
Automatic Data Mapping of Signal Processing ApplicationsCorinne Ancourt1 Denis Barthou2 Christophe Guettier3Fran�cois Irigoin1 Bertrand Jeannet3 Jean Jourdan3 Juliette Mattioli3AbstractThis paper presents a technique to map automatically a complete digital signal processing(DSP) application onto a parallel machine with distributed memory. Unlike other applica-tions where coarse or medium grain scheduling techniques can be used, DSP applicationsintegrate several thousand of tasks and hence necessitate �ne grain considerations. More-over �nding an e�ective mapping imperatively require to take into account both architecturalresources constraints and real time constraints. The main contribution of this paper is toshow how it is possible to handle and to solve data partitioning, and �ne-grain schedulingunder the above operational constraints using Concurrent Constraints Logic Programminglanguages (CCLP). Our concurrent resolution technique undertaking linear and non linearconstraints takes advantage of the special features of signal processing applications and pro-vides a solution equivalent to a manual solution for the representative Panoramic Analysis(PA) application.Keywords: parallelizing compiler, scheduling, constraint logic programming1: IntroductionThe post World War II era has resulted in the trend of using Digital Signal Processing(DSP) technologies for both military and civilian applications. The growing requirementsfor sophisticated algorithms, especially those used for 3-D applicative domains, lead toprocess in real time large multi-dimensional arrays of data. These applications are executedon parallel computers, that o�er enough computing power [25].The mapping of DSP applications onto parallel machines raises new problems. The realtime and target machine constraints are imperative. The solution must �t the availablehardware: the local memory, the number of processors, the processor communications.The application latency must meet the real time requirements. This necessitates �ne-grainoptimizations. Combining both kinds of constraints is still out of the scope of automationand requires deep human skills.This paper presents a new technique to map automatically DSP application, representedby a sequence of loop nests, onto a SPMD distributed memory machine. This technique isbased on formalizations of the architectural, applicative and mapping models by constraints.The result is (1) a �ne grain a�ne schedule of computations, (2) their distribution ontoprocessors and (3) a memory allocation. Computations are distributed in a block-cyclic1<ancourt,irigoin@cri.ensmp.fr> Ecole des Mines de Paris/CRI 77305 Fontainebleau, France2<Denis.Barthou@prism.uvsq.fr> PRISM, UVSQ, 45, avenue des Etats-Unis 78035 Versailles, France3<guettier,jeannet,jourdan,juliette.@thomson-lcr.fr> LCR, Thomson-CSF, Domaine de Cor-beville, F-91404 ORSAY, France



way on processors. Communications are overlapped with computations when possible.The memory model is precise: Only the amount of memory useful to the computations isallocated.The mapping problem is designed to distribute computations and data onto a parallelmachine. The block size of computations that can be executed onto a processor accordingto their local memory size should be estimated. The computation partitioning into blocksshould �t the number of processors. And the computational blocks should be scheduledaccording to real time constraints. This general mapping problem has been proved to beNP-complete [36, 37]. Moreover, it cannot be expressed in a single linear framework becausethe formulation of the general problem (data AND computation distributions) involves nonlinear constraints. While data dependence constraints can be translated into linear in-equations and then solved by classical linear programming algorithms, resource constraintsrequire non linear expressions. Solving directly both constraints is still out of the scopeof any general algorithms and necessitates the combination of integer programming andsearch [24]. Following the same idea of combining constraints solving and nondeterminism,our technique uses a new approach: the CCLP [19, 53] approach. Unlike conventional con-straint solvers based on black box algorithms, CCLP languages use an incomplete constraintsolvers over a �nite domains algebra. The two main advantages of using such algorithmare �rst to enhance compositionality features [52, 31] and secondly to o�er basic controlstructures for expressing new constraints [52].Our approach takes as input the speci�cation of di�erent models such as: the targetmachine, the communication cost, the application, the partitioning, the data alignment,the memory allocation and the scheduling models. Then, the CCLP assets enable to handlelinear and non linear expressions and to yield, through the concurrent propagation of theconstraints over all the models to solutions, satisfying the global problem. The solutionoutlook depends on multiple criteria as memory allocation or latency which are speci�edby the user.The article is organized as follows. Firstly, the characteristics of the target machine andDSP applications are presented. Secondly, our constraint formalization of the problem isexposed: Especially, the partitioning, scheduling and memory models are detailed. Thirdly,the concurrent resolution programming technique is presented, followed by our prototyperesults. Finally, a comparison with other approaches is described before concluding.2: Architectural and applicative featuresThis section presents an overview of the architectural and application features that char-acterize our general mapping problem formulation.2.1: Architectural featuresThe target machine is an abstract SPMD distributed memory machine. The mapping isconstrained by machine resources:Number of processors. The application is mapped on all processors. However, criterialike memory allocation or communication minimization may enforce the use of fewerprocessors.



