ON NON-COMMUTATIVE COMBINATORIAL INVERSE SYSTEM

J.-C. AVAL, N. BERGERON, AND H. LI

Abstract. We introduce the notion of combinatorial inverse systems in non-commutative variables. We give two important examples in this setting and present some conjectures and results.

1. Introduction

Inverse systems [13] and Gröbner basis [15] are very useful tools to study finitely generated commutative algebras. In practice we are given a presentation of an algebra with generators and relations. That is the algebra is the quotient of a free commutative algebra (a polynomial ring in finitely many variables) by the ideal of relations. Inverse systems and Gröbner basis allow one to give explicit linear basis and to extract all the properties of the quotient.

We are interested in the case where the ideals of relations are obtained from a combinatorial construct of a family of algebras. More precisely, a combinatorial inverse system is a family of inverse systems obtained from a family of ideal \(\{I_n\} \) where \(I_n \) is generated by a combinatorial Hopf algebra [1] restricted to \(n \) variables. There are several important examples of combinatorial inverse systems (for some examples see [2, 4, 11, 12]). Coinvariants of the symmetric groups invariants are particularly well studied [10, 17] and more recently the spaces of diagonal harmonics [12] are still intensively studied.

For finitely generated non-commutative algebras, much less is known. In contrast with the commutative case, we are not guarantied that the ideal of relations will be finitely generated. This may cause many problems. In particular, the problem of finding a Gröbner basis [15] is not decidable. A Gröbner basis in non-commutative variable is in general infinite and the Buchberger algorithm may not stop. In the non-commutative setting, even the inverse systems associated to the symmetric groups invariants are not well understood.

In this paper we introduce in Section 2 the basic notion of non-commutative inverse systems. We only consider homogeneous ideals since combinatorial inverse systems are generated by homogenous elements. In Section 3 we define more precisely the notion of combinatorial inverse systems and give some examples in commutative variables. We then return our attention to non-commutative combinatorial inverse systems. Section 4 is dedicated to the non-commutative combinatorial inverse system for the symmetric polynomials in \(n \) non-commutative variables (symmetric groups invariants). It is not known if this system is finite for all \(n \). We have

\[\text{Date: August 17, 2009.} \]
\[\text{This work is supported in part by CRC and NSERC.} \]
\[\text{J.-C. Aval is supported in part by the ANR project MARS (BLAN06-2_0193).} \]
\[\text{H. Li is supported in part by CRC, NSERC and NSF grant DMS-0652641.} \]
computed this system for $n = 1, 2, 3$ and 4 and conjecture it is finite for all n.
This conjecture would guaranty that the non-commutative Buchberger algorithm stops and that the ideals generated by non-commutative symmetric polynomials always have decidable finite Gröbner bases. We give some evidence of this and some weaker conjectures. In Section 5 we present the non-commutative combinatorial inverse system of Quasi-symmetric functions (Temperley-Lieb algebras invariants). In recent work, we have shown that this inverse system is finite and gives us here further evidence for our conjectures in Section 4.

2. Elements of Non-commutative Inverse Systems

Let R be the polynomials in non-commuting variables (or called an alphabet) \(\{x_1, x_2, \ldots, x_n\} \). That is
\[
R = \mathbb{C}\langle x_1, x_2, \ldots, x_n \rangle.
\]
For $a \in \{x_1, x_2, \ldots, x_n\}$, we define on R the operator d_a by
\[
d_a \cdot w = \begin{cases} u & \text{if } w = au, \\ 0 & \text{otherwise}, \end{cases}
\]
where w and u are monomials (or called words and a is refer to as a letter). We think of this operator as a derivative but it does not satisfies Leibniz’s Rule. Let $u = u_1 u_2 \cdots u_k$ be a word of degree k with $u_j = x_{i_j}$ for some $1 \leq i_j \leq n$. We denote
\[
\overleftarrow{u} = u_k u_{k-1} \cdots u_1
\]
and
\[
d_u \cdot w = (d_{u_1} \cdot (d_{u_2} \cdot (\cdots (d_{u_k} \cdot w) \cdots))).
\]
A pairing \langle, \rangle on R is defined on the monomials (or words) by
\[
\langle u, v \rangle = \delta_{u,v} = [\overleftarrow{d_u} \cdot v]_{c.t.},
\]
where $[f]_{c.t.}$ means the constant term of f and
\[
\delta_{u,v} = \begin{cases} 1 & \text{if } u = v, \\ 0 & \text{otherwise}. \end{cases}
\]
For each $f \in R$, we define
\[
f(d) = \sum_w c_w d_w,
\]
when $f = \sum_w c_w w$, where $c_w \in \mathbb{C}$. Furthermore,
\[
\overleftarrow{f}(d) = \sum_w c_w d_w\overleftarrow{w} \text{ and } \langle f, P \rangle = [\overleftarrow{f}(d) \cdot P]_{c.t.}.
\]
Each $f \in R$ can be written as $f = f_n + f_{n-1} + \cdots + f_0$, where f_i is the component in f of degree i for all $0 \leq i \leq n$. We say that $I \subseteq R$ is a homogeneous ideal if $f = f_n + f_{n-1} + \cdots + f_0 \in I$ implies $f_i \in I$ for all $0 \leq i \leq n$. In fact, I is a homogeneous ideal if and only if I is generated by homogeneous elements of R. For any homogeneous ideal I we define
\[
I^\perp = \{ P \in R : \langle f, P \rangle = 0, \forall f \in I \}.
\]
If I is homogeneous clearly $R = I \oplus I^\perp$. In this case, we can compute I^\perp independently in each (finite dimensional) homogeneous component of R.

