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ABSTRACT

We are interested in the computing frontier around an esdent
question about compiler construction: having a progfarand a
set M of non parametric compiler optimization modules (called
also phases), is it possible to find a sequenctthese phases such
that the performance (execution time for instance) of thel fijen-
erated prograr®P’ is “optimal” ? We prove in this article that this
problem is undecidable in two general schemes of optimieorg-
pilation: iterative compilation and library optimizati@eneration.
Fortunately, we give some simplified cases when this prolidem
comes decidable, and we provide some algorithms (not negess
efficient) that can answer our main question.

Another essential question that we are interested in isnpara
ters space exploration in optimizing compilation (tunipgimizing
compilation parameters). In this case, we assume a fixeedsequ
of optimization, but each optimization phase is allowed &véha
parameter. We try to figure out how to compute the best param-
eter values for all program transformations when the caatipih
sequence is given. We also prove that this general problem-is
decidable and we provide some simplified decidable ins&ance
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1. INTRODUCTION

The notion of an “optimal” program is sometimes ambiguous
in optimizing compilation. Using an absolute definition, @pti-
mal programP* means that there is no other equivalent program
‘P faster thanP*, whatever be the input data. This is equivalent
to state that the optimal program should run as fast as thgekin
dependence chain in its trace. This notion of optimalitynzarex-
ist in practice: Schwiegelshotet al showed in [20] that there are
loops with conditional jumps for which no semantically eqlént
time-optimal program exists on parallel machines, eveh gfitec-
ulative executioh More precisely, they showed why it is impos-
sible to write a program that is the fastest for any input datas
is because the presence of conditional jumps makes thegmnogr
execution paths dependent on the input data, so it is nokguar
teed that a program shown faster for a considered input a@dta s
(i.e., for a given execution path) remains the fastest for all iposs
ble input data. Furthermore, Schwiegelshatral convinced us
that “optimal” codes for loops with branches (with arbiyramput
data) requires the ability to express and execute a progligmun-
bounded speculative window. Since any real speculativteifeds
limited in practicé, it is “impossible” to write an optimal code for
some loops with branches on real machines.

In our work, we define the program optimality according to the
input data. So, we say that a prograd is optimal if there is not
another equivalent prograf faster thari?* considering the same
input data. Of course, the optimal progrddi related to the con-
sidered input datd™ must still execute correctly for any other input
data, but not necessarily in the fastest speed of executiasther
term, we do not try to build efficient specialized progranss,, iwe
should not generate programs that execute only for a cdrtpin
data set. Otherwise a simple program that only prints theltes
would be sufficient for fixed input data.

With this notion of optimality, we can ask the general questi
how to build a compiler that generates an optimal prograrergiv
an input data set ? Such question is very difficult to answeces
we are not able till now to enumerate all the possible autmmat
program rewriting methods in compilation (some are presetite

!Indeed, the cited paper does not contain a formal full praof a
claimed by the authors, but a persuasive reasoning.

2If the speculation is static, the code size is finite. If speibon is
made dynamic, the hardware speculative window is bounded.



literature, others have to be set up in the future). So, wedis
dress in this work another similar question: given a finite/stof
compiler optimization modules, how to build an automatidtme

to combine them in a finite sequence that produces an optioal p
gram? We mean by compiler optimization module a progranstran
formation that rewrites the original code. Unless they ai@apsu-
lated inside code optimization modules, we exclude prograat-
ysis passes since they do not modify the code.

This paper provides a formalism for some general questioogta
phase ordering. Our formal writing allows us to give prefiary
answers from the computer science perspective about deldigla
(what we can really do by automatic computation) and undecid
ability (what we can never do by automatic computation). ile w
show that our answers are tightly correlated to the naturthef
models (functions) used to predict or evaluate the progizerfer-
mances. Note that we are not interested in the efficiencycespé
compilation and code optimization: we know that most of thdec
optimization problems are inherently NP-complete. Consatly,
the proposed algorithms in this paper are not necessafityesit,
and are written for the purpose of demonstrating the deditjabf
some problems. Proposing efficient algorithms for deciel@bbb-
lems is another research aspect outside the current scope.

