
Computing the transitive closure of a union of
affine integer tuple relations

Anna Beletska1, Denis Barthou2, Wlodzimierz Bielecki3, and Albert Cohen4

1 INRIA Saclay, France, Anna.Beletska@inria.fr
2 U. of Versailles St. Quentin, France, Denis.Barthou@prism.uvsq.fr

3 Technical University of Szczecin, Poland, WBielecki@wi.ps.pl
4 INRIA Saclay, France, Albert.Cohen@inria.fr

Abstract. This paper proposes a method to compute the transitive clo-
sure of a union of affine relations on integer tuples. Within Presburger
arithmetics, complete algorithms to compute the transitive closure exist
for convex polyhedra only. In presence of non-convex relations, there ex-
ist little but special cases and incomplete heuristics. We introduce a novel
sufficient and necessary condition defining a class of relations for which
an exact computation is possible. Our method is immediately applica-
ble to a wide area of symbolic computation problems. It is illustrated on
representative examples and compared with state-of-the-art approaches.

1 Introduction

Computing the transitive closure of graphs is an operation underlying many algo-
rithms, from CAD, software engineering, real-time process control, data bases to
optimizing compilers. To cite a few of its applications in the domain of program-
ming languages and compilation: redundant synchronization removal, testing the
legality of iteration reordering transformations, computing closed form expres-
sions for induction variables, iteration space slicing and code generation [3, 9,
10], model checking and in particular reachability analysis (see [7] and included
references), testing equivalence between codes [1, 2, 11].

Graphs can be represented in different ways. One of possible representations
of graphs is based on tuple relations. In this paper, we consider the class of pa-
rameterized and affine integer tuple relations whose constraints consist of affine
equalities and inequalities. Such relations describe infinite graphs. There are
many techniques for computing transitive closures for finite graphs, but to our
best knowledge, techniques for computing the transitive closure of a parameter-
ized affine integer tuple relation, that describes infinite graphs, were the subject
of the investigation of a few papers only [5–7, 10]. The solution presented by
Kelly et al. [10] is based on heuristics that guarantee neither calculating the
exact result nor its conservative approximation.

This paper presents a method to calculate the transitive closure of a relation
R being a union of n integer tuple relations Ri, i=1,2,...,n. The domain and range
of an integer tuple relation consists of integer tuples. Our approach is based on



computing relation A[Rk], (symbolically) for all k, being either the exact Rk or
its overapproaximation. We assume that power k of each individual relation Ri

can be computed.
Rk = R ◦R ◦ ... ◦R︸ ︷︷ ︸

k times

represents the power k of relation R.

Computation of Rk itself is an important result. It opens the door for extract-
ing fine-grained parallelism available in program loops, for example, by building
the free-scheduling of loop statement instances [8] implying that each loop state-
ment instance is executed as soon as its operands are ready. When Rk does not
describe redundant synchronization [10], then to get the free-scheduling we form
the set range(Rk), use the constraints of Rk to calculate the upper bound of
k, kmax, defining the latency of the free-scheduling [8], and generate a nested
loop whose outermost nest enumerates values of k from 0 to kmax while inner
loops scan statement instances to be executed at time k (elements of the set
range(Rk)).

Having represented the constraints of Rk as a Presburger formula, we can
easily get a representation of the positive transitive closure of R, R+, by making
k in the formula for A[Rk] existentially quantified, i.e., by adding the quantifier
“∃” to k into the constraints of Rk.

Having found the positive transitive closure of relation R, R+, the transitive
closure of R, R∗, is calculated as follows

R∗ = R+ ∪ I, where I is the identity relation.
We propose a necessary and sufficient condition defining when positive transi-

tive closure calculated according to the suggested technique corresponds to exact
positive transitive closure. Further on in this paper transitive closure refers to
positive transitive closure.

2 Background and Related Work

This section briefly presents some definitions necessary for the rest of the paper
and describes related work for transitive closure computation.

