
Reducing code size explosion through low-overhead specialization

Minhaj Ahmad Khan (mik@prism.uvsq.fr) Henri-Pierre Charles (hpc@prism.uvsq.fr)
Denis Barthou (bad@prism.uvsq.fr)

University of Versailles, France

Abstract

The overhead of performing optimizations during execu-
tion is the main hindrance in achieving good performance
for many computation intensive applications. The runtime
optimizations are required due to lack of precise informa-
tion at static compile time. In this article, we describe a
new optimization method, the hybrid specialization, able to
overcome this problem to a large extent.

Specialization proceeds by exposing values for a set of
candidate parameters at static compile time. The next part
of specialization is performed at runtime by a dynamic spe-
cializer which is capable of reusing optimized code and spe-
cializing binary code generated in the last step. The dy-
namic specializer is generated automatically after validat-
ing code against the required criteria. It can be used to
adapt binary code to different values and therefore reduces
the possible runtime code generation. Moreover, it incurs
a small overhead for runtime specialization as compared to
that incurred in existing dynamic code generators or spe-
cializers.

Initial results over Itanium-II architecture show improve-
ment in performance for different benchmarks including
SPEC CPU2000, FFTW3 and ATLAS.

1 Introduction

Code generated statically by state-of-the-art compilers
very often does not reach the performance level of hand-
tuned code. One of the reasons is that a static compiler
misses a large part of the application context, and must be
conservative concerning the possible values that variables
can take during execution.

Profile-guided optimization is a known approach to gen-
erate higher performance code, resorting to the analysis of
previous runs on training input data sets. This kind of it-
erative/continuous compilation process[2, 4] (compilation,
run, run analysis) is able to catch the application behavior,
by specializing code fragments to particular values. This
specialization, also called versioning comes at the expense

void Function(float *A, float *B, int size, int stride){
int i;
for (i = 0; i < size; i++)

A[i*stride] = B[i] + A[i];
}

Figure 1. Motivating example

of code expansion. This drawback limits versioning to be
performed for a few values. Run-time specialization, on the
other hand, does not suffer this limitation.

The run-time specialization systems[11, 15, 12, 16, 23,
21] and off-line partial evaluators[5, 7] are used to gener-
ate code during execution of the program. Most of them
keep different versions of the code both during static com-
pile time and during execution. These specializers generate
code and perform optimizations whenever a parameter re-
ceives a new input value. Invocation of a compiler for opti-
mizations (partial evaluation, scheduling, software pipelin-
ing), results in a large amount of overhead which needs to
be compensated by multiple calls of specialized code. For
the specialization approach proposed in this paper, we do
not require such heavyweight activities and limit the run-
time code generation to modification of a small number of
binary instructions. Moreover, information regarding these
instructions can be fully computed at static compile time.

Consider the code in Figure 1 which mimics a codelet
from FFTW library. Specialization of this function consists
of the replacement of one or more formal parameters by a
constant value. From a compiler perspective, turning a pa-
rameter into a constant may enable several aggressive opti-
mizations. Lack of information concerning parameter stride
constraints the compiler to assume that it may equal 0, gen-
erating dependence from one iteration to the next. Special-
izing stride with value 5 for instance implies that at least 4
successive iterations are independent. Software pipelining
optimization can efficiently take advantage of this informa-
tion to increase the instruction level parallelism.

Since such values are available only during execution
for most real-life applications, one solution would be to
perform at run-time the dependence analysis and optimiza-

1

Specialized Function Code

Versioning

Specialized Object Code
versions

Template Generation

Binary
Template

Hybridization

Dynamic
Specializer

Hybrid Function Code

Original Binary
 Code

Figure 2. Overview of Hybrid Specialization

tion (software pipelining in this case), together with heavy-
weight code generation. This would certainly require hun-
dreds of invocations of the code to amortize this over-
head. This situation gets even worse if the parameter values
change frequently and entire optimization and code genera-
tion activities are iterated.