This paper is organized as follows. Section 2 gives a shertosw
about some phase ordering studies in the literature, asawstbme
performance prediction modeling. Section 3 defines a fomualel
for the phase ordering problem that allows us to prove sorga-ne
tive decidability results. Next, in Section 4, we show soreaagal
optimizing compilation scheme in which the phase orderirabp
lem becomes decidable. Section 5 explores the problem ofgun
optimizing compilation parameters with a compilation sempge.
Finally, we present our future work before concluding.

2. BACKGROUND

The problem of phase ordering in optimizing compilationds-c
pled to the problem of performance modeling, since the perfo
mance prediction/estimation may guide the search proc&bg.
two following subsections present a quick overview of redawork.

2.1 Performance Modeling and Prediction

Program performance modeling and estimation on a certain ma
chine is an old (and is still) an important research topiciagmo
guide code optimization. The simplest performance pradidor-
mula is the linear function that computes the execution tiha
sequential program on a simple von-Neumann machine: ihis si
ply a linear function of the number of executed instructionéth
the introduction of memory hierarchy, parallelism at maayel
(instructions, threads, process), branch prediction aedidation,
performance prediction becomes more complex than a sirimple |
ear formula. The exashapeor the nature of such function and the
parameters that it involves are two unknown problems urmtiv.n
However, there exist many articles that try to define appnaxed
performance prediction functions:

e Statistical Linear Regression Model$te parameters involved
in the linear regression are usually chosen by the authors.
Many program executions or simulation through multipleadat
sets allow to build statistics that compute the coefficiefits
the model [21, 6].

Static Algorithmic Models:usually, such models are algo-

rithmic analysis methods that try to predict a program per-
formance [4, 16, 25, 23]. For instance, the algorithm counts
the instructions of a certain type, or makes a guess of the

local instruction schedule, or analyzes data dependetwies
predict the longest execution path, etc.

e Comparison Modelsinstead of predicting a precise perfor-
mance metric, some studies provide models that compare
two code versions and try to predict the fastest one [11, 24].

Of course, the best and the most accurate performance foadi
the Turing machine itself, since it executes the programtemte
we can directly measure the performance. This is what isllysua
used in iterative compilation and library generation fatéance.

The main problem with performance prediction models isrthei
aptitude to reflect the real performance on the real machie.
well explained by Rai Jain [18], the common mistake in stiati$
modeling is to trust a model simply because it plossrailar curve
compared to the real plot (a proof by eyes !). Indeed, this aor
experimental validation is not correct from the statidt®eience
theory, and there exist formal statistical methods [18] tieeck if
a model fits the reality. Until now, we have not found any study
that validates a program performance prediction modelgusirth
formal statistical methods.

2.2 Some Attempts in Phase Ordering

Finding the best order in optimizing compilation is an oldipr
lem. The most common case is the dependence between redsister
location and instruction scheduling in instruction levatallelism
processors as shown in [7]. Many other cases of inter-phesend
dencies exist, but it is hard to analyze all the possiblerdat#ons
[26].

Click and Cooper in [3] present a formal method that combines
two compiler modules to build supermodule that produces better
(faster) programs than if we apply each module separatebyv-H
ever, they do not succeed to generalize their framework afuieo
combination, since they prove it for only two special casdsich
are constant propagation and dead code elimination.

In [12], the authors use exhaustive enumeration of possiiie
pilation sequences (restricted to a limited sequence.siz&y try
to find if any “best” compilation sequence emerges. The exper
mental results show that, unfortunately, there is not a imimnom-
pilation sequence. We think that this is because such catgil
sequence depends not only on the compiled program, but also o
the input data and the underlying executing machine.

In [22], the authors target a similar objective as in [3]. ¥he
succeed to producgupermodules that guarantee performance op-
timization. However, they combine two analysis passe®\ied
by a unique program rewriting phase. In our work, we try to find
the best combination of code optimization modules, exdlggiro-
gram analysis passes (unless they belong to the code traradfon
modules).