An integer k-tuple is a point in Zk. An integer tuple relation has the following
general form {[input list ] �[output list ]: constraints}, where input list and out-
put list are the lists of variables and/or expressions used to describe input and
output tuples, and constraints is a Presburger formula describing the constraints
imposed upon input list and output list [10].

The transitive closure of a directed graph G=(V, E) is a graph H=(V, F)
with edge (v, w) in F if and only if there is a path from v to w in G. There is a
path in G if and only if there is an edge (v, w) in H. A graph can be represented
with an integer tuple relation whose domain consists of integer k-tuples and
whose range consists of integer k′-tuples, for some fixed k and k′.

We use the following standard operations on relations and sets: union (∪),
composition (◦ - for a pair of relations,

∏
- for multiple relations), inclusion (⊆),

domain(R) (S=domain(R), x∈ S iff ∃y s.t. {x�y}∈ R), range(R) (S=range(R),
y∈S iff ∃x s.t. {x�y}∈R).



Transitive closures of relations with arbitrary Presburger constraints are not
computable in general [5, 10]. Two approaches have been studied: finding a par-
ticular class of relations for which transitive closure can be computed exactly,
and finding an approximation of transitive closure that is “good enough” for a
particular class of relations. The general form of a relation is as follows:

{
[x] → [y] |

n∨

i=1

(∃αi, Ai(x, y, αi) ≥ bi)

}
,

where x, y, and αi are integer tuples, Ai is an integer matrix and bi is a tuple of
integer and symbolic values. A distinction is then made when relations contain
a single clause (meaning n = 1) and are of the form:

{[x] → [y] | ∃α,A(x, y, α) ≥ b}

and when they contain multiple clauses (n > 1).
For single clause relations, the exact formulation of transitive closure has been

given in particular cases. For relations of the form R = {[x] → [Ax+b] | Cx ≥ d}
where A and C are integer matrices, b and d are constant integer vectors, Boigelot
in [5] (theorem 8.53, p.236) defines a sufficient condition for the computation of
R∗. In briefly, this condition states that if there exists p such that Ap is di-
agonalizable with eigenvalues in {0, 1} then R∗ is computable in Presburger
arithmetics. In particular, idempotent matrices correspond to transitive closures
that are represented by periodic sets [6]. Kelly et al. [10] also define a simple class
of relations, called d-forms, for which the transitive closure is easily computable.
These d-form relations are single clause relations with constraints only on the
difference of output and input tuples. Bielecki et al. [4] show how to compute the
transitive closure of a single relation representing graphs of the chain topology.
The exact transitive closure calculation is based on resolving a system of recur-
rence equations being formed from the input and output tuples of a dependence
relation.

For multiple clause relations (or union of single clause relations), the com-
putation of transitive closure is more complex. To our knowledge, it is not yet
known, for instance, whether the transitive closure of a union of d-forms is com-
putable. Approaches proposed by Boigelot in [5] or Kelly et al. [10] compute
approximations of transitive closures for such relations. The union of polyhedra
defined by multiple clauses is then approximated into the convex hull of the
polyhedra. The multiple clauses are therefore approximated into a single clause.
Kelly et al. propose a flexible approach based on very specific cases with recipes
to compute the transitive closure of a union of relations. The conditions for
which the computation is exact are not decided beforehand.

In the following sections, we present a new technique to compute the transi-
tive closure for a union of single clause relations, assuming the power k of each
individual relation can be computed.



3 Computing the Power k of a Union of Multiple
Relations

In this section, we present an approach to calculate the power k of relation
R being a union of single clause relations, denoted as A[Rk]. Given a set of
n ≥2 relations Ri, i=1,2,...,n, relations R̄i are obtained by transforming the
constraints of Ri so that their domains (and, respectively, ranges) are infinite.
When relations R̄i are commutative (this means that R̄i ◦ R̄j = R̄i ◦ R̄i for all

i, j), our approach to compute Rk = (
n⋃

i=1

Ri)k is the following

A[Rk] = {[x] → [y] | x ∈ domain(R) ∧ y ∈ range(R) ∧ (1)

∃ki ≥ 0, i = 1, 2, ..., n, s.t. y ∈
n∏

i=1

R̄ki
i (x) ∧

n∑

i=1

ki = k ∧ k > 0}.