Lemma 2.1. Let I be a homogeneous ideal. Then $I^\perp = \{ P \in R : \overrightarrow{f}(d) \cdot P = 0, \forall f \in I \}$. This means that I is the solution to a system of (differential) equations.

Proof. Let $P \in R$ such that $\overrightarrow{f}(d) \cdot P = 0$ for all $f \in I$. Then $[\overrightarrow{f}(d) \cdot P]_{c.t.} = 0$. So $< f, P > = 0$ for all $f \in I$. Hence $P \in I^\perp$. Conversely, let $P \in I^\perp$ and $f \in I$. Then $fu \in I$ for any word u. So $[\overrightarrow{f}(d) \cdot P]_{c.t.} = 0$, for all u. This implies that $\overrightarrow{f}(d) \cdot P = 0$. □

Lemma 2.2. Let I be a homogeneous ideal. Then I^\perp is closed under derivation, i.e., $d_u \cdot P \in I^\perp$ for all $P \in I^\perp$ and u.

Proof. Let $P \in I^\perp$. Then $< f, d_u \cdot P > = [\overrightarrow{f}(d) d_u \cdot P]_{c.t.} = 0$, since $\overrightarrow{u} f \in I$. Hence $d_u \cdot P \in I^\perp$. □

Since $R = I \oplus I^\perp$, $R/I \cong I^\perp$. Thanks to Lemma 2.1 and Lemma 2.2, the space I^\perp is the solution to a system of (differential) equations that is closed under differentiation. This is what we will refer to as the noncommutative inverse system of the homogeneous ideal I.

We are now interested in the relation between polynomials in commuting and non-commuting variables. Let $u = u_1 u_2 \cdots u_k$ be a word of length k with $u_j = x_{i_j}$ for some $1 \leq i_j \leq n$. Let $\sigma \in S_n$ and $\pi \in S_k$. We define

$$\sigma \circ u = x_{\sigma(i_1)} x_{\sigma(i_2)} \cdots x_{\sigma(i_k)}$$

and

$$u \circ \pi = u_{\pi(1)} u_{\pi(2)} \cdots u_{\pi(k)}.$$

For any nonnegative integer vector $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n)$, we define

$$x^\alpha = x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_n^{\alpha_n}$$

and

$$\alpha! = \alpha_1! \alpha_2! \cdots \alpha_n!.$$

Consider the maps

$$\chi : \mathbb{C}\langle x_1, \ldots, x_n \rangle \longrightarrow \mathbb{C}[x_1, \ldots, x_n]$$

$$x_i \mapsto x_i$$

and

$$\psi : \mathbb{C}[x_1, \ldots, x_n] \longrightarrow \mathbb{C}\langle x_1, \ldots, x_n \rangle$$

defined by

$$\psi(x^\alpha) = \sum_{\pi \in S_k} u \circ \pi,$$

where $k = \alpha_1 + \alpha_2 + \cdots + \alpha_n$ and u is any word such that $\chi(u) = x^\alpha$. This is well defined since the letters of u in the definition of ψ are permuted in all possible ways, hence it does not depend on the choice of u. We know that χ is an algebra homomorphism. On the other hand, ψ is a linear injection but it does not preserve products.
We define $\partial_{x^n} = \partial_1^{x_1} \partial_2^{x_2} \cdots \partial_n^{x_n}$, where ∂_i is the partial derivative operator over x_i, i.e., normally $\frac{\partial}{\partial x_i}$, and the product of these operators means the composition of them. For any $Q \in \chi(R) = \mathbb{C}[x_1, x_2, \ldots, x_n]$, we define $Q(\partial)$ by replacing x_i in Q with ∂_i. For $P, Q \in \mathbb{C}[x_1, x_2, \ldots, x_n]$, the standard pairing is $\langle Q, P \rangle = [Q(\partial) \cdot P]_{c.t.}$. For an ideal $J \subseteq \chi(R) = \mathbb{C}[x_1, x_2, \ldots, x_n]$, we define $J^\perp = \{ P \in \chi(R) : \langle Q, P \rangle = 0, \forall Q \in J \} = \{ P \in \chi(R) : Q(\partial) \cdot P = 0, \forall Q \in J \}$. This is the usual (commutative) inverse system for a (commutative) ideal.

Lemma 2.3. Let $P \in \chi(R)$ and $f \in R$. Then

$$[\partial \chi(f) \cdot \psi(P)]_{c.t.} = [\chi(f)(\partial) \cdot P]_{c.t.}.$$

Proof. Let u and v be two words such that $\chi(u) = x^\alpha$ and $\chi(v) = x^\beta$. First, we show that

$$[d_v \cdot \psi(u)]_{c.t.} = \alpha! \delta_{\chi(u), \chi(v)} = [\partial_{\chi(v)} \cdot u]_{c.t.}.$$

$$[d_v \cdot \psi(u)]_{c.t.} = [d_v \cdot \sum_{\pi \in S_k} u \circ \pi]_{c.t.} = \sum_{\pi \in S_k} [d_v \cdot (u \circ \pi)]_{c.t.} = \sum_{\pi \in S_k} \delta_{\chi(v), \chi(u \circ \pi)} = \#\{\pi \in S_k : v_i = u_{\pi(i)}\}.$$