In [15], the authors evaluate by using a performance model th
different optimization sequences to apply to a given pnograhe
model determines the profit of optimization sequences daugr
to register resource and cache behavior. Optimizationsiden
only scalars and the same optimizations are applied whateviae
values of the inputs. In our article, we assume on the contheat
the optimization sequence should depend on the value ofphg i
(in order to be able to speak about the optimality of a program

Finally, there is the whole field of iterative compilatiom this
research activity, looking for a good compilation sequenecgiires
to compile the program multiple times iteratively, and atled-



eration, a new code optimization sequence is used [5, 24] unt
a “good” solution is reached. In such frameworks, any kind of
code optimization can be sequenced, the program perfoemaay
be predicted or accurately computed via execution or sitioula
There exist other attempts that try to combine a sequencéegbf h
level loop transformations [1, 13]. As mentioned, such rod¢h
are devoted to regular high performance codes and only oge lo
transformation in the polyhedral model.

In this paper, we give a general formalism for the phase ardger
problem and its multiple variants that incorporate the wpré-
sented in this section.

3. TOWARDS A THEORETICAL MODEL
FOR PHASE ORDERING PROBLEM

In this section, we give our theoretical framework aboufthase
ordering problem. LetM be a finite set of program transforma-
tions. We would like to construct an algoriths that has three
inputs: a progran®, an input data and a desired execution time
T for the transformed program. For each input program anahits i
put data set, the algorithtd must compute a finite sequenge=
Mp ©Mp_10---0mo, m; €M™ of optimization modules The
same transformation can appear multiple times in the seguers
it occurs already in real compilers (for constant propagetiead
code elimination for instance). ifis applied toP, it must generate
an optimal transformed prograf* according to the input data
Each optimization moduler; € M has a unique input which is
the program to be rewritten, and has an outplt= m;(P). So,
the final generated prograf” is (m, o my—1 0 ---0mg)(P).

We must have a clear concept and definition of a program trans-
formation module. Nowadays, many optimization technigases
complex toolboxes with many parameters. For instance, losp
rolling and loop blocking require a parameter which is thgrde
of unrolling or blocking. Until Section 5, we do not considrich
parameters in our formal problem. We handle them by consider
ing, for each program transformation, a finite set of parametl-
ues, which is the case in practice. Therefore loop unroNiittp
an unrolling degree of 4 and loop unrolling with a degree of&8 a
considered as two different optimizations. Given suchdisit of
parameter values per program transformation, we can defieva
compilation module for each pair of program transformatorl
parameter value. So, for the remainder of the text (untitise),

a program transformation can be considered as a module witho
any parameter except the program to be optimized.

In order to check that the execution time has reached sorue val
T, we assume that there is a performance evaluation funttioat
allows to precisely evaluate or predict the execution tioreother
performance metrics) of a prograf according to the input data
I. Lett(P,I) be the predicted execution time. Thuds;an pre-
dict the execution time of any transformed progr@h= m(P)
when applying a program transformatienif we apply a sequence
of program transformationg,is assumed to be able to predict the
execution time of the final transformed prograine,, t(P’, I)
t((mn o Mp—1 0---0mp)(P),I). t can be either the measure
of performance on the real machine, obtained through eixecaf
the program with its inputs, a simulator or a performance ehdad
this article, we do not make the distinction between theglugeses
and assume thdtis an arbitrary computable function. Next, we
give a formal description of the phase ordering problem itmaig-
ing compilation.

3o denotes the symbol of function combination (concatenjtion

PB.1 (PHASE-ORDERING). Lettbe an arbitrary performance
evaluation function. LeiM be a finite set of program transforma-
tions. VT € N an execution time (in processor clock cyclésy, a
program,V1 input data, does there exist a sequerce M* such
thatt(s(P),I) < T? In other words, if we define the set:

Sem(P, 1, T) = {s € M"[t(s(P), 1) <T}
is the setS; (P, I,T) empty?

Textually, the phase ordering problem tries to determinetidr
there exists or not a compilation sequeraghich results in an ex-
ecution time (for the transformed program with input dBtéower
than a bound’.

If there is an algorithm that decides the phase orderinglenob
then there is an algorithm that computes one sequersteh that
t(s(P),I) < T, provided that always terminates. Indeed, enu-
merating the code optimization sequences in lexicograptder
always finds an admissible solution to Problem 1. Decidirgy th
phase ordering problem is therefore the key for finding trst bp-
timization sequence.