We specify the following classes of relations Ri, i=1,2,...,n, n ≥2, for which
the corresponding relations R̄i are always commutative.

1. Uniform relations, that is, relations of the form R = {[x] → [x+b] | Cx ≥ d},
where C is the integer matrix, b and d are the constant integer vectors;

2. Non-uniform relations of the form R = {[x] → [Ax] | Cx ≥ d}, where A is
the diagonal integer matrix, C is the integer matrix, d is the constant integer
vector.

3. Relations of the form R = {[x] → [OP (A, x, op)] | Cx ≥ d}, where A is the
diagonal integer matrix, C is the integer matrix, d is the constant integer
vector, and OP is the operator producing the following output:

OP (A, x, op) =

∣∣∣∣∣∣∣∣

a11 op1 x1

a22 op2 x2

...
ann opn xn

∣∣∣∣∣∣∣∣
,

where

A =

∣∣∣∣∣∣∣∣

a11 0 ... 0
0 a22 ... 0
... ... ... ...
0 0 ... ann

∣∣∣∣∣∣∣∣
, x =

∣∣∣∣∣∣∣∣

x1

x2

...
xn

∣∣∣∣∣∣∣∣
, op =

∣∣∣∣∣∣∣∣

op1

op2

...
opn

∣∣∣∣∣∣∣∣
, opi ∈ {+,×}, 1 ≤ i ≤ n,

op is the same for all relations Ri.

The two previous classes of relations are the special cases of the third class
– when op is composed of only the addition operators, we deal with the first
class, and when op is composed of only the multiplication operators, we deal
with the second class.



To proove that relations R̄1 = {[x] → [OP (A, x, op)]} and R̄2 = {[x] →
[OP (B, x, op)]} are indeed commutative for given A, B, x, and op, we
compute

R̄1 ◦ R̄2 =





∣∣∣∣∣∣∣∣

x1

x2

...
xn

∣∣∣∣∣∣∣∣
→

∣∣∣∣∣∣∣∣

a11 op1 b11 op1 x1

a22 op2 b22 op2 x2

...
ann opn b22 opn xn

∣∣∣∣∣∣∣∣





,

R̄2 ◦ R̄1 =





∣∣∣∣∣∣∣∣

x1

x2

...
xn

∣∣∣∣∣∣∣∣
→

∣∣∣∣∣∣∣∣

b11 op1 a11 op1 x1

b22 op2 a22 op2 x2

...
bnn opn a22 opn xn

∣∣∣∣∣∣∣∣





.

Because the addition/multiplication operators represented by each opi, 1≤
i ≤ n, are commutative and associative, we can conclude that R̄1 ◦ R̄2 =
R̄2 ◦ R̄1, that is, relations R̄1 and R̄2 are commutative.

For example, relations R̄1={[i, j] → [i+1, 2∗j]} and R̄2={[i, j] → [i+3, 5∗j]}
are commutative (they belong to the third class with op = [+ ∗]), while relations
R̄3={[i, j] → [2 ∗ i, j + 1]} and R̄4={[i, j] → [i + 3, 5 ∗ j]} are not commutative.

For relations of the general form R = {[x] → [Ax + b] | Cx ≥ d}, the satis-
faction of the commutativity condition introduced above depends on particular
values of A and b and should be verified for each pair of relations Ri and Rj

by checking whether R̄i ◦ R̄j is equal to R̄i ◦ R̄i using any tool permitting for
operations on relations.

The following property guarantees that A[Rk] defined by (1) is either the
exact representation of Rk or its overapproximation.

Property 1 Rk ⊆ A[Rk].

Proof. By definition, Rk =
k∏

j=1

n⋃

i=1

Ri. Since R1 ⊆ R̄1, R2 ⊆ R̄2, ...