Local memory size. Because there is no global memory, the amount of memory necessaryto execute a set of computations, mapped onto a processor at a given moment, must�t the available processor memory.Processor rate. The latency criteria (amount of time between one input and the corre-sponding output) can be �xed to a maximum value.Overlap of computations and communications. The partitioning model takes advan-tage of this property to overlap communications with computations.The �rst three parameters are given by the programmer. Our system searches solutionsthat satisfy these resource constraints. Search with optimization criteria such as localmemory minimization do not change the architectural model but designs a particular searchimplementation.2.2: Applicative featuresIn this section the DSP applicative features are described. These features have beeninvestigated for several years at Thomson-CSF by A. Demeure.The application is a sequence of loop nests in a single-assignment formIt describes an acyclic graph of tasks. Each loop nest includes a procedure call (calledmacro-instruction) that reads one or several multidimensional data arrays and updatesone di�erent array. Array accesses are a�ne functions of loop indices with eventualmodulo. Figure 1 presents a global view of PA application [8]. Figure 2 details the�rst PA loop nest.Parallelism. Since the application is in a single-assignment form, each loop nest is full-parallel. Furthermore, the loops are perfectly nested.Macro-instructions can be seen as black boxes where computational dependencies areencapsulated. Macro-instructions are DSP library calls, such as Fast Fourier Trans-form. Our approach schedules the application at this macro-instruction level.Arrays have one in�nite dimension, due to the real time constraint. The computa-tional recurrence extraction from the application puts forward a cyclic schedule of a�nite amount of computations. Then, classical parallelization techniques can be used.DSP applications manipulate array references that can be represented by Read and Writeregions [50, 12]. Read and Write regions represent, with a�ne constraints [13], the set ofarray elements read and written by the macro-instruction. Figure 2 gives the FFT read andwrite regions. As macro-instructions are generally DSP library calls, these regions shouldbe allocated fully in the local memory during the macro-instruction computation.3: Constraint formalizationOur technique uses a multi-model approach [32] to describe the general mapping prob-lem. Due to space limitation, only the partitioning, scheduling and memory models arepresented here. But the communication, latency, architectural and applicative models ob-viously in
uence the resolution. The CCLP constraint solver uses the models to test andsearch the solutions that satisfy all the constraints.



doall r,ccall FFT(r,c)enddodoall r,f,vcall BeamForming(r,f,v)enddodoall r,f,vcall Energy(r,f,v)enddodoall r,vcall ShortIntegration(r,v)enddodoall r,vcall AzimutStabilization(r,v)enddodoall r,vcall LongIntegration(r,v)enddoFigure 1. Panoramic Analysis application
do r=0,infinitydo c=0,511c Read Region:c SENSOR(c,512*r:512*r+511)c Write Region:c TABFFT(c,0:255,r)call FFTDbl(SENSOR(c,512*r:512*r+511),TABFFT(c,0:255,r))enddoenddo Figure 2. FFT Loop nest3.1: Partitioning modelThe partitioning model is designed to map computations onto the target machine. SinceDSP applications are sequences of parallel loop nests, the partitioning problem results inloop nest by loop nest partitioning.The multidimensional iteration domain (I) is partitioned into n partitionsI = n[i=1Partiand computations are not replicated (no overlap between partitions):8j; 1 � j 6= i < n; Parti\Partj = ;The application parallelism degree, memory location requirement and time scheduling pa-rameters are controlled by the partitioning. The iteration domain is decomposed over 3vector parameters: x; y; z. Block, cyclic and block-cyclic distributions are possible. Thepartitioning is equivalent to the HFP distribute directive, the same distribution formal-ization follows:8i 2 I; 8><>: i = LPx+ Ly + z /* bloc-cyclic distribution */8z; 0 � L�1z < 1; 8y; 0 � P�1y < 1 /* no partition overlap */det(L) 6= 0; det(P ) 6= 0 /* finite partition */P and L are diagonal square integer matrices. Except for the in�nite dimension, the 3parameters can be assigned independently to Processor p, Cyclic recurrence c or Localmemory l. The �nite resource constraints imply: x = c for the in�nite dimension. Thecase where (x; y; z) = (c; p; l) implies that max(l) = QiLii is the number of local iterationsexecuted by one processor at each cycle c (each local iteration execute a macro-instruction).This set of computations de�nes a computational block. max(p) = Qi Pii gives the maxi-mum number of processors and max(c) the maximum number of synchronizations (cycles)necessary for the loop nest completion.