Our method is based on the observation that the same
code, specialized for a stride value of 7 for instance, may
result in nearly the same binary code, with exactly the same
schedule (due to resource constraints). Identifying the dif-
ferences between the two versions specialized for 5 and 7
(coming from the dependence distance) can therefore lead
to the generation of a more general version, a template, that
can be instantiated into a pipelined code for values 5, 7 and
possibly many others. The differences between the binary
versions depends on the code and on the compiler.

Based on the assumption that compiler generated ver-
sions are similar for a large range of values, we propose
an intermediate solution between pure static and pure dy-
namic specialization of code, termed as Hybrid Specializa-
tion. This approach incorporates dynamic specialization
to be applied on code (template) which is specialized and
generated at static compile time, and versioning to be per-
formed for the cases where the template could not be gen-
erated. So runtime activities require the specialization of
a few number of binary instruction parameters. Since the
template is generated at static compile time, it is highly op-
timized and assumed to work better than the original un-
specialized code. Consequently, we get the best of the two
worlds: efficient and fast code specialization at runtime and
aggressive optimizations at static compile time.

The remainder of the paper is organized as follows. Sec-
tion 2 provides the required context that is essential to ap-

ply this technique and section 3 elaborates the main steps
included in the algorithm. The implementation details de-
scribing the input and output of each phase are provided in
section 4. The section 5 presents the experimental results
including the overhead incurred. A comparison with other
technologies has been given in section 7 before concluding
in section 8.

2 Template Creation and Legality Require-
ments

This section formalizes the notion of template used for
dynamic specialization, and then, infers the legality condi-
tions.

Consider the code of a function F to be optimized, we
assume without loss of generality that F takes only one inte-
ger parameter X . By versioning F with two values v1 and
v2, we obtain two functions at object code level, Fv1

and
Fv2

resp., that are assumed to perform better than the orig-
inal code. Moreover, these versions must contain constants
(at instruction level) as given follows:

Cv1

i
∈ (Fv1

) = αi.v1 + βi, ∀ i ∈ {1..p} (1)

Cv2

i
∈ (Fv2

) = αi.v2 + βi, ∀ i ∈ {1..p}. (2)

Only immediate values Ci of p instructions differ from one
instantiation to the other with all αi and βi being constants.
Now, given two binary versions, Fv1

and Fv2
with such in-

structions, we generalize them into a binary template to be
instantiated with V at run-time. For a small set of values
R for which code is valid, we require to modify p binary
instructions to contain constants of the form:

CV

i
= αi.V + βi, ∀ i ∈ {1..p}, V ∈ R. (3)

For n parameters, we can generalize the criteria with p
instructions to contain run-time values of the form:

CVk

i
=

n∑

k=1

(αi.Vk + βi) , ∀ i ∈ {1..p}, Vk ∈ Rk. (4)

If the versions satisfying Equations 1 and 2 are found, the
range Rk is computed as follows:

• If X is loop bound and both bounds are constant, loop
unrolling may generate different codes according to X .
For example, partial loop unrolling of the loop by a
factor of 4, generates no tail code when X is a multiple
of 4, whereas, there may be a two iteration tail loop for
X = 2 mod 4. The legal range in this case is expressed
as a condition, modulo the unrolling factor.

• If X is involved in a condition, the compiler may per-
form some dead-code elimination when the value of

2

X is known. The legal range is determined by the val-
ues for which the condition is true (or not). Failure to
compute this range statically would mean that dynamic
specialization is unsafe.

• Limit the range of parameter values in order to keep
all assembly instructions legal. Indeed, some assembly
instructions are only valid for a defined set of immedi-
ate values (e.g. post-increment of address registers de-
fined with 6 bits). Since all formulae generating these
instructions are affine, we must find the range by cal-
culating the maximum and minimum possible values
for each instruction (in Equation 4) followed by calcu-
lating maximum and minimum for entire code of the
function.