Clearly, $\#\{\pi \in S_k : v_i = u_{\pi(i)}\}$ depends only on $\chi(v)$ and $\chi(u)$. So

$$[d_v \cdot \psi(u)]_{c.t.} = \#\{\pi \in S_k : v = u \circ \pi\} = \begin{cases} 0 & \text{if } \alpha \neq \beta \\ \alpha! & \text{otherwise} \end{cases} = \alpha! \delta_{\chi(u), \chi(v)}.$$

On the other side,

$$[\partial_{\chi(v)} \cdot u]_{c.t.} = [\partial_{\chi(v)} \cdot x^\alpha]_{c.t.} = \alpha! \delta_{\alpha, \beta}.$$

Since ∂, d and $[]_{c.t.}$ are linear maps,

$$[\partial \chi(f) \cdot \psi(P)]_{c.t.} = [\chi(f)(\partial) \cdot P]_{c.t.}. \quad \Box$$

Corollary 2.4. Let $P \in \chi(R)$ and I be any homogeneous ideal in R. Then

$$P \in \chi(I)^\perp \iff \psi(P) \in I^\perp.$$
Proof:

\[P \in \chi(I)^\perp \iff \forall f \in I, \langle \chi(f), P \rangle = 0 \]
\[\iff \forall f \in I, \left[\chi(f)(\partial) \cdot P \right]_{\text{c.t.}} = 0 \] by definition
\[\iff \forall f \in I, \left[\bar{f} (d) \cdot \psi(P) \right]_{\text{c.t.}} = 0 \] from Lemma 2.3
\[\iff \forall f \in I, \langle f, \psi(P) \rangle = 0 \] by definition
\[\iff \psi(P) \in I^\perp. \]

\[\square \]

Corollary 2.4 gives us a linear inclusion \(\psi : \chi(I)^\perp \hookrightarrow I^\perp \) of inverse systems and a surjection of algebras \(\chi : R/I \rightarrow \chi(R)/\chi(I) \).

3. Combinatorial Inverse Systems (commutative)

A combinatorial Hopf algebra as defined in \([1]\) is a pair \((\mathcal{H}, \zeta)\) where \(\mathcal{H}\) is a graded connected Hopf algebra and \(\zeta : \mathcal{H} \rightarrow \mathbb{C}\) is an algebra morphism. The map \(\zeta\) serve as a measure for some desired combinatorial invariants and will not be used here. For many examples, \(\mathcal{H}\) is described with a homogeneous basis \(\{b_\lambda\}\) such that all algebraic structure constants are non-negative integers. In the commutative case, \(\mathcal{H}\) is realized as a subalgebra of \(\mathbb{C}[X]\), the homogeneous series in countably many variables \(X\). Given this, we can restrict \(\mathcal{H}\) to finitely many variables \(X_n\) using an evaluation map \(\mathcal{H} \hookrightarrow \mathbb{C}[X] \rightarrow \mathbb{C}[X_n]\) where \(x = 0\) for all \(x \in X - X_n\). If \(X_1 \subset X_2 \subset \cdots\) and \(\lim_{n \rightarrow \infty} X_n = X\), we obtain a family of ideals \(I_n = \langle b_\lambda(X_n) \rangle \subseteq \mathbb{C}[X_n]\) where \(b_\lambda(X_n)\) denote the image of a basis element of \(\mathcal{H}\) under the map \(\mathcal{H} \rightarrow \mathbb{C}[X_n]\) described above. We say that a family \(\{I_n^+\}_{n \geq 0}\) obtained in this way is a combinatorial inverse system.

To motivate our definition we present three key examples along with their main features.

Example 3.1. Symmetric functions: The Hopf algebra of symmetric functions \([14]\) is \(\text{Sym} = \mathbb{C}\{p_1, p_2, \ldots\}\) where the comultiplication is given by \(\Delta(p_k) = p_k \otimes 1 + 1 \otimes p_k\). The degree of \(p_k\) is set to be \(k\). There is an embedding \(\text{Sym} \hookrightarrow \mathbb{C}[X]\) with \(X = x_1, x_2, \ldots\), given by

\[p_k = \sum_{i \geq 1} x_i^k. \]

Taking \(X_n = x_1, \ldots, x_n\) then \(\text{Sym}\) is a combinatorial Hopf algebra satisfying the criteria above. We can thus construct its combinatorial inverse system. That is the inverse systems \(H_n = \{I_n^+\}_{n \geq 1}\) corresponding to the ideals \(I_n = \langle p_k(X_n) : k \geq 1 \rangle \subseteq \mathbb{C}[X_n]\). These spaces are central in mathematics and appear in a larger class of spaces in invariant and coinvariant theory \([10, 17]\). Since \(H_n = \{P \in \mathbb{C}[X_n] : \phi(\partial)P = 0, \forall \phi \in I_n\}\) it consists of polynomials \(P\) that are solutions of the equation \(p_k(\partial)P = 0\), that is harmonic polynomials. The spaces \(H_n\) are also known as the symmetric harmonics in \(n\) variables, they have been extensively studied in several context and satisfy very fundamentals properties. Among them, for all \(n \geq 1\),