Due to DSP application features, the array access functions use at most per array di-mension one explicit loop index and one implicit loop index (for macro-instruction) whichscans the read or write region. Since read and write regions are not partitionable, onlythe explicit loop nest is partitioned. Partitioning matrices are diagonal (with an eventualpermutation). Figure 4 presents the PA loop nest partitioning. It expresses that 1 iterationr (L11) and 64 (L22) iterations h (see Figures 1,2) are mapped on each of the 8 (P11 � P22)processors.3.2: Scheduling modelThe scheduling model is designed to associate to each computation a logical executionevent on a processor. The resulting schedule can be viewed as a succession of loop trans-formations. In general, it is not possible to �nd automatically the transformation set toapply such that the �nal schedule is optimal. So, the a�ne scheduling approach, used insystolic arrays and parallelization techniques [23, 22, 15, 16, 17], is chosen and applied toour context.The partitioning model states that computations having to be scheduled (called compu-tational block) are the set of L pipelined local iterations mapped onto p at cycle c. Sincethe programming model is SPMD, p does not need to appear in the schedule formulation.Thus, it only depends on vector c which fully describes the block of l iterations to perform.We choose the a�ne schedule class of events to search as:dk(ck) = N(�k � ck + �k) + kVariables are indexed by the loop nest number k. dk is the scheduling function of thekth-loop nest. �k and �k are the scheduling a�ne parameters. �k is a line vector, and �kis scalar. N is the number of loop nests. It is used in the formulae with the o�set +k inorder to avoid the execution at the same date of two computations belonging to di�erentloop nests.In the same way, two computational blocks of a single loop nest cannot be executed atthe same date. Let cki and ckj with i < j be two cyclic components of the partitioned loopnest Nk. Then, the execution period of Cycle cki must be greater than the execution timeof all cycles ckj . Hence, Constraints: �ki >Pj>i �kj max(ckj ) with �kn � 1 must be veri�ed.As an example of additional constraints that link the partitioning and scheduling models,the data 
ow dependencies express that a piece of data of loop nest N r cannot be readbefore being updated by Nw. These dependencies between two cycles cw of loop nest Nwand cr of N r imply that:8(cw; cr) Dependence(cw; cr)) dw(cw) + 1 � dr(cr) (1)dw (respectively dr) is the scheduling associated to N r (resp. Nw).Note that these dependencies are computed between iterations of di�erent loop nests.Data 
ow dependencies are approximated by their convex hull representation. However,this approximation lets us to obtain the same set of valid schedules as with the exactrepresentation without any loss. Due to DSP application characteristics, this representationcan remain symbolic. This improves the constraints propagation, since no costly algorithmis needed to solve the dependence test.