3 Approach of Hybrid Specialization

Similar to other specialization strategies, hybrid special-
ization is also guided through profiling information and
proves to be beneficial when applied to hot regions of code.
Once the information regarding a set of intervals of values
of a parameter [3, 14] becomes available, the hybrid spe-
cialization proceeds as given below:

1. Versioning of selected functions;

Different specialized versions of the selected function
are generated after parsing the code and replacing the
parameter with constant values. These versions will be
used in both static specialization and dynamic special-
ization.

2. Analysis of assembly code within intervals for tem-
plate creation;

To proceed for dynamic specialization, we need to gen-
erate one specializer and single template for each in-
terval. Therefore multiple versions (of assembly code
/dumped object code) are searched within one interval
to conform to the conditions given in section 2. These
versions must differ only by some constants. We as-
sume that the formula used by the compiler to gen-
erate these constants from the parameter value is an
affine function. This ensures that the necessary over-
head to evaluate the template at run-time is kept small.
The formulae are generated assuming them to be of the
form: v = α×param+β, where α and β are constants
and param is the value of specializing parameter.

For n parameters with p binary instructions to be
specialized, the formulae of the form vk = αki ×
parami +βk for 1 ≤ i ≤ n and 1 ≤ k ≤ p, are solved
in O(n3p) at static compile-time.

3. Using the versions found in previous step, generation
of runtime specializer (if possible);

If the system of equations can not be solved, i.e. re-
quired consistent versions are not found for an inter-
val, then dynamic specialization does not proceed fur-
ther, since no generic template could be found. In the
other cases, when the equations are solved and con-
stants α and β are found for each of p instructions in
the object code versions, then specializer generation
takes place with a valid range. This range is calcu-
lated by validating code against the criteria defined in
Section 2. Subsequently, starting location, offset of
binary instruction to modify and formula to calculate
new value are gathered. Based upon this information,
the self-modifying code must then be generated to-
gether with code for cache coherence. We make use of
a lightweight runtime Instruction Specializer that ac-
complishes the task of binary code modification (only
p binary instructions) in an efficient manner.

4. Hybridization, i.e., putting statically specialized ver-
sions, the template code with the dynamic specializer
(if generated through last step) and the initial code al-
together for the hybrid version;

To limit number of specialized versions for a function,
we take into account the number of valid templates
found. So this number of templates will actually re-
duce the number of static versions.

4 Implementation Framework and Experi-
mentation

The hybrid specialization approach (depicted in Figure
2) has been implemented in HySpec framework to special-
ize function parameters of integral data types. These param-
eters should be defined through a directive of the form :

#pragma specialize paramName [=interval,...]
When the interval is not given, specialization would occur
after obtaining value profile through instrumentation1 for
integral parameters. Otherwise, the interval can be explic-
itly defined based on application-knowledge.

For hybrid specialization of code, HySpec can per-
form various activities including: parsing and in-
strumenting code for specialization, analysis of ob-
ject code(dumped/assembly) versions, finding differences
among these versions followed by generation of runtime
specializer (by solving equations) containing formulae, and
the hybridization of the versions according to the specified
criteria. In this section, we describe details of each of these
steps over Itanium-II architecture.

1HySpec supports instrumentation of code at routine level for value
profiling integral parameters and forming intervals

3

4.1 Versioning and Invariant Analysis

A specialized version of a function is generated by defin-
ing the value (taken from interval) for the parameter. More-
over, the code of the function is instrumented to redirect
control to the specialized versions. For each interval se-
lected, dynamic specialization proceeds subject to the gen-
eration2 of consistent binary code versions. These versions
are compared instruction-wise and should differ only in a
limited set of binary instructions with immediate constants.

For the example (Figure 1) considered, bundles of the
code generated by icc compiler, when specialized with the
value stride=5 and the one generated for stride=7 differ only
in some constants in the object code as shown in Figures
3(a) and 3(b) respectively. These instructions correspond

add r9= 5, r57

stfs [r2]= f43, 20

add r37= 495, r56

......