1. Let \(\Delta_n = \prod_{1 \leq i < j \leq n} (x_i - x_j)\) denote the VanDerMonde determinant. Then
\[H_n = \{P(\partial)\Delta_n : P \in \mathbb{C}[X_n]\}; \]

2. The dimension of \(H_n\) is \(n!\);

3. The space \(H_n\) is the left regular representation of the symmetric group \(S_n\);
(4) As an S_n-module, \[H_n = \bigoplus_{k=0}^{\frac{n(n-1)}{2}} H_n^{(k)} \]
is graded. The q-Frobenius characteristic is \[F_q(H_n) = \sum_{k=0}^{\frac{n(n-1)}{2}} q^k \text{char}(H_n^{(k)}) = H_n(X; q) \]
where $\text{char}(H_n^{(k)})$ is the symmetric function associated with the representation $H_n^{(k)}$ and $H_n(X; q)$ is the Hall-Littlewood symmetric function [14].

Example 3.2. Diagonal invariants and Diagonal harmonics: The Hopf algebra of MacMahon symmetric functions (also known as diagonal invariants) is \[\text{DSym} = \mathbb{C}[p_{a,b} : (a, b) \in \mathbb{Z} \times \mathbb{Z}] \] where $p_{0,0} = 1$ and the comultiplication is given by $\Delta(p_{a,b}) = p_{a,b} \otimes 1 + 1 \otimes p_{a,b}$. This space is bigraded and the degree of $p_{a,b}$ is set to be (a, b). There is an embedding $\text{Sym} \hookrightarrow \mathbb{C}[X; Y]$ with $X; Y = x_1, x_2, \ldots, y_1, y_2, \ldots$, given by $p_{a,b} = \sum_{i \geq 1} x_1^a y_i^b$.

Taking $X_n; Y_n = x_1, \ldots, x_n, y_1, \ldots y_n$ then DSym is a combinatorial Hopf algebra satisfying the criteria above. We can thus construct its combinatorial inverse system. That is the inverse system $\text{DH}_n = \{ I_\perp n \}_{n \geq 1}$ corresponding to the ideals $I_n = \langle p_{a,b}(X_n; Y_n) : (a, b) \in \mathbb{Z} \times \mathbb{Z} \rangle \subseteq \mathbb{C}[X_n; Y_n]$. These spaces have been extensively studied in recent years. Here is a list of some of the results for these spaces [6, 12]. For all $n \geq 1$,

1. Let $E_k = \sum_{i=1}^n y_i^k \partial_{x_i}$. Then \[\text{DH}_n = \{ P(\partial, E) \Delta_n : P \in \mathbb{C}[X_n; Y_n] \}; \]
 where $P(\partial, E)$ denote the operator we get by setting the variables $x_k = \partial x_k$ and $y_k = E_k$ for $1 \leq k \leq n$.
2. The dimension of DH_n is $(n-1)^{n+1}$;
3. The space DH_n is the so-called parking functions representation of the symmetric group S_n;
4. As an S_n-module, \[\text{DH}_n = \bigoplus_{a,b} \text{DH}_n^{(a,b)} \]
is bigraded. The q,t-Frobenius characteristic is \[F_{q,t}(\text{DH}_n) = \sum_{a,b} q^a t^b \text{char}(\text{DH}_n^{(a,b)}) = < h_1^n, \nabla e_n > \]
where $< h_1^n, \nabla e_n >$ is described in [6, 12] and is related to Macdonald symmetric functions $H_\lambda(X; q, t)$ of [14].

There are still many open problems regarding DH_n. In particular it is not known how to construct an explicit linear basis.

Example 3.3. Quasi-symmetric functions: The Hopf algebra of Quasi-symmetric functions QSym plays a central role in the theory of combinatorial Hopf algebra in [1]. It is natural to study it in the context of combinatorial inverse system. Less is known about this system but some remarkable results have been obtained.
A composition $\alpha \models n$ is a sequence of non-zero positive integer $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_k)$ where $k \geq 0$ and $n = \alpha_1 + \alpha_2 + \cdots + \alpha_k$. For $n = 0$ there is a unique composition $\alpha = ()$ the empty composition. The Hopf algebra of quasi-symmetric functions $QSym$ is the linear span of the functions $\{M_\alpha : \alpha \models n \geq 0\}$. The multiplication is given by quasishuffle

\[M_\alpha M_\beta = \sum_{\gamma \in \alpha \sqcup \beta} M_\gamma, \]

where for $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_k)$ and $\beta = (\beta_1, \beta_2, \ldots, \beta_k)$ we define $\alpha \sqcup \beta$ recursively as follow. If $k = 0$ or $\ell = 0$ then $\alpha \sqcup \beta = \alpha \cdot \beta$ where \cdot denote the concatenation of lists. If not,

\[\alpha \sqcup \beta = \alpha_1 \cdot ((\alpha_2, \ldots, \alpha_k) \sqcup \beta) + \beta_1 \cdot (\alpha \sqcup (\beta_2, \ldots, \beta_k)) \]

\[+ (\alpha_1 + \beta_1) \cdot ((\alpha_2, \ldots, \alpha_k) \sqcup (\beta_2, \ldots, \beta_k)). \]

The notation $\gamma \in \alpha \sqcup \beta$ indicate that γ is in the support of $\alpha \sqcup \beta$. The comultiplication is defined by

\[\Delta(M_\alpha) = \sum_{\beta \gamma = \alpha} M_\beta \otimes M_\gamma. \]