3.3: Memory modelThe memory model ensures the application executability under a memory constraint. Acapacitive memory model is used. It evaluates the memory required for each computationalblock mapped onto a processor by analyzing the data dependencies. An allocation functioncan be extracted straightforwardly from the memory allocation result when the schedule isknown after the optimization phase.A data block is the data set needed to execute a macro-instruction. The number ofdata blocks needed to execute a computational block is derived. Due to the partitioningmodel all computational blocks have the same simple structure and the data blocks havethe same size. Data dependencies are used to determine the data block life time. A datablock is alive from its creation date (corresponding to its allocation) to its last use date. Foreach computational block, the schedule and data dependencies give the maximum life timeof a data block and the number of data block creations during one cycle. This gives therequired memory capacity per computational block and cycle. The addition of the di�erentcomputational block memory requirements gives the amount of memory necessary to thecomplete application execution.The memory is organized in segments of identical data blocks, one per loop nest. Thiseliminates the problems of memory fragmentation and the eventual need of block reloca-tion. Data duplications due to input sets of references overlap between successive iterationsare eliminated by using partial data block decompositions. Only new partial data blocksare kept and fused to others. This re�nement is powerful enough to handle any multidi-mensional read overlaps and proved very e�cient on the studied DSP applications.The previous capacitive memory constraints de�ne the memory requirements for execut-ing the tasks onto each processor according to their local memory size. The local memorysize is �xed by the programmer. Optimizations such as local memory minimization areparticular search implementations and do not change the memory model.4: ResolutionConstraint logic programming is a generalization of logic programming where uni�cationis replaced by constraint solving over several computation domains. These domains includelinear rational arithmetics, boolean algebra, Presburger arithmetics and �nite domains [20].More recently the introduction of the notion of constraint entailment, stemming from theAsk & Tell paradigm of concurrent programming [46], enhanced the CCLP framework withsynchronism mechanisms. This new class of CCLP (see �g. 3) languages [42, 52] o�erscontrol structures enabling in one hand a better interleaving of the goals of several modelsand on another hand a new way to de�ne non-primitive constraints.The cardinality operator #(l; u; [c1; :::; cn) [51], the constructive disjunction operator5(c1; :::; cn) [31], the entailment and the conditional propagation operators are some ex-amples of new connectives of CCLP languages. From an operational standpoint, theyare based on constraint solving, constraint entailment and arithmetic reasoning. Going indeeper details on CCLP is out of the scope of this paper but we have used these new capa-bilities to extend our CCLP languages Meta(F) [11] in order to solve e�ciently polynomialconstraints over �nite domain variables.Thanks to their unique combination of constraint-solving, nondeterminism, and rela-tional form, CCLP languages have been shown to be very e�ective in solving complex and



Tell: Satisfaction mechanism P; T h(S) j= (9)cAsk: Entailment mechanism P; T h(S) j= (8)(�! c)where P is a CCLP program, T h(S) a theory of the S algebra, � a guard and c a constraint.CCLP program: Set of logic rules of the form fA a c jA1; :::; Akgwhere a, c et fAig represent respectively a set of constraints of type ask, of constraints oftype tell and logical atoms.Figure 3. CCLP programs and its two basic mechanismsheterogeneous problems [53, 30] comparable in e�ciency to specialized algorithms. In thetwo next sections we show how we can handle and solve our mapping problem using suchkind of new language.4.1: How does CCLP handle our global mapping problem ?The mapping models such as partitioning and scheduling are represented with mathe-matical variables and a�ne constraints. Non-linear constraints link the di�erent modelsand generally are composed with complex and polynomial terms. For example, constraint(2) links partitioning and architecture models. The number of processors required by thepartitioning must be smaller than the number of processors available.NumberOfProcessors � maxk(�ni=1(P ki;i)) (2)The latency, resources and data-
ow dependencies constraints (1) are global constraints.The e�ective CCLP expressions of the global mapping problem has required an in-depthcollaboration between CCLP and Parallelism specialists. The �ne grain models, issued fromparallelization techniques, induce a CCLP model mostly based on the expression of sets ofmacro-instructions, data blocks and dependency relationships. Those sets are representedas intension rather than extension models.In some cases, this task was impossible to perform directly and the proposed modelshave to be recasted in a set of expressible constraints representing an approximation ofthe model. For instance, the dependency relationships between blocks of computationscannot be stated in the original constraint (1) due to the 8(cw; cr). The constraint hasbeen implemented as constraint (3):8(cws ; crs) dw(cws ) + 1 � dr(crs) (3)where (cws ; crs) are the vertex components of the convex hull of the dependencies, thathave been computed symbolically. Hence, the scope of this 8 is restricted to the number ofvertices.4.2: How does CCLP solve our global mapping problem ?Models are linked by the variables that appear concurrently into the model constraintformalizations. For example, the computational block size c appears in the partitioning,



