

Towards the Petaflop for Lattice QCD Simulations:
the PetaQCD Project

Jean-Christian Anglès d'Auriaca <dauriac@lpsc.in2p3.fr>, Denis Barthoub <Denis.Barthou@prism.uvsq.fr>,

Damir Becirevicc <Damir.Becirevic@th.u-psud.fr>, René Bilhautd <bilhaut@lal.in2p3.fr>,
François Bodink <francois.bodin@inria.fr>, Philippe Boucaudc <Philippe.Boucaud@th.u-psud.fr>,

Olivier Brand-Foissacc <Olivier.Brand-Foissac@th.u-psud.fr>, Jaume Carbonella <carbonel@lpsc.in2p3.fr>,
Christine Eisenbeise <Christine.Eisenbeis@inria.fr>, Pascal Gallardf <pascal.gallard@kerlabs.com>,

Gilbert Grosdidierd <Gilbert.Grosdidier@in2p3.fr>, Pierre Guichong <pierre.guichon@cea.fr>,
Pierre-François Honorég <pierre-francois.honore@cea.fr>, Guy Le Meurd <lemeur@lal.in2p3.fr>,

Olivier Pènec <Olivier.Pene@th.u-psud.fr>, Louis Rillingf <louis.rilling@kerlabs.com>,
Patrick Roudeaud <roudeau@lal.in2p3.fr>, André Seznech <seznec@irisa.fr>,

Achille Stocchid <stocchi@lal.in2p3.fr>, François Touzed <touze@lal.in2p3.fr>

Abstract

The study and design of a very ambitious petaflop cluster exclusively dedicated to Lattice
QCD simulations started in early ’08 among a consortium of 7 laboratories (IN2P3, CNRS,
INRIA, CEA) and 2 SMEs. This consortium received a grant from the French ANR agency in July
‘08, and the PetaQCD project kickoff took place in January ’09. Building upon several years of
fruitful collaborative studies in this area, the aim of this project is to demonstrate that the
simulation of a 256 x 1283 lattice can be achieved through the HMC/ETMC software, using a
machine with efficient speed/cost/reliability/power consumption ratios. It is expected that this
machine can be built out of a rather limited number of processors (e.g. between 1000 and 4000),
although capable of a sustained petaflop CPU performance.

The proof-of-concept should be a mock-up cluster built as much as possible with off-the-
shelf components, and 2 particularly attractive axis will be mainly investigated, in addition to fast
all-purpose multi-core processors: the use of the new brand of IBM-Cell processors (with on-chip
accelerators) and the very recent Nvidia GP-GPUs (off-chip co-processors). This cluster will
obviously be massively parallel, and heterogeneous. Communication issues between processors,
implied by the Physics of the simulation and the lattice partitioning, will certainly be a major key
to the project.

1. Framework
Lattice Quantum Chromodynamics (LQCD) is the theory for Nuclear and Sub-nuclear Physics and it

simulates the properties of the strong interaction at a sub-nuclear scale, modeling the matter as a quark crystal.
The computational demands of Lattice QCD are enormous and have not only played a role in the history of
supercomputers but are also helping define their future.

The PetaQCD project aims at designing the hardware and software architectures for a sustained
performance of over a Petaflop for LQCD simulations with large lattice sizes (up to 1283 x 256). The PetaQCD
project is a multi-disciplinary collaboration of teams combining expertise on the Physics of QCD simulation,
knowledge of the simulation code HMC (for Hybrid Monte Carlo) already used by the European Twisted Mass
Collaboration (ETMC, [Etmc08]), experience on the construction of supercomputers for QCD (through the
apeNEXT project) and expertise on optimization techniques for parallel architectures. We propose to optimize
the HMC code for LQCD simulation and build a few nodes of a supercomputer mock up able to reach a
sustained Petaflop performance for this code.

a LPSC, IN2P3/CNRS, 38026 Grenoble, France.
b Groupe PRISM, LPRSM, UVSQ, 78035 Versailles, France.
c LPT, CNRS, 91405 Orsay, France.
d LAL, IN2P3/CNRS, BP34, 91898 Orsay, France.
k CAPS-Entreprise, 35000 Rennes, France.
e Groupe Alchemy, INRIA Saclay-Ile de France, 91893 Orsay, France.
f KERLABS, 35700 Rennes, France.
g SPhN, CEA/IRFU, 91191 Gif-sur-Yvette, France.
h Groupe ALF, INRIA Rennes-Bretagne Atlantique, 35042 Rennes, France.