The unit is $M()$ and the counit is $\epsilon : QSym \rightarrow \mathbb{C}$ where $\epsilon(f)$ is the coefficient of $M()$ in f. This space is graded by the size of α. That is the degree of M_α is n when $\alpha \models n$. Again there is an embedding $QSym \hookrightarrow \mathbb{C}[X]$ with $X = x_1, x_2, \ldots$ given by

\[M_\alpha = \sum_{i_1 < i_2 < \cdots < i_k} x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_k^{\alpha_k}. \]

Taking $X_n = x_1, \ldots, x_n$ then $QSym$ is a combinatorial Hopf algebra satisfying the criteria above and we can construct its combinatorial inverse system. The inverse system corresponding to the ideals $I_\alpha = (M_\alpha(X_n) : \alpha \models n \geq 1) \subseteq \mathbb{C}[X_n]$ is denoted $SH_n = \{I_i^+\}_{n \geq 1}$. These spaces have not been studied that much. Here is a list of some of the partial results and open problems for these spaces [2, 4]. For all $n \geq 1$,

1. We conjecture that

\[SH_n = \{P(\partial)Q : P \in \mathbb{C}[X_n], Q \in \text{Soc}(SH_n)\}, \]

for some nice set $\text{Soc}(SH_n)$ of cardinality C_{n-1}, the $(n - 1)$-th Catalan number;

2. The dimension of SH_n is C_n the n-th Catalan number;

3. The space SH_n seems to be related to the Temperley-Lieb algebre TL_n, yet it is not clear if this algebra acts or not on SH_n.

These three examples have very rich combinatorial results. More (commutative) combinatorial inverse systems are interesting to study and can be found in the literature [3, 17]. It is also interesting to compute the full resolution of these quotients (as in [9]) but we do not consider this here.

4. Symmetric Functions in Non-commuting Variables

To define non-commutative combinatorial inverse system, we start with a non-commutative combinatorial Hopf algebra \mathcal{H}. Let $\{b_\lambda\}$ be a homogeneous basis for \mathcal{H} and assume there is a realization of \mathcal{H} as a subalgebra of $\mathbb{C}[\langle X \rangle]$ the homogeneous series in countably many non-commuting variables X. Given this, we can restrict \mathcal{H} to finitely many variables X_n using an evaluation map $\mathcal{H} \hookrightarrow \mathbb{C}[\langle X \rangle] \rightarrow \mathbb{C}[X_n]$.
where $x = 0$ for all $x \in X - X_n$. Here $\mathbb{C}(X_n)$ is the free associative algebra finitely generated by X_n. If $X_1 \subset X_2 \subset \cdots$ and $\lim_{n \to \infty} X_n = X$, we obtain a family of ideals $I_n = \langle b_k(X_n) \rangle \subseteq \mathbb{C}(X_n)$. The family $\{I_n^\perp\}_{n \geq 0}$ obtained in this way is a non-commutative combinatorial inverse system.

We trust that our motivating examples in the commutative case are convincing enough to the reader and that combinatorial inverse system are interesting objects to consider. We now want to look at non-commutative analogues of Example 3.1 and Example 3.3. We start with the combinatorial Hopf algebra NCSym of symmetric functions in non-commuting variables [7, 16, 18]. It is simpler to first describe the non-commutative combinatorial inverse system.

Example 3.3. We start with the combinatorial Hopf algebra NCSym to consider. We now want to look at non-commutative analogues of Example 3.1 and enough to the reader and that combinatorial inverse system are interesting objects we indicate that Φ is a set partition of k. We are interested to compute $\text{Har}_n = I^\perp$. The space NCSym_n linearly spanned by $\{M_\Phi(X_n) : \Phi \vdash [k], k \geq 0\}$ is known to correspond to the invariants of the symmetric group S_n in non-commutative variable X_n [7, 16, 18]. From Lemma 2.1, in non-commuting variables $\varphi \in \text{Har}_n \iff \{M_\Phi(d) d_u : \varphi = 0\}_{\Phi \neq (\emptyset)}$ is a non-commutative system of (differential) equations. For this reason we call Har_n the non-commuting Harmonic system.

Corollary 4.1. For a word $w \in \mathbb{C}(X_n)$, define

$$\Delta_w \overset{def}{=} \sum_{\sigma \in S_n} \sum_{\pi \in S_k} (-1)^{\ell(\sigma)} \sigma \circ w \circ \pi. \quad (4.1)$$

Then $\Delta_w \in \text{Har}_n$ if and only if $\Delta_w = 0$ or $\chi(w) = x^\rho$, where $\rho = (n - 1, n - 2, \ldots, 1, 0)$.
Proof. It is easy to see that $\chi(I_n) = \langle p_k(X_n) \rangle$ the ideal considered in Example 3.1. Hence $\chi(I_n)^\perp = H_n$. Let

$$A_\alpha \defeq \sum_{\sigma \in S_n} (-1)^{\ell(\sigma)} \sigma \circ x^\alpha.$$

Then $\Delta_w = \psi(A_\alpha)$ when $\chi(w) = x^\alpha$. Using Corollary 2.4,

$$\Delta_w \in \text{Har}_n \Leftrightarrow A_\alpha \in H_n.$$

Since H_n is isomorphic to the left regular representation of S_n (See Example 3.1), there is only one occurrence of the sign representation obtained by taking A_ρ. Hence $A_\alpha \in H_n \Leftrightarrow \alpha = \rho$ or $A_\alpha = 0$. \hfill \square

Thus $d_u \Delta_w \in \text{Har}_n$ for all u and $\chi(w) = x^\rho$. This gives us a copy of the left regular representation in Har_n. For $n = 1$ and 2, this is all of Har_n. For $n = 3$, we see more.