dependence, scheduling and communication models. During the resolution, models com-municate their partial information about these variables to others.While storing the di�erent constraints, the CCLP system builds a solution-space on amodel-per-model basis. Each model solution space is pruned when constraints are prop-agated from other models. Once all models have been built into the system, non-linearconstraints linking the di�erent models still have to be met. Solutions must be looked forin a resulting overall search space using a speci�c global search.This search relies (1) on the semantic of the variables of each model and their importancew.r.t. other models and (2) the goal to achieve (i.e. resource minimization under latencyconstraint, latency minimization under resource constraint). Each variable takes part ina global cross-model composite solving, such that only relevant information is exchangedbetween models. The global search looks for partial solutions in the di�erent concurrentmodels. For instance, the set of scheduling variables (~�i; �i) and partitioning matrices Pi; Liare partially instantiated by inter-model constraints during the resolution. Model-speci�cor more global heuristics are used to improve the resolution:e.g. schedule choices are drivenby computing the shortest path in the data-
ow graph.Based over models semantic and speci�c heuristics, the global mapping problems is solvedthrough CCLP using complex composition schemes.If dedicated algorithms are used, the composition of the di�erent functions only is possibleby sequential solving according to the functional programming paradigm. It restricts thecomposition facilities and has a too high complexity. Traditional generic solvers, as Simplex,are designed to solve only linear constraints in a convex rational context. The Simplexcategory algorithms does not support models cooperation.Integer programming allows to recast complex non-linear constraints using boolean vari-ables. Therefore, links between models are represented using boolean variables which re-stricts partial information exchanges between models.5: ResultsThis section illustrates our prototype results. The user speci�es the target machineand the option criteria. In this example, the optimizing cost function is the memory sizeminimization. The target machine has 8 processors. The latency constraint is set to 4:108processor clock cycles and the memory is unbounded. Figure 4 describes the partitioningof PA. The loop nest parallelism and locality are expressed with the diagonal matrices Pand L .5.1: PartitioningThe partitioning characteristics follow. (1) Only �nite dimensions are mapped onto the8 processors. This solution satis�es the latency constraints. (2) The write region of thesecond loop nest is identical to the read region of the third loop nest. So the system fusesthese loop nests in order to reduce memory allocation. (3) The access analysis of the secondand third loop nests presents read region overlaps between successive iteration execution.This overlap is detected. The system parallelizes according to another dimension to avoiddata replication.



FFT Beam Forming Broad Band; Short Integration;Energy Azimut; Long IntegrationParallelismP = � 1 00 8 � 0@ 1 0 00 1 00 0 8 1A � 1 00 8 �LocalityL = � 1 00 64 � 0@ 1 0 00 128 00 0 25 1A � 1 00 16 �Figure 4. Partitioning matrices for Panoramic Analysis5.2: ScheduleFFT Beam Formaing;Energy Broad Band Sht Int Azimut Lng Int� � 61 � 0@ 611 1A � 61 � � 481 � � 481 � � 3841 �� 0 1 2 45 46 383Figure 5. Scheduling matrices for Panoramic AnalysisAccording to the di�erent partitions, onlythe time dimension is globally scheduled.From the � and � scheduling parametersin Figure 5, the schedule can be expressedusing the regular expression:(((FFT; [BF;E]; BB)8; SI; SA)8; LI)1Computational dependencies between iter-ations are satis�ed. The system provides a�ne grain schedule at the macro-instructionlevel using the dependence graph shortest-path. This enables the use of data as soonas possible, avoids bu�er allocations, andproduces output results at the earliest. Onthe right hand side, the corresponding loopnest is represented.
do ili=0,infinitydo isa=0,7do ibb=0,7FFT(ibb)BeamFormingEnergy(ibb)BroadBand(ibb)enddoShortInteg(isa)StabAzimut(isa)enddoLongInteg(ili)enddoEight iterations of Tasks FFT,BF-E,BB (executed every �11 = 6 steps) are performedbefore one iteration of SI,SA (executed every 48 = 6*8 steps). The last task LongIntegcannot be executed before 8 iterations of the precedent ones. So it is executed every 384(=8*48) steps.5.3: Comparison with manual mappingsManual mappings of DSP applications are performed in di�erent ways. In general, user-friendly interfaces provided by manufacturers o�er some help for coarse grain parallelism.