Building a special machine for Lattice QCD simulations has been a standard practice. However, the
PetaQCD project will tackle new scalability issues for Petaflop performance, involving thousands of computing
nodes. To achieve this goal, a small structure made of several computing nodes will be studied. Investigations on
the data exchange issues between nodes are also essential for the overall performance of the final machine. The
study of emerging new architectures (off-chip accelerators such as GPU, on-chip accelerators such as Cell,
multi-cores) in the PARA ANR project showed that there is no clear performance/power-consumption/cost
overall winner.

A heterogeneous computing node implies multiple code and optimization strategies. In the PetaQCD
project, we will develop a semi-automatic self-tuning approach for the optimization of performance-critical code
fragments of HMC. This approach is similar to what is used in existing self-tuning libraries such as ATLAS or
SPIRAL. But it will be the first to be applied to a large application such as HMC and will show the path for
performance tuning of heterogeneous supercomputers.

Our current studies show [Ibrahim08] that a 10- to 100-fold performance factor needs to be reached,
with currently available hardware, to achieve a sustained Petaflop over a limited number of nodes (about 1000).
To achieve this, it will be required to combine a better use of hardware, a thorough QCD algorithm review and
finally a better code generation technique.

2. Background and issues
A. Lattice QCD Computation

In Lattice QCD, a four-dimensional space-time continuum is simulated, with quark quantum fields on
each lattice site and gluon quantum fields represented by SU(3) matrices on each link between these sites. The
calculation aims at computing the average values of physical quantities, which are function of these fields,
according to a probability distribution also depending on the fields, and derived by a discretisation procedure
from the basic QCD Lagrangian. This average is taken over the full space of all the possible values of the fields.
The integration of quark fields is done formally, leading to a complex non-local distribution probability
depending only on the gluon fields. We call “gauge configuration” a set of matrices defined on all links. For
large lattices the space of gauge configurations is a variety with dimensionality of the order of tenths of billions.
Only a Monte-Carlo method allows such a huge calculation. To estimate the average values of the physical
quantities we need representative samples of gauge configurations (say about 5000) for every set of parameters,
generated according to the above-mentioned probability law. The Hybrid Mont Carlo (HMC) algorithm
[Duane87], or variants of it, are used to generate these samples. This is a very heavy calculation. In the following
discussion, we will consider an HMC implementation achieved by the ETMC collaboration [Urbach06,
Urbach07].

The computation time for Lattice QCD is dominated by few kernels routines. The main kernel routine,
called Hopping Matrix, is contributing about 90% of the total execution time [Vranas08]. This routine is
responsible for computing the actions of Wilson-Dirac operator. As outlined in Equation (1) below, the actions
of Dirac operator involve a sum over quark fields (µ!

ˆ+i) multiplied by a gluon gauge link (µ,iU) through the

spin projector ()µ!±I .

 (1)

The representation of each gauge link is a special unitary SU(3) matrix (3x3 complex variables). The
gauge field links go in the four dimensions of the problem space. SU(3) refers to matrices with three colors of
quarks that are of special unitary, i.e., unit determinant. The spinors are represented by four SU(3) vectors, each
composed of three complex variables.

Building a customary supercomputing facility for simulating Lattice QCD problem has been a
commonly used practice [Boyle01, Belletti06]. The motive for building such facilities, with all the associated
overheads, is the enormous computational power needed in addition to the special characteristics of the
computation of Lattice QCD. This computation tends to have low utilization in most general-purpose computing
facilities leading to inefficient power consumption and unrealistic demands on the number of needed
computational nodes. For instance to achieve a sustained petaflop scale of computing, we need a million
nodes/cores each performing at the one Gflop, what is currently possible for computing Wilson-Dirac operator

on Blue-gene/P machines [Doi07]. The efficiency of a computing node does not exceed 20 to 30 percent of the
peak performance for Lattice QCD computation.

Previous experiences with building specialized machines show that it is difficult to manage machine
above few thousands of nodes because of power requirements and reliability concerns. For instance to build a
system of ten thousand nodes, we will need a node capable of 100 Gflops in sustained performance. Effectively,
we would like to bridge a performance gap of 100x between the current state-of-art single-node performance and
the performance needed to build a reasonably sized system.