(a) stride=5

add r9= 7, r57

stfs [r2]= f43, 28

add r37= 693, r56

......

(b) stride=7

Figure 3. Assembly code generated by icc
v9.0

to address computation relative to the stride. A comparison
of the entire assembly code versions is therefore performed,
and formulae are generated after solving the system of equa-
tions, assuming them to be of the form: v = α×stride+β.
The invariant analysis comprises search for such equivalent
code versions conforming to the conditions of template gen-
eration given in Section 2, and consequently, the legality
range for the template is validated.

4.2 Runtime Specializer Generation

After checking code correctness/equivalence for a range
of values, we are able to define a template. To instanci-
ate the template during execution, a type of self-modifying
code called binary template specializer (Figure 4) is gener-
ated. In order to modify binary instructions, the template
specializer is provided with the basic information regarding
starting location of the code, and the parameter to specialize
with. It contains multiple invocations of Instruction Spe-
cializer with necessary information such as the offset of the
instruction (bundle number and instruction number within
bundle for Itanium-II) to modify and the formula which will
produce the new value during execution.

During execution, all the binary instructions at corre-
sponding template locations are filled with new values gen-
erated through affine functions. A runtime view of the tem-
plate code when specialized with stride=8 has been shown

2Compilation environment variables should bet set

void BTS(Function Address, int param){

ISpec(Function Address, 14, 0, param ∗ 1 + 0)

ISpec(Function Address, 16, 0, param ∗ 99 + 0)

.........

}

Figure 4. Binary Template Specializer

add r9= 8, r57

stfs [r2]= f43, 32

add r37= 792, r56

......

Figure 5. Post-Specialization view

in Figure 5. The generated specializer also performs activi-
ties for cache coherence as required by Itanium architecture
for the instructions at memory locations modified during ex-
ecution.

4.3 Hybridization With Bounded Static Version-
ing

To bound the number of specialized static versions, we
make use of a heuristic that bounds statically specialized
versions depending upon the number of valid templates
found. For a parameter with b-bits, let D be the number
of intervals for which valid templates are found (for dy-
namic specialization), then we bound static specialization
to b/4−D versions. This heuristic works well not only for
the parameters with large variance in their values, but also
for the parameters which have a small number of different
values. Figure 6 shows the wrapper generated for the fi-
nal code. It contains branches to redirect execution control
to statically specialized code, invocation of specializer and
dynamically specialized code.

void Function(float * array, int size,int stride){

if(stride == 1){

Function stride 1(array, size);

return;

} else if (stride >=MINVAL and stride <= MAXVAL){

specializer(stride);

Specialized Function(array, size);

return;

}

else

/* Original code ... */

}

Figure 6. Pseudo-code for hybridized wrapper

4

5 Experimental Results

This section presents the detailed results of hybrid spe-
cialization of integral parameters 3 applied to a large
number of functions from ATLAS, FFTW3 and SPEC
CPU2000 benchmarks. To profile for frequently used pa-
rameter values, code is instrumented at routine level through
HySpec. The experiments have been performed over an ar-
chitecture equipped with 1.5 GHz Itanium 2 processor and
Intel compiler icc v9.0, using libpfm to measure the exe-
cution speed.

5.1 Applying Specialization on ATLAS

ATLAS (Automatically Tuned Linear Algebra Software)
is a set of programs which acquires adaptive approach to
tune itself at compile time for different parameters such as
cache and memory sizes. We took into consideration two
versions of ATLAS-3.6.0 library code: the ”reference
code”, which is optimized regardless of platform and the
”fully specialized and tuned code” which is optimized and
tuned with hardware parameters.

Note: In the remaining text, we will refer ATLAS∗

to be the version of reference code and ATLAS to be
tuned/optimized code and invoked by ATLAS as default.