The application is scheduled at the task level and not at the macro-instruction level. Thus,load balancing is more di�cult to obtain.While it is hard for a human being to instantiate the di�erent models satisfying allconstraints, we have compared our solution to two di�erent manual solutions. The �rst oneis based on loop transformation techniques. The second one uses the maximization of theprocessor usage as only economic function. Our result is equivalent to the one suggestedby parallelization techniques. It is better than the second one which requires more memoryallocation.5.4: Towards global optimizationBetween two successive solutions, the system takes important decisions to optimize themapping. The optimization trace is shown in Figure 6.Row 0 represents the original set of constraints:a large initial memory size, 8 processors, anda quite restricted latency. Solution 1 gives abad partitioning of the fused loop nests BeamForming-Energy, and produces an allocationwith data replication. Solutions 2 and 3 aremixed: parallelism is set on di�erent dimensions.Solution 4 maps parallelism on the appropriateddimension, thus minimizes data replication. Fi-nally, the system �nds that taking 4 processorsstill satisfy the latency constraint and reducesmemory cost. Memory Optimizationsol. Nb Memory Latencynumb. proc. Kwords Mcycl.0 8 10000.0 4001 8 1358.5 1752 8 1057.7 1753 8 907.3 1754 8 832.1 1755 4 832.0 350Figure 6. Optimizing the memory sizeThe �rst solution is obtained in a few minutes while this optimization is completed inten minutes on a SPARC-10 Workstation. These times have to be compared with humanbeing inquiries to comprehend and map the application.6: Related WorkMapping applications onto parallel machines addresses issues such as scheduling [10],parallelization [1], loop transformations [29, 4, 38], parallel languages [35, 28, 3], integerlinear programming and machine architecture. A lot of work has been done to optimize afew criteria such as data and/or computation distribution [40, 21, 34, 7, 43], parallelismdetection, minimization of communications [18, 2, 41, 5], processor network usage. Thissection focuses on the most relevant work.Although manual loop transformation techniques are attractive and give good results,it is not possible to �nd automatically the transformation set to apply for obtaining theoptimal schedule [33, 9]. However restructuring the application such that the parallelismand data locality are maximized is yet a relevant objective. Many studies [9, 41, 48] presentinteresting approaches. Thereafter, the compiler is in charge of mapping physically theoptimized application of the target machine. Compared to our approach, there is no real



time and architectural constraints (number of processors and memory resources) to takeinto account during the parallelization phase.Similar techniques are used in systolic arrays [16, 17, 14] and parallelization [23, 22, 26]communities to compute a�ne schedules. In the systolic community, these techniques areapplied on a single loop nest with complex internal dependencies. The other approachesdealing with complete applications, do not have the same architectural and applicationconstraints. The parallelism grain is at the instruction level, there is no real time constraintand the target machine is generally virtual.DSP application features are taken into account in [45]. This approach is based on taskfusion, but for a sequential result. Mapping statically DSP application with speci�c signalrequirements [27, 49] have been widely investigated. The representative Ptolemy framework[39, 47, 44] brings some solution but at a coarse grain level. Most of the resolution schemesare based on dedicated algorithms [6].Our approach is the �rst one to propose an optimal a�ne schedule of a complete appli-cation with a �ne grain parallelism (at the macro-instruction level) and its mapping ontoa architecture under resource and real time constraints.7: ConclusionA technique to map automatically DSP applications onto distributed memory machineshas been introduced in this paper. It uses a multi-model approach to describe the generalmapping problem and a concurrent resolution framework based on the Constraint LogicProgramming. Even if the presented model constraints are linear, our system comes toterms with non-linear constraints.Our experiences on DSP benchmark show that our prototype takes into account allarchitectural and applicative parameters. Sequential, pipelined and parallel schedules aregenerated depending on the applications. Comparisons with manual solutions proves thatour approach may provide interesting, indeed better, solutions.Future work focuses on developing strategies to speed-up the solution enumeration andon extending the set of applications automatically proceed.8: AcknowledgmentsWe wish to give special thanks to F. Coelho for his constructive remarks and criticalreading of this paper. We also thanks T. Brizard, P. Legal and B. Marchand for theircontinuous support.References[1] J.R. Allen and K. Kennedy. Automatic translation of Fortran programs to vector form. ACM Trans-actions on Programming Languages and Systems, 9(4):491{542, October 1987.[2] J.M. Anderson and M.S. Lam. Global optimizations for parallelism and locality on scalable parallelmachines. In SIGPLAN Conf on Programming Language Design and Implementation, pages 112{125,Albuquerque, NM, June 1993. ACM Press.[3] Fran�coise Andr�e, J.-L. Pazat, and Henry Thomas. Pandore: a system to manage data distribution. InInt. Conf. on Supercomputing, pages 380{388, June 1990.