The needed scaling in performance is promised by newly emerging technologies for scientific
computing such as GPUs and IBM Cell BE. An NVidia GPU G80 is known to have about 300 Gflops peak
performance, while synergetic processors inside IBM Cell broadband engine are capable of about 200 Gflops
peak performance. These two technologies represent the following two categories of accelerator technologies:

• The former relies on empowering a main general-purpose processor with a specialized accelerator,
represented by a CPU assisted by a GPU.
• The latter relies on integrating accelerators with the main processor on chip, providing a heterogeneous
system-on-chip kind of architectures, represented by Cell BE.

In the following sections, we present our effort on assessing the potential of using these technologies in
the implementation of Lattice QCD main kernel routine to bridge the 100x performance gap.

B. The Use of GPUs for Wilson-Dirac Operator Computation

The use of GPUs for scientific computing is widely under-investigation and gives very promising
results for many scientific applications [Owens05]. We investigated the use of NVIDIA G80 GTX GPU
board [Nvidia] hosted on a Intel Xeon-based server. This GPU is composed of 16 multiprocessors that are
interconnected to banked DRAMs through an impressive bandwidth of 78.6 GB/s.

The parallelization process for GPUs is traditionally done based on vendor compiler. Coding an
application is greatly facilitated with the advent of general-purpose programming technology, such as
CUDA [Cuda1.1] by NVIDIA. Even though parallelization in done through the compiler, the programmer
carries the responsibility of organizing the code (or transforming it) in a way that enable efficient parallelism. A
most-do transformation is to remove control-flow instructions whenever possible. For control-flow variables
with limited outcomes, lookup tables can be used or redundant computations in conjunction with masking to
generate control-flow free code. These techniques are effective in the generation of SIMD operations.

To protect their proprietary hardware, GPU makers allow little control for the application developer.
Programmer intervention is needed to explore coding alternatives to determine the best tradeoff between
increasing concurrency and increasing resources per thread. In these cases, the application developer should
express the problem in multiple alternative representations (task assignments) to the compiler.

In our implementation, we explored the effect of work granularity on performance. The Cuda compiler
usually has conflicting constraints on the resources available per block of threads. While it tries to maximize the
amount of parallelism (increase the number of threads), it also tries to improve thread’s performance by
increasing the amount of resources allocated per thread. Certainly, achieving more parallelism, while preserving
the performance of a single thread, requires assigning fewer resources per thread. The Cuda compiler tries not to
reduce the amount of parallelism below 64 threads, assigning at most 128 registers per thread.

We explored four implementations: the first implementation assigns the computation of a spinor to one
thread, called full-spinor version; the second implementation divides a spinor computation into two phases,
called half-spinor version; the third implementation is based on dividing a task assigned to a thread of the full-
spinor version between sixteen threads; finally, in the fourth implementation eight threads are used for each
phase of the half-spinor version. We call the first two implementations as coarse-grained, while the latter ones as
fine-grained.

The coarser the thread computation the more stress on the resources. Given that the memory access
latency on GPU in the range of 400-600 cycles, it is necessary to reduce the memory access frequency,
especially that the caching within the GPU is severely limited in size. For Hopping Matrix computation, we
noticed that the less the granularity of the work assigned to a thread the better the performance achieved (28-
47% savings in execution time).

For coarse-grained versions, even with the increased memory pressure, the half-spinor version (two
threads per spinor computation) provides a better performance compared with the full-spinor (one thread per
spinor computation). When the spinor computations are split among 16 threads (fine-granularity) for the half-

spinor and the full-spinor techniques, the full-spinor version becomes better than the half-spinor version because
the earlier has less frequency of accessing the memory.

The bandwidth of the host CPU memory to the GPU memory has critical impact on performance. In our
experiments, the GPU is connected to the host CPU through a PCI Express 16x link with 2.4 GB/s sustained
bandwidth (4 GB/s peak performance). The low density of computation compared with exchanged data cause the
communication overhead between the GPU and CPU to mount to 40% of the total execution time even for a
large lattice size of 323x32.

To improve, the ratio of floating point operations to data exchanged, we allocated some of the arrays
that are used to hold the intermediate spinors computation to the GPU memory. Using this technique, we
reduced the data exchange frequency to one fourth and the contribution of data communication to total execution
time is lowered to 11%.

The best performance achieved is about 6.2 Gflops of single precision computations, further details are
found in [Ibrahim07a].