Figure 7. BLAS-I(DAXPY)

Figure 8. BLAS-II(DGEMV)

3The combination is selected for smallest overhead

5.1.1 BLAS-1

For BLAS-1(vector-vector operations), the performance re-
sults of the routine DAXPY have been shown in Figure 7.
For ATLAS∗, the ATL drefaxpy routine has been special-
ized with incX and incY parameters. Due to the availability
of value, there is a decrease of 30 % in object code size.
Moreover, the pipelining and unrolling factor differed in the
specialized and unspecialized versions but it is also depen-
dent on the value for which the code is specialized.

For ATLAS code, the template for dynamic specializa-
tion found with interval of smaller values shows small im-
provement in performance. The parameter N is specialized
for the routine ATL daxpy xp1yp1aXbX to obtain the tem-
plates. Despite the low-overhead specialization, speedup is
not large since execution time of the specialized routine is
very small as compared to overall execution time. Simi-
larly, for other invocations (larger values of N), the code
optimizations resembled with those performed for standard
version.

5.1.2 BLAS-2

For ATLAS∗ BLAS-2 (matrix-vector operation), hybrid
specialization is able to achieve speedup for some cases as
shown in Figure 8. The routine DGEMV is specialized with
the values of M and N (dimensions of input matrix). The
speedup is achieved mainly through dynamically special-
ized templates (most of them requiring only 2 instructions
to be specialized during execution). For original code, the
compiler versioned the loops at the object code level, how-
ever with specialized code, these versions were removed
and there was 70% decrement of code size. Moreover, the
number of prefetch instructions was also reduced.

For ATLAS DGEMV, the speedup is not large since spe-
cialized (with M and N) code differed slightly (only in code
schedule) from that of the standard version.

5.1.3 BLAS-3

Similarly for BLAS-3 (matrix-matrix operations), perfor-
mance results of two operations DGEMM and DSYMM
have been shown in Figure 9.

For ATLAS∗ DGEMM, the main speedup comes from
the template that is generated for smaller values. The
parameters M and K are specialized for the routine
ATL drefgemmTT. The binary template used for these val-
ues contained 2 instructions to be specialized, thereby caus-
ing a very small overhead of runtime specialization. In
this case, the compiler was able to reduce the number of
prefetches together with a better code schedule. With larger
values of M and K, other versions of template code and
static versions could produce a very small speed-up since

5

the specialized code resembled with that of unspecialized
code.

For ATLAS DGEMM, the routine
ATL dJIK0x0x0TT6x1x1 aX bX is specialized with
values of lda, ldb and K (dimensions of input, output and
intermediate result resp.), and the routine ATL mmJIK
is specialized for different values of parameter K. The
execution results have been given in Figure 9. There is no
significant speedup since ATLAS DGEMM code is already
specialized for different sizes based on cache parameters.
Moreover, all the loops have already been unrolled in the
source code depending upon matrix sizes thereby making it
difficult for any high-level code transformation to produce
effective optimized code. In specialized version, the code
size was relatively decreased together (with different
number of stages of software pipeline) than that in the
original code.

Figure 9. BLAS-III(DGEMM)

5.2 FFTW Library

FFTW is a library which contains routines written in C
to compute Discrete Fourier Transform (DFT) of real and
complex data and of arbitrary input size in O(nlogn). It
searches for best optimal codelets for computation of DFT.
FFTW wisdom can be generated to reduce search time dur-
ing execution.

For our experiments, the library FFTW-3.0.1-fma
was optimized for complex numbers incorporating the wis-
dom generated in FFTW EXHAUSTIVE mode. The code
has been compiled with -O3 together with other default
compilation options. Figure 10 shows the results for com-
plex DFTs of powers of 2 obtained after hybrid special-
ization of FFTW codelets. Multiple codelets are invoked
for computation of single DFT. In our case, the standard
codelets for the powers of 2 were specialized. These
codelets required variant number of instructions in the tem-
plates to be specialized for different intervals. It is clear that
the main potential to achieve speedup through specializa-
tion exists for the smaller and the larger values of DFT size.
For medium range values, where large codelets are selected

Figure 10. FFTW 3.0

Figure 11. SPEC Benchmarks

by FFTW Wisdom, the number of calls to the specialized
codelet is too small to impact the overall application execu-
tion time by a large factor.