[4] U. Banerjee. Unimodular transformations of do loops. Technical Report CSRD Rpt. No. 1036, Uni-versity of Illinois, August 1990.[5] D. Bau, I. Kodukula, K. Pingali, and P. Stodghill. Solving alignment using elementary linear algebra.In Proc. of the seventh Annual Workshop on Languages and Compilers for Parallelism, pages 4.1{4.15,August 1994.[6] S. S. Bhattacharyya, S. Sriram, and E. A. Lee. Latency-constrained resynchronisation for multiproces-sor dsp implementation. In Proceedings of ASAP'96, 1996.[7] E. Bixby, K. Kennedy, and U. Kremer. Automatic data layout using 0-1 integer programming. In Proc.of the International Conference on Parallel Architectures and Compilation Techniques, August 1994.[8] M. Bouvet. Traitements des Signaux Pour les Syst�emes Sonars. Masson.[9] D. Callahan. A Global Approach to Detection of Parallelism. PhD thesis, Rice University, March 1987.[10] P. Clauss, C. Mongenet, and G.-R. Perrin. Synthesis of size-optimal toro��dal arrays for the algebraicpath problem: A new contribution. Parallel Computing, North-Holand, 18:185{194, 1992.[11] P. Codognet, F. Fages, J.Jourdan, R. Lissajoux, and T. Sola. On the design of meta(f) and itsapplication to air tra�c control. In Proc. ICLP'92, Washington DC, USA, 1992.[12] B�eatrice Creusillet. Array Region Analyses and Applications. PhD thesis, �Ecole des Mines de Paris,December 1996.[13] B�eatrice Creusillet and Fran�cois Irigoin. Interprocedural array region analyses. International Journalof Parallel Programming (special issue on LCPC), 24(6):513{546, 1996.[14] A. Darte and Y. Robert. Constructive methods for scheduling uniform loop nests. IEEE Transactionson Parallel and Distributed Systems, 5(8):814, August 1994.[15] Alain Darte, Leonid Khachiyan, and Yves Ropbert. Linear scheduling is nearly optimal. In ParallelProcessing Letters, pages 73{81, 1991.[16] Alain Darte and Yves Robert. A�ne-by-statement scheduling of uniform loop nests over parametricdomains. Technical Report 92-16, LIP-IMAG, April 1992.[17] Alain Darte and Yves Robert. Mapping uniform loop nests onto distributed memory architectures.Parallel Computing, 20:679{710, 1994.[18] C. G. Diderich and M. Gengler. Solving the constant-degree parallelism alignment problem. In Eu-ropar'96. Laboratoire d'Informatique du Parall�elisme, August 96.[19] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T.Graf, and F. Berthier. The constraintlogic programming language chip. In International Conference on Fifth Generation Computer System,Tokyo, Japan, December 1988.[20] M. Dincbas, H. Simonis, P. Van Hentenryck, A. Aggoun, T. Graf, and F. Berthier. The constraintlogic programming language chip. In �fth Generation Computer Systems conference, Tokyo, Japan,Dec. 1988.[21] P. Feautrier. Toward automatic distribution. Parallel Processing Letters, 4(3):233{244, 1994.[22] Paul Feautrier. Some e�cient solution to the a�ne scheduling problem, II, multidimensional time. Int.J. of Parallel Programming, 21(6):389{420, December 1992.[23] Paul Feautrier. Some e�cient solutions to the a�ne scheduling problem, I, one dimensional time. Int.J. of Parallel Programming, 21(5):313{348, October 1992.[24] Paul Feautrier. Fine-grain scheduling under resource constraints. In 7th Workshop on Language andCompiler for Parallel Computers, August 1994.[25] David Foxwell and Mark Hewish. High-performance asw at an a�ordable price. Jane' IDR Review,pages 39{43, July 1996.[26] R. Govindarajan, E. R. Altman, and G. R. Gao. A framework for ressource-constrained rate-optimalsoftware pipelining. IEEE Transactions On Parallel And Distributed Systems, 7(11):1133{1149, Nov1996.[27] Ching-Chih Han, Kwei-Jay Lin, and Chao-Ju Hou. Distance constrained scheduling and its applicationsto real-time systems. IEEE Transactions On Computers, 45(7):814{825, Jul 1996.[28] S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, and C. Tseng. An overview of the fortran dprogramming system. In Fourth Workshop on Languages and Compilers for Parallel Computing, SantaClara, CA, August 1991.[29] F. Irigoin. Partitionnement de boucles imbriqu�ees, une technique d'optimisation pour les programmesscienti�ques. PhD thesis, Universit�e Pierre et Marie Curie, juin 1987.