We have computed Har_n for $n = 1, 2, 3, 4$ and the following surprising fact arises

$$\dim \text{Har}_n = 1, 2, 9, 946, \ldots$$

The Hilbert series of Har_n is

$$\text{Hilb}_{\text{Har}_n}(t) = \sum_{d=0}^{\infty} \dim(\text{Har}_n^{(d)}) t^d,$$

where $\text{Har}_n^{(d)}$ is the homogeneous component of degree d in Har_n. We list the following data obtained by computer

- $n = 0$, $\text{Hilb}_{\text{Har}_0}(t) = 1$,
- $n = 1$, $\text{Hilb}_{\text{Har}_1}(t) = 1$,
- $n = 2$, $\text{Hilb}_{\text{Har}_2}(t) = 1 + t$,
- $n = 3$, $\text{Hilb}_{\text{Har}_3}(t) = 1 + 2t + 3t^2 + 3t^3$,
- $n = 4$, $\text{Hilb}_{\text{Har}_4}(t) = 1 + 3t + 8t^2 + 20t^3 + 47t^4 + 102t^5 + 197t^6 + 308t^7 + 248t^8 + 12t^9$,
- $n = 5$, $\text{Hilb}_{\text{Har}_5}(t) = 1 + 4t + 15t^2 + 55t^3 + 199t^4 + 712t^5 + 2520t^6 + \cdots$

Conjecture 4.2. The non-commuting Harmonic system Har_n is finite dimensional for any n.

This conjecture would imply that I_n has a decidable Gröbner basis for all n. This is a striking fact on its own.

In the commutative examples it turned out that the multiplicity of the alternating representation has very combinatorial behavior. It is only natural to do the same for Har_n. We now study the inverse systems Har_n intersecting alternating functions.

A set composition A of a set $[n]$ is a list $A = (A_1, A_2, \ldots, A_k)$ such that $A_i \neq \emptyset$ and $\{A_1, A_2, \ldots, A_k\} \vdash [n]$. We denote this by $A \models [n]$. A function f in $C\langle X_n \rangle$ is alternating if $\sigma \circ f = (-1)^{\ell(\sigma)} f$, for all $\sigma \in S_n$. Let Alt_n be the set of all alternating functions in n non-commuting variables. We will construct a basis of Alt_n which is given by $\{A_\Phi\}$ indexed by set compositions $\Phi = (\Phi_1, \Phi_2, \ldots, \Phi_k)$ with

$$\min \Phi_1 < \min \Phi_{i+1} \text{ and } n - 1 \leq k \leq n.$$

These set compositions may be identified with set partitions of size $n - 1 \leq k \leq n$ where the parts are given in the prescribed order.

Conjecture 4.2 would imply that

$$\deg(\text{Har}_n^{(d)} \cap \text{Alt}_n^{(d)}) = 0$$
when d is big enough, where $Alt_n^{(d)}$ and $Har_n^{(d)}$ denote the respective homogeneous component of degree d in each space.

A generalized set composition A of $[d]$ is a list of subsets (A_1, A_2, \ldots, A_k), where $A_i \subseteq [d] = \{1, 2, \ldots, d\}$ such that $A_i \cap A_j = \emptyset$ for $i \neq j$ and $A_1 \cup A_2 \cup \ldots \cup A_k = [d]$ (some parts may be empty). There is a one-to-one correspondence between words and generalized set compositions $w \leftrightarrow A$. Since we use generalized set compositions of d to decide the positions of variables in the corresponding words of degree d, we assume $k = n$ the number of variables. For example, let $n = 3$ and $w = x_1x_3x_1$. Then $d = 3$, the degree of w, and $A = ((1,3),\emptyset,\{2\})$. For convenience, we write $A = 13.\emptyset.2$.

Given a generalized set composition $A = (A_1, A_2, \ldots, A_n) \models [d]$ we define an alternating function

$$A_A = \sum_{\sigma \in S_n} (-1)^{\ell(\sigma)} \sigma \circ A,$$

where in the sum A is the corresponding word. For example, let $d = 3, n = 3$ and $A = 13.2.\emptyset$. Then

$$A_A = x_1x_2x_1 - x_2x_1x_2 - x_3x_2x_3 - x_1x_3x_1 + x_2x_3x_2 + x_3x_1x_3.$$ If the number of empty sets in A is greater than one then $A_A = 0$. Two properties hold:

1. $A_A = (-1)^{\ell(\pi)} A_{\pi \circ A}$ for all $\pi \in S_n$, where $\pi \circ A = (A_{\pi(1)}, A_{\pi(2)}, \ldots, A_{\pi(n)})$;
2. $A_A = 0$ if $\# \{A_i : A_i = \emptyset\} \geq 2$.