5.3 SPEC Benchmarks

Different benchmarks in CPU2000 suite have been op-
timized using hybrid specialization with reference inputs.
The speedup %age obtained w.r.t standard code has been
shown in Figure 11.

For benchmark art, the train match function is special-
ized. A good speedup is obtained as compiler was able to
find the loop bounds thereby reducing the number of tar-
get instructions with a better schedule. In mesa bench-
mark, the function sample linear 1d has been specialized
with the loop counter. Both the codes were inlined, how-
ever the availability of the parameter resulted in more ag-
gressive transformations than those for the original code.
For equake, the smvp function is specialized, which did not
produce any big difference due to the specializing param-
eter. Moreover, the overhead of specialization was also a
factor to not produce good speedup. This is different in the
case of vpr where the runtime specializer is invoked very
rare since the parameter value remains the same for mul-
tiple invocations. The function route net has been special-
ized for vpr. In case of mcf, the specialization of function
primal bea mpp resulted in less number of prefetches. The
compiler was able to adequately unroll the code since the
parameter was used as stride. For bzip2 benchmark, the

6

Figure 12. Specialization Overhead

function hbAssignCodes is specialized. However, the can-
didate code is very small and the large frequency of change
in specializing parameter’s value was the main barrier in
achieving good speedup. In twolf benchmark, the func-
tion term newpos a is specialized. The specialized code
contained slightly less memory accesses to produce a small
speedup for the application.

6 Overhead and Size Concerns

A summarized view of overhead with respect to applica-
tion execution time is also shown in Figure 12. It is to be
noted that overhead is very small for execution of applica-
tion function with large code. This is due to the fact that
the overhead of dynamic specialization is limited (12 to 20
CPU Cycles per generated instruction). Moreover, we spe-
cialize a fixed number of binary instructions, which is very
small as compared to entire code size.

In addition to performance gain, dynamic part of hy-
brid specialization serves effectively to reduce the code ex-
plosion caused by static specialization. With all the ver-
sions(including templates) and dynamic specializers, the
code size increase is almost 9% for ATLAS and 6% for
FFTW and less than 2% for each of SPEC benchmarks.

The specializer itself is very small (4.8 Kbytes). For
each code dynamically specialized less than 20 binary in-
structions (4 bytes long on Itanium) need to be specialized.
The maximum time needed to specialize one function is 400
CPU Cycles (20 instructions * 20 cycles).

7 Related Work

Tempo [7, 22] is a specializer that can perform compile-
time and runtime specialization. The static compile-time
activity by Tempo includes partial evaluation that is only
applicable when the values are static (i.e. already known).
In hybrid specialization, we expose the unknown values to
generate template. Therefore the template is more special-
ized in our case than the one generated through Tempo spe-
cializer. In normal programs where most of the values are

dynamic, the overhead of specialization will increase to a
huge factor thus degrading the performance of the applica-
tion. However, in the hybrid specialization approach, only
calculation of specializing values is required since we are
specializing a small number of binary instructions. More-
over, runtime activities other than optimizations, such as
code buffer allocation and copy, incur large amount of over-
head thereby making it suitable for code to be called multi-
ple times.

C-Mix [20] is a specializer that is able to perform par-
tial evaluation only at static compile-time. It can special-
ize the code by propagating information up to branches and
then generating different specialized constructs. However it
works when information is available at static compile-time,
which is not the case for most of the real-life applications.