C. The Use of Cell BE for Wilson-Dirac Operator Computation

Cell broadband engine (BE) is a unique architecture in integrating specialized accelerator processors,
called synergetic processing elements (SPEs), to the main PowerPC based processor. Each SPE has a limited
memory, called local store, large register file 128 16-bytes and a specialized SIMD processing element
[Hofstee07]. The Cell BE chip integrates XDR memory controller in addition to FlexIO controller. This
integration leads to a bandwidth to the memory as high as 25.6 GB/s.

The Cell BE is known for being difficult to program partly because of the detailed control it gives to the
programmer over memory management of the different address spaces of SPEs and the main memory. Special
DMA calls are usually required to control data transfers. Transforming code to perform efficiently in SIMD
mode is an additional traditional obstacle to exploit SPE processors. Relying on compiler is an option that is yet
to mature for this kind of architecture.

SIMDizing the code requires aligning the data in way that can be accessed with the least number of data
shuffles. Each spinor is accessed in eight different contexts (due to the spin projection operator in Equation 1
above) depending on the space direction. Each access involves different operations and memory access patterns
for the real and imaginary part of every complex variable. Unfortunately, we cannot fuse these data optimally at
compile time because the same spinor is accessed in eight contexts with different surrounding spinors in each
case.

To overcome this difficulty, we devise a technique, called runtime fusion, that fuses the input data used
for the computation of multiple consecutive spinors. The real parts of these input data are fused into single
register, and similarly for the imaginary part. For instance 16 bytes register requires fusing the computation of
two output spinors of double precision or four single precision output spinors. Runtime fusion merges the
computation of unrolled loop, thus grouping the data of similar access pattern into 16 bytes word. The results of
the computation is then scattered back into multiple output spinors. Cell BE allows such technique because of
the large register file.

This technique leads to performing the Hopping Matrix routine with 80 Gflops of single precision
computations and 8.7 Gflops of double precision computations. Double precision is not optimized in the current
generation of Cell BE, but the promised Cell EDP during the year 2008 should carry an optimized engine for the
double precision that is capable of 100 Gflops.

Realistic lattice size needs to be stored in the main memory and be retrieved in pieces for processing.
The computational power for single precision Hopping Matrix would require 48 GB/s of the memory, far beyond
the 25.6 GB/s bandwidth available.

The input spinors are redundantly accessed 8 times during the computations. Bandwidth can be saved, if
non-redundant data are brought to the local store from the external memory, then the redundant part is
constructed inside the SPE local store. The saving in bandwidth can be 25% for a sub-lattice size of 163x16.

With optimized DMA, the Cell BE can do the computation of the Wilson Dirac operator at 31.2 Gflops
in single precision and 8.6 Gflops in double precision. For single precision computation, four SPEs are able to
deliver the maximum the chip can afford, while the 8 SPEs doing double precision computation cannot saturate
the bandwidth because of their inefficient implementation on Cell BE. In 2008, IBM is expected to release Cell
processor with enhanced double precision computations that will be able to deliver at least 16.6 Gflops of double
precision computations for the Hopping Matrix routine. Details about this implementation are found
in [Ibrahim07a].

D. Summary and Future Projections

Our endeavors in the implementation of the main kernel routine with assist of accelerators, whether on
chip like Cell BE [Ibrahim07b] or off-chip such as GPU [Ibrahim07a], show that we can achieve computation at
a rate of 8.5 GFlops in double precision (or 31.2 Gflops in single precision).

These performance figures partly bridge the needed 100x gap needed to build a reasonably sized
machine. We still need to improve the performance of a node by 12x (about 6x with arrival of Cell eDP, or about
3x for single precision) to build a sustained Petaflop capable machine with about ten thousand nodes. The reason
for not fully bridging the performance gap, even with the enormous computational power offered by GPUs and
Cell BE, is that the computation to memory access ratio of the Wilson-Dirac computation is low. This ratio
ranges from 0.94 to 0.55 flops/byte for double precision, depending on the amount of lattice cached within a
computing node.

Considering a Lattice size of 256128
3
! that can represent heavy-mass quarks system, we will need

few thousand of nodes each responsible of a sub-lattice of 3216
3
! . Simulating this sub-lattice size will require

600-700 MB of active dataset per node, a size impossibly cacheable on future architectures for a long time to
come.

The reason for choosing a relatively large sub-lattice volume per node is the need to reduce the amount
of communicated data relative to amount of computation per node. The computation on a node is proportional to
the volume of the sub-lattice, while the communication is proportional to the surface of the sub-lattice.