3.1 Decidability Results

In our problem formulation, we assume the following chagact
istics:

1. t is a computable functiont(P, I') terminates wherp ter-
minates on the inpuf. This definition is compatible with
the fact thatt can be the measured execution time on a real
machine;

2. each program transformatioem € M is computable, always

terminates and preserves the program semantics;
. programpP always terminates;

4. the final transformed progra®’ = s(P) executes at least
one instructionj.e., the final execution time is strictly posi-
tive.

The phase ordering problem corresponds to what occurs in a
compiler: whatever the program and input be given by the user
(if the compiler resorts to profiling), the compiler has tadfim se-
quence of optimizations reaching some (not very well dejiped
formance threshold. Answering the question of the phaserimgl
problem as defined in Problem 1 depends on the performanee pre
diction modelt¢. Since the function (or its classg)is not defined,
Problem 1 cannot be answered as it is, and requires to hatteesino
formulation that slightly changes its nature. We considehis pa-
per a modified version, where the functiois not known by the
optimizer.

PB.2 (MoODIFIED PHASE-ORDERING). Let M be afinite set
of program transformations. For any performance evaluafienc-
tiont, VT € N an execution time (in processor clock cyclégp, a
program,VT input data, does there exist a sequerce M™ such
that¢(s(P),I) < T? In other words, if we define the set:

Sm(t,P,1,T) = {s € M"[t(s(P),I) < T},
is the setSx(t, P, 1, T) empty?

This problem corresponds to the case wheieenot anapprox-
imatesmodel but is the real executing machine (the most precise
model). Let us present the intuition behind this statemartom-
piler always has an architecture model of the target macfiae
source constraints, instruction set, general architectatencies of



caches,...). This model is assumed to be correct (meardgnghé
real machine conforms according to the model) but does ket ta
into account all mechanisms of the hardware. Thus in theory,
infinite number of different machines fit into the model, and w

mapping between evaluation functions and terminating caaiype
functions with two parameters. Only one of these paramétejs
is not an input of the problem. We introduce one more in ordéset
able to perform the reduction: as there exists a bijectinetion i

must assume the real machine is any of them. As the architec-mapping any pair of integers to an integer, we define a magygeng

ture model is incomplete and performance also dependslyisumal
non-modeled features (conflict misses, data alignment;atipa
bypasses,...), the performance evaluation model of theitenis
incorrect. This suggests that the performance evaluatioction of
the real machine can be any performance evaluation funeien
if there is a partial architectural description of this maeh Con-
sequently, Problem 2 corresponds to the case of the phasengyd
problem whern is the most precise performance model which is
the real executing machine (or simulator): the real machiea-
sures the performance of its own executing program (foairms,
by using its internal clock or its hardware performance ters).

In the following lemma, we assume an additional hypothesis
there exists a program that can be optimized into an infinita-n
ber of different programs. This necessarily requires thate is
an infinite number of different optimization sequences. Big
is not sufficient. As sequences of optimizations\ih are consid-
ered as words made of letters from the alphabétthe set of se-
guences is always infinite, even with only one optimizatio\il.
For instance, fusion and loop distribution can be used itapy
to build sequences as long as desired. However, this infeitef
sequences will only generate a finite number of differeninoiged
codes (ranging from all fusioned loops, to all distributedgds). If
the total number of possible generated programs is bourtded,

it may be possible to fully generate them in a bounded compila

tion time: it is therefore easy to check the performance efev
generated program and to keep the best one. In our hypathesis
assume that the set of all possible generated programsrégede
using the distinct compilation sequences belonging6) is in-
finite. One simple optimization such as strip-mine, apptieshy
times to a loop with parametric bounds, generates as maieyetit
programs. Likewise, unrolling a loop with parametric bosirén
be performed an infinite number of times. Note that the désdlitia
of Problem 2 when the cardinality o¥1™ is infinite while the set
of distinct generated programs is finite remains an openl@nab

LEMMA 1. Modified Phase-Ordering is an undecidable prob-
lem if there exists a program that can be optimized into amiefi
number of different programs.