Rn ⊆ R̄n, the following is true:
k∏

j=1

n⋃

i=1

Ri ⊆
k∏

j=1

n⋃

i=1

R̄i.

Because relations R̄1, R̄2, ..., R̄n commute, we can group all the occur-
rences of the same R̄i together. It can be shown using properties of a
commutative semiring on relations that

k∏

j=1

n⋃

i=1

R̄i =
⋃

k1, k2, ..., kn∑
ki = k, ki ≥ 0

R̄k1
1 ◦ R̄k2

2 ◦ ... ◦ R̄kn
n .

It implies that ∀ x,y s.t. {x�y}∈ Rk,

∃ki ≥ 0, i = 1, 2, ..., n, s.t. y ∈
n∏

i=1

R̄ki
i (x) ∧

n∑

i=1

ki = k ∧ k > 0.



Because {x�y}∈ Rk means that x∈ domain(R) and y∈ range(R), we
can conclude that Rk ⊆ A[Rk].

Note that for proving the property Rk ⊆ A[Rk] we require that relations R̄1,
R̄2, ..., R̄n be commutative. Under this condition, for A[R+] formed by mak-
ing k in the constraints of A[Rk] existentially quantified, we can conclude that
R+ ⊆A[R+] meaning that A[R+] is either the exact representation of R+ or its
overapproximation.

The following theorem provides a necessary and sufficient condition when
A[Rk] = Rk.

Theorem 1 A[Rk]=Rk if and only if the following condition is satisfied for all
positive values of k:

∀x ∈ domain(R) ∪ range(R) ∧ ∀ki ≥ 0, i = 1, 2, ..., n, s.t.
∑

i

ki = k ∧ k > 0,

(
n∏

i=1

R̄ki
i (x) ∈ range(R)) ⇒ (∃hi ≥ 0, i = 1, 2, ..., n, s.t.

n∑

i=1

hi = k, (2)

n∏

i=1

R̄ki
i (x) =

n∏

i=1

R̄hi
i (x) ∧ x ∈

n⋃

i=1,hi>0

domain(Ri)).

Proof. The proof consists of two steps. We first prove by induction that Con-
dition (2) is the sufficient condition for A[Rk] to be the exact representation of
Rk. Next, we prove that Condition (2) is the necessary condition.

Sufficient condition: (2)⇒ A[Rk] ⊆ Rk.

Consider x,y s.t. {x�y}∈A[R1]. The satisfaction of Condition (2) guar-
antees that ∃i s.t. y∈ R̄i(x) and x∈ domain(Ri). This means that {x�y}∈
R1, i.e., A[R1]⊆ R1.

Now, assuming that A[Rk] = Rk, we want to prove that A[Rk+1]=Rk+1.
Consider x,y s.t. {x�y}∈A[Rk+1]. By definition of A[Rk+1],
x∈domain(R), y∈range(R), ∃ki ≥0, i=1,2,...,n,

s.t.
n∑

i=1

ki = k + 1, y∈
n∏

i=1

R̄ki
i (x).

The satisfaction of Condition (2) guarantees that

∃hi ≥0, i=1,2,...,n, s.t.
n∑

i=1

hi = k+1,

y∈
n∏

i=1

R̄hi
i (x) ∈ range(R), x∈

n⋃

i=1,hi>0

domain(Ri).

In particular, ∃j ∈[1,2,...,n] such that hj >0, x∈domain(Rj).



Since relation Rj commutes with the remaining relations, we have
y∈

∏

i,i 6=j

R̄hi
i ◦ R̄

hj

j (x).

Consider z∈ R̄j(x) such that y∈
∏

i,i 6=j

R̄hi
i ◦R̄hj−1

j (z). Because x∈ domain(Rj)

and z∈ range(Rj), the following is true: {x�z}∈R. Moreover, because
Condition (2) is satisfied for z, {z�y}∈ A[Rk]. By induction, {z�y}∈
Rk. Thus, {x�y}∈ Rk+1 and A[Rk+1]⊆ Rk+1.