Obviously, bridging the gap further requires additional effort on the algorithmic aspect of the
computation to improve the computation density in addition to better exploit of the advances in the
computational power of future computing nodes. We finally assert that improvements in performance are likely
to be more correlated with improvements in the bandwidth to memory of computing nodes.

3. Methodology
LQCD is already an ambitious challenge in itself. The enormous computing power that it requires has

driven research in high performance computing since it has lead for more than 20 years to the conception and
realization of dedicated computers, the APE series up to the apeNEXT, and the Columbia series up to the
QCDOC which became the root of the BlueGene computers. The basic starting point of PetaQCD is that even
though promises in speed increase are eventually met in the next 3-5 years, analysis of the current LQCD code
shows that we will still miss one to two orders of magnitude in the performance to achieve the sustained
Petaflops at that time. There is currently no clear hint that hardware technology upgrades alone could achieve the
required performance.

Therefore radical breakthroughs are required and it is not yet known where they can be found. There is
not a single road for possible improvements. Improvements can be gained from the physics model and numerical
scheme of LQCD, or in software compilers, or in architecture improvement, most probably all of them.
Moreover, myriads of processors will obviously be required for this performance and we therefore will have to
face the hardware reliability issue.

It is clear that addressing these issues in a general framework would be out of reach. Restricting our
project to LQCD makes our objectives reachable by tight cooperation in the whole computation chain, from
algorithms down to hardware. We also expect that any small improvement we will achieve can be in turn
exploited in more general contexts. For instance new software optimizations can be integrated in our semi-
automatic tools, while addressing uncertainty issues can open new insights in numerical analysis.

In our previous joint work between several participants (LPT, IRISA, INRIA, PRISM & LAL) of
PetaQCD we have already identified the main bottleneck, namely the communication bottleneck. The ratio
between computations and communications on the current QCD code is roughly 5 floating operations per data
input. Even though this ratio is not too bad, it is a constant and will obviously not match the expected latency
ratio (about 500 clock cycles for a data transfer instead a few clock cycles for a floating point operation,
expected to grow), neither the expected bandwidth for communications. Therefore we have identified the
communication architecture as one of the main issues. The second one is scalability, how to manage larger
lattices, thousands of processors, larger power consumption, larger combinatorial of the problem of mapping
code on architecture. The last issue is related to the precision of computations regarding scalability, possible
transient errors, trade-off of precision versus performance.

For tackling these three intrinsically related issues, communication, scalability, and precision, we
propose different – also interleaved – roads.

A. Hierarchy and multilevel parallelism

First, we propose to consider hierarchy at all levels: hierarchy in the network architecture as well as in the
algorithmic scheme. This includes heterogeneity in the computation model, possible SIMD instructions at the
lowest level, vector coprocessors, multi-cores, clusters.

At the software level, we have to model the communication scheme and provide code for its management. This
includes managing registers, vector registers, local memories, cache memories, and communications at all levels.
In the algorithmic part, that means reconsidering different schemes for code and lattice (possibly hierarchical)
partitioning. But this also requires reconsidering the associated preconditioning scheme and eventually physics
validation.

B. Combined solution space exploration

Then, we will use systematic space exploration for this algorithm/software/processor architecture co-design
problem. At the hardware level, that means having a systematic and robust scheme for the processors and
network model of performance. It will be based on today and short term expected numbers and will be validated
on different actual processors: general processors, GPU coprocessors, and IBM Cell processors. The scalability
issue will be validated by experiments on existing massively parallel processors (a BlueGene/P computer, and a
standard multi-core cluster). At the software level, this requires using, adapting and improving our semi-
automatic tools for the generation of different code versions, from the lowest level (instruction scheduling,
register allocation) up to highest levels (local memories, MPI communications). Since the combinatorial of
exhaustive search is very high, random or now classical machine learning or genetic algorithms will be used. At
the algorithm level, we will consider alternative numerical schemes. Matching the schemes to the provided
architecture will most probably not be predictable statically and we plan to consider also online (at run time)
choices of preconditioning schemes as well as alternative partitioning schemes. Changing the scheme alters also
the convergence, this will be also systematically estimated by a validation of the physics result as well as the
consequence in terms of overall execution time.