From (1) and (2) above, it is clear that any $A_A = \pm A_\Phi$ for $\Phi = (\Phi_1, \Phi_2, \ldots, \Phi_n)$ a generalized set composition where at most $\Phi_n = \emptyset$ and the non-empty parts are ordered by $\min \Phi_i < \min \Phi_i+1$. For Φ as described, each A_Φ has distinct support, hence $\{A_\Phi : \Phi \models [d] \text{ generalized, ordered, } \Phi_{n-1} \neq \emptyset\}$ is a basis of $Alt_n^{(d)}$.

For any generalized set composition $A = (A_1, A_2, \ldots, A_n)$ given a coloring function $\epsilon : [n] \rightarrow \{\pm 1\}$ we get a two-colored generalized set composition

$$A^\epsilon = (A_1^{\epsilon_1}, A_2^{\epsilon_2}, \ldots, A_n^{\epsilon_n})$$

where $\epsilon_i = \epsilon(i)$. Let $T = \epsilon^{-1}(1)$. Define

$$A^\epsilon = \sum_{\sigma \in S_T} (-1)^{\ell(\sigma)} \sigma \circ A^\epsilon,$$

where in the sum A^ϵ is the word corresponding to A and σ only permutes indices given by T fixing the other parts. For convenience, we write $2.13.4.\emptyset$ instead of $2^1.13^{-1}.4^1.\emptyset^{-1}$. Then

$$A_{2.13.4.\emptyset} = x_2x_1x_2x_3 - x_2x_3x_2x_1.$$ Proposition 4.3. Let $\Psi \vdash [k]$ be a set partition, $A \models [\ell]$ be a generalized set composition and $\Phi \models [d]$ be an ordered generalized set composition with at most one \emptyset. Then $M_\Phi(d)_A \cdot A_\Phi$ is 0 or $\pm A_\Phi^\tau$ for some two-colored generalized set composition Φ^τ.

Proof. We prove it case by case. Suppose that

$$A_1 = A_1 \cap \Phi_{i_1}, \quad A_2 = A_2 \cap \Phi_{i_2}, \quad \ldots, \quad A_n = A_n \cap \Phi_{i_n}$$

for some distinct i_1, i_2, \ldots, i_n. Hence, there are some terms in A_Φ beginning with the word corresponding to A. Choose a fixed sequence i_1, i_2, \ldots, i_n and reorder Φ as $\Phi^\tau = (\Phi_{i_1}, \Phi_{i_2}, \ldots, \Phi_{i_n})$, where τ is the permutation corresponds to this
sequence. Then there is one word in the remaining terms in $d^{-1}_A \cdot A_\Phi$ corresponding to $st(\Phi^r \setminus A)$, where $st(\Phi^r \setminus A)$ means deleting the numbers in A from Φ^r then standardizing it (that is subtracting ℓ from all the number in $\Phi^r \setminus A$). Define a two-colored generalized set composition $st(\Phi^r \setminus A)^r$ by $\epsilon_i = -1$ if $A_i \neq \emptyset$ and 1, otherwise. Then $d^{-1}_A \cdot A_\Phi = (-1)^{\ell(\tau)} A_{st(\Phi^r \setminus A)^r}$. If Equation (4.2) is not satisfied, then there is no term in A_Φ beginning with the word corresponding to A. Therefore, $d^{-1}_A \cdot A_\Phi = 0$.

Hence, we may assume that Equation (4.2) is satisfied and let $\Gamma = st(\Phi^r \setminus A)$. Then $\overline{M}_\Phi(d) d^{-1}_A \cdot A_\Phi = (-1)^{\ell(\tau)} \overline{M}_\Phi(d) \cdot A_{\Gamma^r}$. The set partition $\Psi = \{\Psi_1, \Psi_2, \ldots, \Psi_r\}$ for some $r \leq n$. Suppose

$$\Psi_1 = \Psi_1 \cap \Gamma_{i_1}, \quad \Psi_2 = \Psi_2 \cap \Gamma_{i_2}, \ldots, \quad \Psi_r = \Psi_r \cap \Gamma_{i_n} \tag{4.3}$$

for some distinct i_1, i_2, \ldots, i_r. Since Ψ is a set, we can reorder the Ψ_i in any order needed. For any monomial in \overline{M}_Φ there is a unique monomial in \overline{A}_{Γ^r} with the appropriate sign which gives $\overline{M}_\Phi(d) \cdot A_{\Gamma^r} = A_{st(\Phi^r \setminus A)^r}$. If Equation (4.3) is not satisfied, then there is no term in $A_{st(\Phi^r \setminus A)^r}$ beginning with the word $\sigma \circ \Psi$ for all $\sigma \in S_n / S_L$. Hence $\overline{M}_\Phi(d) \cdot A_{st(\Phi^r \setminus A)^r} = 0$.