Tick C(‘C)[23] is a superset of ANSI C and uses ICODE
and VCODE interfaces together with lcc retargetable inter-
mediate representation to generate dynamic code. It is able
to achieve large speedup by performing optimizations dur-
ing execution of code. However, its code generation activity
incurs a large amount of overhead requiring more than 100
calls to amortize the overhead. In case of hybrid special-
ization approach, we minimize the runtime overhead with
generation of optimized templates at static compile time.
Some other dynamic code generation systems have been
suggested in [15, 18, 17] that categorize the compilation
process into different stages at which different optimiza-
tions can be performed. These models are effective enough
to improve performance, however they require the program-
mer intervention to decide which optimization could be ap-
propriate at which stage. Similarly, DCG [10] and other
approaches in [12, 11, 6] suggest efficient dynamic code
generation and specialization systems, however these sys-
tems are different in that these can not be used to produce
generic templates requiring large number of dynamic tem-
plate versions for each different specializing value.

Some optimization frameworks such as ADORE [19],
Dynamo [1], Strata [13] and DAISY [9] have incorporated
continuous monitoring to optimize/transform binary code
at run-time. However, our framework specializes a small
number of instructions relying heavily on offline profiles.
Through this approach, we are able to keep the runtime
overhead minimum but at the cost of reduced adaptability
for largely varying execution behaviour of the application.

8 Conclusion and Future Work

This article presents a method combining static and dy-
namic specialization (through versioning of some parame-
ters and a lightweight dynamic specializer), relying on the
quality of the code generated at static compile time. Both
approaches collaborate to give good speedups compared to
the original code, even for highly optimized code such as

7

FFTW, ATLAS and SPEC benchmarks. This approach is
not based upon selection of either static or dynamic spe-
cialization by making any cost-effective comparison, rather
it combines both of them to an extent sufficient enough to
obtain speedup. However, we are dependent on the partial
evaluation or other optimizations performed by the com-
piler.

An important aspect of this automated hybrid specializa-
tion approach is the minimized overhead of runtime spe-
cialization. Most of the specialization work is performed at
static-compile time and template generation includes a min-
imal generalization so as to make it valid for a large set of
values. Since, the template is generated at static compile
time, it is highly optimized, and during execution, only a
small number of binary instructions is then specialized.

Moreover, this approach provides a solution to the code
expansion issue caused by versioning and constitutes an in-
teresting alternative to usual tradeoff between library size
and performance achieved.

As future work, we intend to embed the implementa-
tion framework of hybrid specialization into XLanguage [8]
compiler. Moreover, the static compile-time analysis is be-
ing extended to automatically search for candidate parame-
teres to specialize and also take into account smaller parts
of program code instead of complete function code.

References

[1] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a trans-
parent dynamic optimization system. ACM SIGPLAN No-
tices, 35(5):1–12, 2000.

[2] M. Barreteau, F. Bodin, P. Brinkhaus, Z. Chamski, H.-P.
Charles, C. Eisenbeis, J. Gurd, J. Hoogerbrugge, P. Hu,
W. Jalby, P. Knijnenburg, M. O’Boyle, E. Rohou, R. Sakel-
lariou, H. Shepers, A. Seznec, E. A. Sthr, and H. A. G. Wi-
jshoff. Oceans: Optimizing compilers for embedded appli-
cations. In Proceeding of Euro-Par98, 1998.

[3] B. Calder, P. Feller, and A. Eustace. Value profiling. In
International Symposium on Microarchitecture, pages 259–
269, 1997.

[4] B. R. Childers, J. W. Davidson, and M. L. soffa. Continu-
ous compilation: A new approach to aggressive and adaptive
code transformation. In NSF Workshop on Next Generation
Software, April 2003.

[5] C. Consel and O. Danvy. Tutorial notes on partial evalu-
ation. In ACM Symposium on Principles of Programming
Languages, Pages 493-501, 1993, 1993.

[6] C. Consel, L. Hornof, François Noël, J. Noyé, and N. Volan-
schi. A uniform approach for compile-time and run-time
specialization. In Partial Evaluation. International Semi-
nar., pages 54–72, Dagstuhl Castle, Germany, 12-16 1996.
Springer-Verlag, Berlin, Germany.