C. Relaxing synchronization constraints

Last, gaining this factor of 10 to 100 requires a radical change in the computation paradigm. Especially the main
communication bottleneck must be addressed. We propose to consider relaxing usual requirements of
deterministic and reproducible computations. This means that we will consider different precisions levels at
different steps of the computation. For avoiding costly communications we will consider synchronizing different
parts of the algorithms less often than required, or even avoiding costly synchronization barriers by
asynchronous - and by essence non predictable - communications. More classically, since computations are
cheaper than communications, it is likely that some computations units are idle and they can be exploited for
control tasks such as error detection or redundant computations, or even races between redundant computations.
As mentioned in §3.B, we will also consider auto-tuning of the code at run time, meaning different versions of
the code or algorithms, this means also different communications schemes. This 3rd part is the most risky part of
PetaQCD but each of these "non-standard" roads will be systematically validated by the final physics result.

We choose to structure our PetaQCD project around three working groups (WG). The 1st one is related to
hardware model and software tools, the 2nd one to the physics and algorithmic part, and the 3rd one to the specific
problem of fault tolerance. Every partner is concerned by these three packages as these WG involve algorithmic,
software and architectural consideration.

To the best of our knowledge, this is the first time that such a project involving physicists and computer
scientists is addressed with respect to the most recent results and trends in high performance computing. Related
software environments for code generation, especially for specific co-processors and management of local
memories, and exhaustive search, are only starting to emerge. The fault tolerance issue has seldom been
addressed in scientific computing. Lastly gaining this already mentioned order of magnitude is a quite
challenging question that can only be reached by questioning all levels of this chain of physics, algorithms,
software (systems and programming environments) and hardware levels.

The ultimate aim is to provide at the end of the project, instead of a single solution (algorithmic/ code/
hardware), a range of possible solutions, together with search tools that can be quickly adapted to the state of the
technology at that time.

Figure 1: The PetaQCD poster

4. What is going on elsewhere in this field?
Lattice QCD is the only approach that allows studying, in a systematic way, the strong interaction

between fundamental constituents of matter. It is of great importance in three main areas: to check the Standard
Model of particle physics and possibly discover its limits; to understand the internal structure of nucleons; to
determine the properties of strongly interacting matter under extreme conditions. Results from LQCD are needed
to extract the physics content of measurements obtained at present and future experimental facilities running (or
planned) in Europe, USA or Japan. The accuracy of these results has to be matched with the experimental
accuracy and this dictates the needed computing power to be allocated to these studies.

The main efforts from the LQCD community can be illustrated by the present sustained computing
capabilities1 (in Tflops, cf [Fnal07]):

Germany 10-15
Italy + France 5 + 0.5
Japan 14-18
United-Kingdom 4-5
USA 11

Currently, most of the computing power is provided by dedicated computers, specifically developed for

LQCD. As an example, there are three QCDOC computers, each with three sustained TFlops installed in USA
and Scotland in 2005. ApeNEXT computers have been also installed in Italy and Germany.

To achieve the physics goals, which consist in having a percent accuracy on several quantities of
interest, all groups agree that computing capabilities of about one Petaflop are needed.

The US QCD community has developed coherent plans on software and hardware developments since
year 2000 with two five-year plans. The SciDAC initiative permits the installation of two QCDOC machines and
eight commodity clusters of moderate size (<0.5 Tflops each). During the current grant larger commodity
clusters are being installed and people are working on the successor to the QCDOC which is expected to be a
petascale machine at 0.01$/megaflops/s. Grants are also provided by the High Energy and Nuclear Physics
community through the LQCD project started in 2006. They plan to achieve 18 Tflops sustained in 2008-2009
for a total cost of 9 M$. The use of super-computers (financed by the DOE) is also expected to provide a similar
amount of computing power for LQCD.

This short summary indicates that efforts are on the way in the US to increase the computing
capabilities devoted to LQCD and financed by the high energy and nuclear physics communities. In parallel they
continue developments to obtain better cost-effective dedicated machines. In Europe, we are aware of hardware
developments lead by the QPACE project to build a computer prototype for LQCD, based on the IBM Cell,
towards a petascale machine [Qpace08].

Within 10-15 years, it will be possible to integrate on a single chip a huge memory in the gigabyte range
and 100s and may be 1,000s of processing elements. On the early design phase of a processor, one has to
dimension various parameters such as memory hierarchy or processing units. Such design space exploration was
traditionally done through instruction level simulations. With the advent of moderately parallel single chip
component, the same methodology is still in use. New methodologies will be required for chips featuring 100s
and may be 1000s of processing elements. Designers will face the challenging problem of choosing the global
structure for the multi-core. In particular due to memory access time constraints, the on-chip memory will be
organized as a ‘memory hierarchy’ featuring several levels. The effective performance of the overall system
depends on the correct dimensioning of all the parameters in the memory hierarchy: in practice, if a single
parameter is underestimated the overall system performance will be limited by this parameter.