Necessary condition: A[Rk] ⊆ Rk ⇒ (2).

Let us now show that Condition (2) of Theorem 1 is the necessary condi-
tion for A[Rk] to be the exact representation of Rk. Assume Condition (2)
is not satisfied but A[Rk] ⊆ Rk.
Since A[Rk] ⊆ Rk, {x�y}∈ Rk. This implies that x∈ domain(R), y∈
range(R) and ∃ih ∈[1,2,...,n], h=1,2,...,k, such that y∈ Ri1 ◦ Ri2 ◦ ... ◦
Rik

(x). Note that x∈ domain(Rik
). Since R1 ⊆ R̄1, R2 ⊆ R̄2, ..., Rn ⊆

R̄n, the following is true: y∈ R̄i1 ◦ R̄i2 ◦ ... ◦ R̄ik
(x).

Because all relations Ri commute, we conclude that

∃ hi ≥0, i=1,2,...,n, s.t.
n∑

i=1

hi = k, y∈
n∏

i=1

R̄hi
i (x).

Such a redefinition of y as well as the knowledge that x∈ domain(Rik
) is

in contradiction with the assumption that Condition (2) is not satisfied.
This proves that indeed Condition (2) is the necessary condition for
A[Rk] to be the exact representation of Rk.

Fig. 1. Examples of graphs (i)

Figure 1 shows three examples of graphs. Condition 2 is satisfied for the
first and second graphs, while for the third graph it is not valid: there exists
the point x=(2,2) (it is shown in white) for which the condition does not hold.
Indeed, for the pair x=(2,2) and y=(3,3) (it is shown in black), we can see that
y=R̄1 ◦ R̄2(x)=R̄2 ◦ R̄1(x), but x/∈ domain(R1) and x/∈ domain(R2).

Figure 2 presents two more examples of graphs. Condition (2) is satisfied
for the left-hand side graph, while for the right-hand side graph the condition



Fig. 2. Examples of graphs (ii)

does not hold: there exists the point x=(1,1) (it is shown in white) for which the
condition is not satisfied. Indeed, for the pair x=(1,1) and y=(4,4) (it is shown in
black), we have {x�y}∈A[R2] (y=R̄1 ◦ R̄2(x)=R̄2 ◦ R̄1(x)), but {x�y}/∈ R2 (x/∈
domain(R1) and x/∈ domain(R2)). In the matter of fact, {x�y}∈ R3, because
y=R3 ◦R3 ◦R3(x).

4 Illustrating Examples

In this section, we consider several examples illustrating the presented approach
and compare our results with those yielded by approaches presented in paper
[10]. We use the Omega syntax [12] to present relations and sets in our examples
and the Omega calculator to carry out necessary calculations. Having computed
A[Rk], we want to check whether Condition (2) is satisfied. For this purpose, we
calculate set X containing elements that satisfy the left-hand side of the impli-
cation of Condition (2) and do not satisfy the right-hand side of this implication.
We build relation X1 whose domain containts elements satisfying the left-hand
side of the implication. Next, we build relation X2 whose domain contains ele-
ments not satisfying the right-hand side of the implication. The computation of
the domain(X1 −X2) defines set X. If set X is empty, then we conclude that
A[Rk] corresponds to the exact representation of Rk.

Steps to check whether Condition (2) is valid are the following.

1. Compute A[Rk] and A[R+].
2. Check whether A[Rk] = Rk. In the matter of fact,

(a) form the following relation X1

X1 = {x → y | x ∈ domain(R) ∪ range(R), y ∈ range(R),

∃ki ≥ 0 s.t.

n∑

i=1

ki = k, y =
n∏

i=1

R̄ki
i (x)};

(b) form the following relation X2

X2 = {x → y | x ∈ domain(R) ∪ range(R), y ∈ range(R),

∃ki ≥ 0 s.t.

n∑

i=1

ki = k, y =
n∏

i=1

R̄ki
i (x), x ∈

n⋃

i=1,ki>0

domain(Ri)};



(c) calculate the set X = domain(X1−X2). If set X is empty, A[Rk] = Rk

and, respectively, A[R+]=R+. The end. Otherwise, A[Rk] 6= Rk.