[7] C. Consel, L. Hornof, R. Marlet, G. Muller, S. Thibault, and
E.-N. Volanschi. Tempo: Specializing Systems Applications
and Beyond. ACM Computing Surveys, 30(3es), 1998.

[8] S. Donadio, J. Brodman, T. Roeder, K. Yotov, D. Barthou,
A. Cohen, M. Garzaran, D. Padua, and K. Pingali. A
language for the comParallel Architectures and Compila-
tion Techniques representation of multiple program ver-
sions. In Workshop on Languages and Compilers for Par-
allel Computing (LCPC’05), LNCS, Hawthorne, New York,
Oct. 2005. Springer-Verlag.

[9] K. E. and E. R. Altman. Daisy: dynamic compilation for
100 In ISCA ’97: Proceedings of the 24th annual interna-
tional symposium on Computer architecture, pages 26–37,
New York, NY, USA, 1997. ACM Press.

[10] D. R. Engler and T. A. Proebsting. DCG: An efficient, retar-
getable dynamic code generation system. In Proceedings of
the Sixth International Conference on Architectural Support
for Programming Languages and Operating Systems, pages
263–272, San Jose, California, 1994.

[11] B. Grant, M. Mock, M. Philipose, C. Chambers, and S. J.
Eggers. Annotation-Directed Run-Time Specialization in
C. In Proceedings of the ACM SIGPLAN Symposium on
Partial Evaluation and Semantics-Based Program Manipu-
lation (PEPM’97), pages 163–178. ACM, June 1997.

[12] B. Grant, M. Mock, M. Philipose, C. Chambers, and S. J.
Eggers. Dyc : An expressive annotation-directed dynamic
compiler for c. Technical report, Department of Computer
Science and Engineering,University of Washington, 1999.

[13] S. K., B. R. Childers, J. W. Davidson, and M. L. soffa. Over-
head reduction techniques for software dynamic translation.
In In Proceedings of 18th International Parallel and Dis-
tributed Processing Symposium, April 2004.

[14] L.Djoudi, D.Barthou, P.Carribault, C.Lemuet, J.-T. Acqua-
viva, and W.Jalby. Exploring application performance: a
new tool for a static/dynamic approach. In Proceedings of
the 6th LACSI Symposium, Santa Fe, NM, Oct. 2005.

[15] M. Leone and R. K. Dybvig. Dynamo : A staged compiler
architecture for dynamic program optimization. Technical
report, Indiana University, 1997.

[16] M. Leone and P. Lee. Optimizing ml with run-time code
generation. Technical report, School of Computer Science,
Carnegie Mellon University, 1995.

[17] M. Leone and P. Lee. A Declarative Approach to Run-Time
Code Generation. In Workshop on Compiler Support for
System Software (WCSSS), February 1996.

[18] M. Leone and P. Lee. Dynamic Specialization in the Fabius
System. ACM Computing Surveys, 30(3es), 1998.

[19] J. Lu, H. Chen, P.-C. Yew, and W.-C. Hsu. Design and Im-
plementation of a Lightweight Dynamic Optimization Sys-
tem. Journal of Instruction-Level Parallelism, 6, April 2004.

[20] H. Makholm. Specializing c- an introduction to the prin-
ciples behind c-mix. Technical report, Computer Science
Department, University of Copenhagen, June 1999.

[21] S. Meloan. The java hotspot performance engine: An in-
depth look. Technical report, Sun Microsystems, 1999.

[22] F. Nol, L. Hornof, C. Consel, and J. L. Lawall. Automatic,
template-based run-time specialization: Implementation and
experimental study. In International Conference on Com-
puter Languages (ICCL’98), February 1998.

[23] M. Poletto, W. C. Hsieh, D. R. Engler, and F. M. Kaashoek.
’c and tcc : A language and compiler for dynamic code gen-
eration. ACM Transactions on Programming Languages and
Systems, 21:324–369, March 1999.

8