PROOF The proof works by reduction of the following prob-
lem:
Problem (Empty Set)Given L a recursive enumerable language,
is L empty ?
This problem is known undecidable by application of Riceotieen

[9].

tween evaluation functions and terminating computabletions
with three parameters!’(m, n, I) = t(am,p, (h(m,n)),I). The
Modified Phase-ordering problem is equivalent to decidihgtiver
the set:

S' ", 1,T) = {(m,n)|t" (m,n, I) < T}

is empty or not, where¢”” is any computable function that always
terminate.

Now, we build the reduction. Consider a recursive enumerabl
languageL. There exists a computable functignin {0, 1} such
thatm € L < g(m) = 1. We build the following functiort,, r,
based ory:

e Input: m, n andI
e Perform at most steps of the computation g{m).

e If the computation has finished amdm) = 1 then return
T-1

e Else returrl” + 1.

This functiont,, r always terminates and is computable. Moreover,
there exists: such that, r(m,n,I) < T iff g(m) = 1.
Now, given some integeéf and an inputl:

o If S'(ty,r, I, T) is not empty, then there exist andn such
thatg(m) stops beforex computation steps ang(m) = 1.
ThereforeL is not empty.

o If S'(ty,1,I,T)is empty, then for all integer values and
n, tg,r(m,n,I) > T. According to the definition of,, 7, it
means that for alin andn, eitherg does not stop before
steps of computation, @rstops and;(m) = 0. Thatimplies
that for allm integer,m ¢ L: L = (.

This shows that there is a reduction from the problem Empty Se
to the Modified Phase Ordering problem. As the problem Empty
Set is undecidable, the modified phase ordering problemsis al
undecidable. [

We provide here a variation on the modified phase orderinig-pro
lem that corresponds to the library optimization issuegpaim and
(possibly) inputs are known at compile-time, but the optienihas
to adapt its sequence of optimization to the underlying itach
ture/compiler. This is what happens in Spiral [14] and FFTB) [
If the input is also part of the unknowns, the problem has dmees

We first reformulate the phase-ordering problem as a problem difficulty.

on computable functions instead of a problem on optimirasie-
quences and evaluation functions. Sequence$ optimizations

PB.3 (PHASE ORDERING FORLIBRARY OPTIMIZATION). Let

in M are considered as words made of letters from the alphabet M be a finite set of program transformatioriB, the program of

M. There exists a prograrR, such that optimization sequences
applied toP, generate an infinite number of different programs.
Thus, there exists an algorithow,», that, given an integet,
enumerates optimization sequences in lexicographicarpfithds
the firsti sequences; that generate different optimized programs
and outputss; (Po). aa,p, (i) = si(Po). This function is a bi-
jective mapping between integers and optimized version®f
Now, we can define, for any evaluation functigna functiont’:
t'(m,I) = tlam,p,(m),I) for all integersm, I. t' is a com-
putable function that always terminate. This defines a tijec

a library function, I some input andl’ an execution time. For
any performance evaluation functiondoes there exist a sequence
s € M”* such thatt(s(P),I) < T? In other words, if we define
the set:

Sp.rmr(t) ={se M |t(s(P),I) < T}

is the setSp, 1, m, 7 (t) empty?

The decidability results of Problem 3 are stronger thanetais
Problem 2: here the compiler knows the program, its inptis, t



optimizations to play with and the performance bound toleac the number of distinct compilation passes inside a conipiiage-

However, there is still no algorithm to find out the best ojitiation quence, the length of a compilation sequence, distinctoeggl
sequence, if the optimizations may generate a infinite nurabe compilation sequences, etc. The cost function has two snpgbe
different program versions. programP and a transformation pass. Thus,c(P, m) gives the

cost of transforming the prograf to P’ = m(P). Such cost
LEMMA 2. Phase Ordering for library optimization is undecid-  does not depend on input data The phase ordering problem in-
able if optimizations can generate an infinite number ofedéffit cluding the cost function becomes the problem of computirey t
programs for the library functions. best compilation sequence with a bounded cost.

PROOF The proof is the same as the previous one, as the proof

does not depend neither on the ingrior on the bound". [ PB.5 (PHASE-ORDERING WITH DISCRETECOSTFUNCTION).