To illustrate the proposed approach, we start with the following example.
Example 1.

R1:={[i,j]�[i+1,j+1]: 1≤i<n & 1≤j<n},
R2:={[i,j]�[i+1,j-1]: 1≤i<n & 2≤j≤n}.

Figure 3 illustrates the graph described with relations R1 and R2 for n=5.
Our task is to compute relation A[Rk] and to find A[R+] using A[Rk]. Relations
R̄1 and R̄2 derived from relations R1 and R2 by transforming their constraints
so that their domains (and, respectively, ranges) are infinite have the following
form
R̄1:={[i,j]�[i+1,j+1]},
R̄2:={[i,j]�[i+1,j-1]}.

R̄1 and R̄2 are commutative because R̄1 ◦ R̄2 − R̄2 ◦ R̄1 = ∅ and R̄2 ◦ R̄1 −
R̄1 ◦ R̄2 = ∅ (this is easy to check by means of the Omega calculator).

R̄k1
1 , R̄k2

2 can be calculated easily using the formula presented in [10] and
they are given below.
R̄k1

1 :={[i,j]�[i′,j′]: i′=i+k1 & j′=j+k1 & k1 ≥0 },
R̄k2

2 :={[i,j]�[i′,j′]: i′=i+k2 & j′=j-k2 & k2 ≥0 }.
The composition R̄k1

1 ◦ R̄k2
2 is the following

R̄k1
1 ◦ R̄k2

2 :={[i,j]�[i′,j′]: i′=i+k1+k2 & j′=j+k1-k2 & k1 ≥0 & k2 ≥0 }.
Finally, we are able to calculate A[Rk] that can be represented as

A[Rk]:={[i,j]�[i′,j′]: 1≤i<n & 1≤j≤n & 2≤i′ ≤n & 1≤j′ ≤n & Exists (k1,k2:
i′=i+k1+k2 & j′=j+k1-k2 & k1 ≥0 & k2 ≥0 & k1 + k2 = k & k ≥0)}.

In order to check whether Condition (2) is satisfied, we form relations X1
and X2, and calculate set X.

X1:={[i,j]�[i′,j′]:

1 ≤ i, j ≤ n︸ ︷︷ ︸
x∈domain(R)∪range(R)

& 2 ≤ i′ ≤ n & 1 ≤ j′ ≤ n︸ ︷︷ ︸
y∈range(R)

&

Exists(k1, k2 : i′ = i + k1 + k2 & j′ = j + k1 − k2︸ ︷︷ ︸
y=

n∏

i=1

R̄ki
i (x)

&

k1 ≥ 0 & k2 ≥ 0 & k1 + k2 = k & k > 0)};
X2:={[i,j]�[i′,j′]:

1 ≤ i, j ≤ n︸ ︷︷ ︸
x∈domain(R)∪range(R)

& 2 ≤ i′ ≤ n & 1 ≤ j′ ≤ n︸ ︷︷ ︸
y∈range(R)

&

Exists(k1, k2 : i′ = i + k1 + k2 & j′ = j + k1 − k2︸ ︷︷ ︸
y=

n∏

i=1

R̄ki
i (x)

&



k1 ≥ 0 & k2 ≥ 0 & k1 + k2 = k & k > 0 &

(1 ≤ i, j < n & k1 > 0︸ ︷︷ ︸
x∈domain(R1), k1>0

OR 1 ≤ i < n & 2 ≤ j < n & k2 > 0︸ ︷︷ ︸
x∈domain(R2), k2>0

))};