The exploration of the design space for dimensioning the memory hierarchy of 1,000s cores architecture
requires new methodology. Design space exploration has already been widely used in the domain of embedded
processors (for instance in the PICO codesign framework). Other works target general multicore architectures.
We propose a new methodology that will mix analytical models and simulation in order to explore the design
space of memory hierarchy of massively parallel multi-cores.

This hardware exploration will be done in tight connection with the exploration of the space of different
code versions. Iterative compilation and code generation is more and more widely used as a solution to the
complexity of processors (Oceans european project, Atlas, Spiral, FFTW, work of Alchemy, Caps and Prism).

1 The French community has contributed to the Rome computing centre installed in La Sapienza University

We will perform the iterative search starting from the current HMC code as well as the equational formulation.
We will also add a new degree of freedom by exploring alternatives algorithms for LQCD.

Acknowledgements

This work is supported by French National Research Agency (ANR) through COSINUS program
(project PETAQCD n°ANR- 08-COSI-010).

References

[Belletti06] F. Belletti et al., Computing for LQCD: apeNEXT. Computing in Science and Engineering, 8(1):18-
29, 2006.

[Boyle01] P. A. Boyle et al., Status of the QCDOC project. arXiv:hep-lat/0110124v1, 2001.

[Doi07] J. Doi. Performance evaluation and tuning of lattice QCD on the next generation Blue Gene. Proceeding
of Science, Oct 2007.

[Duane87] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth, Hybrid Monte Carlo. Phys. Lett.,
B195:216-222, 1987.

[Etmc08] R. Baron et al., Status of ETMC simulations with Nf=2+1+1 twisted mass fermions, XXVI
International Symposium on Lattice Field Theory, July 14-19, 2008, Williamsburg, Virginia, USA.

[Fnal07] From the white paper "Computational resources for Lattice QCD 2010-2014"
http://theory.fnal.gov/theorybreakout2007/LatticeQCD2010-2014.pdf.

[Hofstee07] H.P. Hofstee et al., Cell Broadband Engine Technology and Systems, IBM J. Research and
Development, vol. 51, no. 5, 2007.

[Ibrahim07a] K. Z. Ibrahim, F. Bodin, and O. Pene. Fine-grained Parallelization of Lattice QCD Kernel Routine
on GPUs. First Workshop on General Purpose Processing on Graphics Processing Units, Northeastern
Univ., Boston, Oct 2007.

[Ibrahim07b] K. Z. Ibrahim and F. Bodin. Implementing Wilson-Dirac Operator on the Cell Broadband Engine.
INRIA/IRISA Tech. report PI 1880, Dec. 2007.

[Ibrahim08] K. Z. Ibrahim et al., Simulation of the Lattice QCD and Technological Trends in Computation,
[arXiv:0808.0391], Submitted to the 14th International Workshop on Compilers for Parallel Computers, Aug
2008

[Nvidia] NVIDIA Corporation. http://www.nvidia.com/.

[Cuda1.1] NVIDIA Cuda 1.1. http://developer.nvidia.com/object/cuda.html, 2008.

[Owens05] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn, and T. J. Purcell. A
Survey of General-Purpose Computation on Graphics Hardware. Eurographics 2005, State of the Art
Reports, pages 21-51, Aug 2005.

[Qpace08] G. Goldrian et al., QPACE: Quantum Chromodynamics Parallel Computing on the Cell Broadband
Engine, Computing in Science and Engineering, vol. 10, no. 6, Nov./Dec. 2008

[Urbach07] C. Urbach. Lattice QCD with Two Light Wilson Quarks and Maximal Twist. The XXV International
Symposium on Lattice Field Theory, 2007.

[Urbach06] C. Urbach, K. Jansen, A. Shindler, and U. Wenger. HMC Algorithm with Multiple Time Scale
Integration and Mass Preconditioning. Computer Physics Communications, 174:87, 2006.

[Vranas08] P. Vranas et al., Massively Parallel Quantum Chromodynamics. IBM journal of research and
development, 52(1/2), 2008.