[30] J. Jourdan and R. Lissajoux. Plc et s�equencement des vols �a l'arriv�ee. In Proc. Transportation andConstraint Programming, Montpellier, France, 1995.[31] J. Jourdan and T. Sola. The versatility of handling disjunctions as constraints. Technical ReportLACS-92-8, Thomson-CSF Central Research Lab, December 1992.[32] Jean Jourdan. Concurrence et coop�eration de mod�eles multiples dans les langages de contraintes CLP etCC : Vers une m�ethodologie de programmation par mod�elisation. PhD thesis, Universit�e Denis Diderot,Paris VII, 1995.[33] K. Kennedy and K. S. McKinley. Maximizing loop parallelism and improving data locality via loopfusion and distribution. In Languages and Compilers for Parallel Computing, Portland, Or., August1993.[34] K. Knobe, J. D. Lukas, and G. L. Steele. Data optimization: Allocation of arrays to reduce communi-cation on SIMD machines. J. of Parallel and Distributed Computing, 8, 1990.[35] C. Koelbel, D. Loveman, R. Schreiber, G. Steele, Jr. Zosel, and M. Zosel. The Hight PerformanceFortran Handbook. The MIT Press, Cambridge, MA, 1994.[36] U. Kremer. NP{completeness of dynamic remapping. In Workshop on Compilers for Parallel Comput-ers, Delft, pages 135{141, December 1993.[37] Ulrich Kremer. Automatic Data Layout for Distributed Memory Machines. PhD thesis, Rice University,Houston, Texas, October 1995. Available as CRPC-TR95-559-S.[38] K.G. Kumar, D. Kulkarni, and A. Basu. Deriving good transformations for mapping nested loops onhierarchical parallel machines. In International Conference on Supercomputing, pages 82{92, July 1992.[39] E. A. Lee and D. G. Messerschmitt. Synchronous data
ow. In Proceedings of the IEEE, September1987.[40] J. Li and M. Chen. The data alignment phase in compiling programs for distributed memory machines.Journal of Parallel and Distributed Computing, 13:213{221, 1991.[41] A. W. Lim and M. S. Lam. Communication-free parallelization via a�ne transformations. In Procs ofthe 7th Languages and Compilers for Parallel Computing, LNCS (to appear), August 1994.[42] M.J. Maher. Logic semantics for a class of committed-choice programs. In Jean-Louis Lassez, editor,ICLP'87: Proceedings 4th International Conference on Logic Programming, pages 858{876, Melbourne,1987. MIT.[43] Dion Mich�ele. Alignement et distribution en parall�elisation automatique. Th�ese informatique,ENS,LYON, 1996. 136 P.[44] P. Murthy, S. S. Bhattacharyya, and E. A. Lee. Minimising memory requirements for chain-structuredsynchronous data
ow programs. In Proceedings of the International Conference on Acoustics, Speechand Signal Processing, April 1994., 1996.[45] T. A. Proebsting and S. A. Watterson. Filter fusion. In Symposium on Principles of ProgrammingLanguage, 1996.[46] V. Saraswat. The concurrent logic programming language cp: Denotational and operational seman-tics. In Proceedings of the 14th ACM Symposium on Principles of Programming Languages, Munich,Germany, pages 49{62, January 1987.[47] Gilbert C. Sih and Edward A. Lee. Declustering: A new multiprocessor scheduling technique. IEEETrans. on Parallel and Distributed Systems, 4(6):625{637, June 1993.[48] S. Singhai and K. McKinley. Loop fusion for data locality and parallelism. In Proceedings of theMid-Atlantic Student Workshop on Programming Languages and Systems, New Paltz, April 1996.[49] J. Subhlok and Gary Vondran. Optimal latency-troughput tradeo�s for data parallel pipelines. InProc. SPAA'96, Padua, Italy, June 1996.[50] R�emi Triolet. Contribution �a la Parall�elisation Automatique de Programme Fortran Comportant desappels de Proc�edures. PhD thesis, Universit�e Paris VI, 1984.[51] P. Van Hentenryck and Y. Deville. The cardinality operator: A new logical connective for constraintlogic programming. In Koichi Furukawa, editor, ICLP'91 Proceedings 8th International Conference onLogic Programming, pages 745{759. MIT Press, 1991.[52] P. Van Hentenryck, V. Saraswat, and Y. Deville. Constraint processing in CC(FD). Technical report,Brown University, 1992.[53] P. Van Hentenryck, H. Simonis, and M. Dincbas. Constraint satisfaction using constraint logic pro-gramming. Arti�cial Intelligence Journal, 58:113{159, 1992.