X := domain(X1−X2)=∅.
Because set X is empty, Condition (2) is satisfied and A[Rk]=Rk meaning

that A[Rk] found by means of our approach is the exact representation of Rk.
To get the positive transitive closure, R+, of the union of R1 and R2, we

make k in the formula for A[Rk] to be existentially quantified, i.e.,
R+:={[i,j]�[i′,j′]: 1≤i<n & 1≤j≤n & 2≤i′ ≤n & 1≤j′ ≤n & Exists (k1, k2, k:

i′=i+k1 + k2 & j′=j+k1 − k2 & k1 ≥0 & k2 ≥0 & k1 + k2 = k & k ≥0)}.
Applying the Omega calculator implementing the approach to compute tran-

sitive closure presented in paper [10], we yield a complex representation of tran-
sitive closure including the seven “union” operators, while the both forms (ours
and produced by Omega) represent the exact transitive closure.

Fig. 3. Graph of Ex.1 Fig. 4. Graph of Ex.2 Fig. 5. Graph of Ex. 3

Let us now consider the following set of relations being a slight modification
of the previous example. We will show that Omega is fragile to even the simplest
modification of Example 1.

Example 2.
R1:={[i,j]�[i+2,j+2]: 1≤i<n-1 & 1≤j<n-1},
R2:={[i,j]�[i+2,j-2]: 1≤i<n-1 & 3≤j≤n}.

Figure 4 illustrates the graph described with relations R1 and R2 for n=5.
Using the Omega calculator, it is easy to state that the corresponding relations
R̄1 and R̄2 are commutative and Condition (2) is satisfied.

Applying our approach, we get
R+:={[i,j]�[i′,j′]: 1≤i<n-1 & 1≤j≤n & 3≤i′ ≤n & 1≤j′ ≤n & Exists (k1,k2,k:
i′=i+2 ∗ k1 + 2 ∗ k2 & j′=j+2 ∗ k1 − 2 ∗ k2 & k1 ≥0 & k2 ≥0 & k1 + k2 = k &
k ≥0)},
while applying the approach implemented in the Omega calculator [10] it is not
possible to obtain any result.



Let us now show how the proposed method can be applied to non-uniform
relations.

Example 3.
R1:={[i,j]�[2i,j]: 2≤2i≤n & 1≤j≤m},
R2:={[i,j]�[i,j+1]: 1≤i≤n & 1≤j<m}.

Figure 5 illustrates the graph described with relations R1 and R2 for n=8 and
m=4. Relations R̄1 and R̄2 derived from relations R1 and R2 by transforming
their constraints so that their domains (and, respectively, ranges) are infinite
have the following form
R̄1:={[i,j]�[2i,j]},
R̄2:={[i,j]�[i,j+1]}.

R̄1 and R̄2 are commutative because R̄1 ◦ R̄2 − R̄2 ◦ R̄1 = ∅ and R̄2 ◦ R̄1 −
R̄1 ◦ R̄2 = ∅.

Because relation R1 is non-uniform, we cannot compute R̄k1
1 using Omega.

But using Mathematica according to the approach described in [4] we yield:
R̄k1

1 :={[i,j]�[i′,j′]: (i′=i2∗k1 & k1 ≥1 OR i′=i & k1=0) & j′=j },
while R̄k2

2 (computed either using Omega or according to [4]) is the following:
R̄k2

2 :={[i,j]�[i′,j′]: i′=i & j′=j+k2 & k2 ≥0 }.
The composition R̄k1

1 ◦ R̄k2
2 is of the form

R̄k1
1 ◦R̄k2

2 :={[i,j]�[i′,j′]: (i′=i2∗k1 & k1 ≥1 OR i′=i & k1=0) & j′=j+k2 & k2 ≥0}.
Finally, we are able to calculate A[Rk] that can be represented as

A[Rk]:={[i,j]�[i′,j′]: (1≤i≤n & 1≤j<m OR j=m & 1≤i & 2*i≤n) &
(1≤i′ ≤n & 2≤j′ ≤m OR Exists (alpha: 2*alpha = i′ & 2≤i′ ≤n & j′=1) ) &
Exists (k1,k2: (i′=i2∗k1 & k1 ≥1 OR i′=i & k1=0) & j′=j+k2 & k2 ≥0 & k1+k2 =
k & k ≥0)}.