In all cases, if any of Equation (4.2) or Equation (4.3) is not satisfied, then $\overline{M}_\Phi(d) d^{-1}_A \cdot A_\Phi = 0$, Otherwise

$$\overline{M}_\Phi(d) d^{-1}_A \cdot A_\Phi = (-1)^{\ell(\tau)} A_{st(st(\Phi^r \setminus A)^r \setminus \Psi)}$$

We let $\Theta = st(st(\Phi^r \setminus A)^r \setminus \Psi)$ and the proof is completed. \qed

We remark that in the proof of Proposition 4.3 we could reorder A so that τ is the identity. That is we can assume that A is an ordered generalized composition. If we want to compute $Har_n^{(d)} \cap Alt_n^{(d)}$, we need to solve the equations

$$\overline{M}_\Phi(d) d^{-1}_A \cdot A_\Phi = 0, \forall \Psi, A$$

and $P \in Alt_n^{(d)}$. It is easy to see that for fix A and Ψ, the possible Θ^r are all linearly independent. This gives us a system of linear equations,

$$[\overline{M}_\Phi(d) d^{-1}_A]_{A_{\Theta^r}} = 0 \tag{4.4}$$

where $[f]_{A_{\Theta^r}}$ denote the coefficient of A_{Θ^r} in f and

$$P = \sum_{\Phi = [d] \text{ ordered}} c_{\Phi} A_{\Phi}.$$

The System (4.4) is explicit and may be more easy to handle than the full space Har_n. As a weaker conjecture we propose

Conjecture 4.4. The solution for the linear equations in the System (4.4) is all of $Alt_n^{(d)}$ for large d.

5. QUASI-SYMMETRIC FUNCTIONS IN NON-COMMUTATIVE VARIABLES

A second example of non-commutative combinatorial inverse system is given by quasi-symmetric functions in non-commutative variables [8]. We have recently showed [5] that the associated inverse systems are finite. The proof does not give the quotient, which is still an open problem. However, we present the result here as another evidence that combinatorial inverse systems are special and also to partially support the conjectures in Section 4.
The combinatorial Hopf algebra $NCQSym$ of quasi-symmetric functions in non-commutative variables is the vector space freely generated by the set $\{M_A : A \models [d], d \geq 0\}$. Again we let () be the unique set composition of $[0]$. The multiplication is given by quasi-shuffle of set composition. That is, for $A = (A_1, A_2, \ldots, A_k) \models [d]$ and $B = (B_1, B_2, \ldots, B_t) \models [q]$ we define $A \boxplus B$ recursively. The notation B^d means that we add d to each entry of B. If $k = 0$ or $t = 0$ then $A \boxplus B^d = A \cdot B$ where \cdot denote the concatenation of lists. If not,

$$A \boxplus B^d = A_1 \cdot ((A_2, \ldots, A_k) \boxplus B_1^d) + B_1^d \cdot ((A_2, \ldots, A_k) \boxplus (B_2^d, \ldots, B_k^d)) + (A_1 \cup B_1^d) \cdot ((A_2, \ldots, A_k) \boxplus (B_2^d, \ldots, B_k^d)).$$

We then define

$$\Delta(M_A) = \sum_{B, C \subseteq A} M_{st(B)} \otimes M_{st(C)},$$

where $C \subseteq A \boxplus B^d$ indicate that C is in the support of $A \boxplus B^d$. The comultiplication is defined by

$$\Delta(M_A) = \sum_{B, C \subseteq A} M_{st(B)} \otimes M_{st(C)}.$$

Here, $st(-)$ is the standardization map defined as follow. For $B \cdot C = A \models [d]$, it means that $B \models S$ and $C \models T$ where $S \cup T = [d]$ and $S \cap T = \emptyset$. For any $S \subseteq [d]$, there is a unique order preserving map $\phi: \{1, 2, \ldots, |S|\} \rightarrow S$. For any $B \models S$, we let $st(B) = \{1, 2, \ldots, |S|\}$ the unique set composition we obtain using ϕ, in other words $st(B) = \phi^* B$. The space $NCQSym$ is graded by $\deg(M_A) = d$ when $A \models [d]$.

As seen in [8], there is an embedding $QSym \hookrightarrow \mathbb{C}[[X]]$ with $X = x_1, x_2, \ldots$ given by

$$M_A = \sum_{c_1(w) = A} w,$$

where $\nabla(w) = (w^{-1}(x_i))_{i=1}^\infty \setminus \emptyset$. In other words, the infinite sequence $(w^{-1}(x_i))_{i=1}^\infty$ has only finitely many non-empty parts. After removing the empty parts, we obtain a set composition denoted $\nabla(w)$.

Taking $X_n = x_1, \ldots, x_n$ then $NCQSym$ is a combinatorial Hopf algebra satisfying the criteria above and we can construct its combinatorial inverse system. The inverse system $SHar_n = \{I_n\}_{n \geq 1}$ corresponding to the ideals $I_n = \langle M_A(X_n) : A \models [d] \geq 1 \rangle \subseteq \mathbb{C}(X_n)$. These spaces have not been studied that much. The only know theorem is the following

Theorem 5.1. $\dim(SHar_n) < \infty$.

This is shown in [5]. In parallel with the commutative case, we believe that the non-commutative combinatorial inverse system will prove themselves to be very rich objects to study. It would not be surprising to discover that they all have very special Gröbner basis.

References

(Jean-Christophe Aval) Labri, Université Bordeaux 1, 351 cours de la Libération, 33405 Talence Cedex, FRANCE
E-mail address: aval@labri.fr
URL: http://www.labri.fr/perso/aval

(Nantel Bergeron) Department of Mathematics and Statistics, York University, Toronto, Ontario M3J 1P3, CANADA
E-mail address: bergeron@mathstat.yorku.ca
URL: http://www.math.yorku.ca/bergeron

(Huilan Li) Department of Mathematics, Drexel University, Philadelphia, PA 19104, U.S.A
E-mail address: huilan.li@gmail.com
URL: http://www.math.drexel.edu/~huilan/