axis).

To obtain a floorplan F ′ R-equivalent to F with fewer patterns , we slide a segment

of F , denoted E, and defined as follows (see Figure 31(a)).
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Il faudrait changer les Ti en ti sur la figure (unification des notations avec la section sur
les PFP)

Let t3 be the tile located immediately to the right of t1. By minimality of (t1, t2), the
x-coordinate of right side of t3 is strictly larger than the x-coordinate (denoted xc) of the
top leftmost corner c of t2. Now, consider the stack of tiles containing t3 and all the tiles
stacked on t3 such that

• the x-coordinates of the left sides of the tiles are weakly increasing from bottom to
top and are all smaller than or equal to xc;
• the x-coordinates of the right sides of the tiles are strictly larger than xc.

We consider the tiles of the stack whose left sides have maximal x-coordinate (denoted
xE), and we define E as the union of all these left sides. We claim that E is a segment of
F , i.e., that the lower (resp. upper) extremity of E is a T-junction of the form (resp.

). This claim is easily proved by contradiction, using the above definition of the stack
of tiles, its maximality, and the fact that the T-junction at the bottom rightmost corner
of t1 (which is also the bottom leftmost corner of t3) is of type . It follows that E is
also the union of the right sides of some (one or several) tiles, and for each of these tiles t,

(t, t2) is a pattern . The segment E may be slided to the right until xE > xc, to get a

floorplan F ′ which is R-equivalent to F and contains strictly fewer patterns . �

Figure 31(b) shows a floorplan and a PFP that are R-equivalent.

E

T1

T2

T3

c

(a) How to pack a
floorplan.

(b) A floorplan (left) and its R-equivalent PFP
(right).

Figure 31. Every mosaic floorplan contains exactly one PFP.
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[19] O. Guibert, Combinatoire des permutations à motifs exclus en liaison avec mots, cartes planaires
et tableaux de Young, PhD thesis (Univ. Bordeaux, 1995).

[20] S. Law, N. Reading, The Hopf algebra of diagonal rectangulations, Journal of Combinatorial
Theory, Series A, 119, 2012, 788–824.

[21] B. Lindström, On the vector representation of induced matroids, Bull. London Math. Soc., 5:85–
90, 1973.

[22] A. Postnikov, Total positivity, Grassmannians, and networks, arXiv:math/0609764v1, 2006.
[23] N. Reading, Lattice congruences, fans and Hopf algebras, J. Combin. Theory Ser. A 110 (2005)

no. 2, 237–273.
[24] K. Sakanushi, Y. Kajitani, D.P. Mehta, The quarter-state-sequence floorplan representation,

IEEE Trans. on Circuits and Systems I: Fundamental Theory and Applications, 50:3 (2003), 376–
386.

[25] N.J.A. Sloane, The On-line Encyclopedia of Integer Sequences, (2007) published electronically
at www.research.att.com/~njas/sequences/.

[26] G. Viennot, A bijective proof for the number of Baxter permutations, Troisième Séminaire
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