Using Mathematica, it can be shown that set X is empty for this example.
Thus, A[Rk]=Rk and A[R+] found making k in the formula for A[Rk] to be
existentially quantified is the exact representation of R+, i.e., A[R+]=R+.

5 Conclusion and Future Work

We presented in this paper a novel approach for the computation of the transi-
tive closure of a union of affine and parameterized relations. For relations that
commute when their domains and ranges are set to be infinite, we proposed a
formulation for both the power k and the positive transitive closure of the union
of n ≥ 2 relations, for a symbolic k. The precise class of relations for which
the computation is exact is defined by the necessary and sufficient condition
presented in Section 3. This class includes in particular non-convex relations.
For relations beyond this class, we proved that the approach still provides an
overapproximation of transitive closure.

In comparison to the heuristic approach presented in [10], ours always permits
the computation of the transitive closure of a union of multiple relations. A result
can be either exact transitive closure or its overapproximation, depending on the
satisfaction of the introduced condition.



In our future research we plan to derive approaches for calculating transi-
tive closure for a union of n ≥2 relations Ri, i=1,2,...,n, whose corresponding
relations R̄i are not commutative.

References

1. Christophe Alias and Denis Barthou. On Domain Specific Languages Re-
Engineering. In ACM Int. Conf. on Generative Programming and Component En-
gineering, volume 3676 of Lect. Notes in Computer Science, pages 63–77, Tallinn,
September 2005. Springer-Verlag.

2. Denis Barthou, Paul Feautrier, and Xavier Redon. On the equivalence of two sys-
tems of affine recurrence equations. In Euro-Par Conference, volume 2400 of Lect.
Notes in Computer Science, pages 309–313, Paderborn, August 2002. Springer-
Verlag.

3. Anna Beletska, Wlodzimierz Bielecki, and Pierluigi San Pietro. Extracting coarse-
grained parallelism in program loops with the slicing framework. In ISPDC ’07:
Proceedings of the Sixth International Symposium on Parallel and Distributed Com-
puting, page 29, Washington, DC, USA, 2007. IEEE Computer Society.

4. Wlodzimierz Bielecki, Tomasz Klimek, and Konrad Trifonuwic. Calculating exact
transitive closure for a normalized affine integer tuple relation. To be published in
the Journal of Electronic Notes in Discrete Mathematics, 2009.

5. B. Boigelot. Symbolic Methods for Exploring Infinite State Spaces. PhD thesis,
Université de Liège, 1998.

6. B. Boigelot and P. Wolper. Symbolic verification with periodic sets. In Proceedings
of the 6th International Conference on Computer-Aided Verification, volume 818
of Lecture Notes in Computer Science, pages 55–67. Springer-Verlag, 1994.

7. Hubert Comon and Yan Jurski. Multiple counters automata, safety analysis and
presburger arithmetic. In CAV’98, LNCS 1427, pages 268–279. Springer, 1998.

8. Alain Darte, Yves Robert, and Frederic Vivien. Scheduling and Automatic Paral-
lelization. Birkhaüser, 2000.

9. Wayne Kelly, Vadim Maslov, William Pugh, Evan Rosser, Tatiana Shpeisman, and
David Wonnacott. The omega library interface guide. Technical report, College
Park, MD, USA, 1995.

10. Wayne Kelly, William Pugh, Evan Rosser, and Tatiana Shpeisman. Transitive clo-
sure of infinite graphs and its applications. Int. J. Parallel Programming, 24(6):579–
598, 1996.

11. K. C. Shashidhar, Maurice Bruynooghe, Francky Catthoor, and Gerda Janssens.
An automatic verification technique for loop and data reuse transformations based
on geometric modeling of programs. Journal of Universal Computer Science,
9(3):248–269, March 2003.

12. The Omega project. http://www.cs.umd.edu/projects/omega.