Lett be performance evaluation function that predicts the execu
tion time of any progran given input data/. Let M be a fi-
nite set of optimization modules. L&tP,m) be a function that
computes the cost of transforming the prograéno P’ = m(P),
m € M. Does there exist an algorithtA that solves the following
3.2 Another formulation of Phase Ordering problem ?VT € N an execution time (in processor clock cycles),
Problem VK € N a compilation costyP a program,VI input data, com-
pute A(P,I,T) = s such thats = (m, o my,—1---0omg) € M*
and t(s(P),I) < T with ¢(P,mo) + c(mo(P),m1) + --- +
c((mp-10---0mg)(P),mn) < K.

The next section gives other formulations of the Phase-@rgle
problem that do not alter the decidability results provethia sec-
tion.

Instead of having a function that predicts the executioretim
we can consider a functiog that predicts the performance gain
or speedup.g would be a function with three inputs: the input
program?P, the input data/ and a transformation modube. €
M. The performance prediction functigf(P, I, m) computes
the performance gain if we transform the progrémto m(P)
and by considering the same input ddta For a sequence =
(Mmp 0o Mp_1---0mg) € M* we define the gaig(P,I,s) =
g(P,I,mo)xg(mo(P),I,m1)x---xg((mn—10---0mo)(P),I,mn). Ym,m' € M, c(P,m) < c(s(P),m’)
Note that, since the gains (and speedups) are fractionsyhbke
gain of the final generated program is the product of the glarti
intermediate gains. The ordering problem in this case besom
the problem of computing a compilation sequence that result
a maximal speedup, formally written as follows. This probl@r-
mulation is equivalent to the initial one that tries to optienthe
execution time instead of speedup.

We see in this section that if the cost functiois a strictly in-
creasing function, then we can provide a recursive algorithat
solves Problem 5. First, we define the monotonic charatitsisf
the functionc. We say that is strictly increasing iff

Thatis, applying a program transformation sequeng@m,,—1 - - -o
mo € M”* to a prograniP has always a higher integer cost than
applyingmy—1 --- o mg € M™. Such assumption is true for the
case of function costs such as compilation fimmumber of com-
pilation passes, etc. Each practical compiler uses an éihpbst
function.

Building an algorithm that computes the best compiler ojatam
tion sequence given a strictly increasing cost functionniasy
problem because we can use an exhaustive search of all lgossib
compilation sequences with bounded cost. Algorithm 1 plesia
trivial recursive method: it first looks for all possible cpitation
sequences under the considered cost, then it iterates lbtleese
Smlg, P, 1, k) ={s € M"[g(P,I,s) >k}, compilation sequences to check whether we could generate-a p
gram with the bounded execution time. Such process tergsnat
because we are sure that the cumulative integer costs ofitidre i
mediate program transformations will certainly reach thetl K.

PB.4 (MODIFIED PHASE-ORDERING WITH PERF. GAIN). Let
M be a finite set of program transformations. For any perfor-
mance gain functiory, Vk € N a performance gainyP a pro-
gram,V1 input data, does there exist a sequerce M* such that
g(P,I,s) > k? In other words, if we define the set:

is the setSx(g, P, I, k) empty?

We can easily see that Problem 2 is equivalent to Problem &. Th
is because andt are dependent each other by the following usual

equation of performance gain: As illustration, the work presented in [12] belongs to thasf

ily of decidable problems. Indeed, the authors compute @dt p

9(P,I,m) = t(P,I) — t(m(P),I) sible compilation phase sequences, but by restricting skeras
o t(P,I) to a given number of phases in each sequence. Such number is
modeled in our framework as a cost function defined as follows
4. EXAMPLES OF DECIDABLE SIMPLI- VP a program

FIED CASES _f 14+¢(P,(mn—10---0mg)) VY(mpo---omg) € M*
In this section we give some decidable instances of the phasec(P’ s) = { 1 Ym e M
ordering problem. As a first case, we define another fornarati
of the problem that introduces a monotonic cost function.isTh
formulation models the real existing compilation appraschAs a
second case, we model generative compilation and showliaaep
ordering is decidable in this case.

Textually it means that we associate to each compilationesseg
the cost which is simply equal to the number of phases in$ide t
compilation sequence. The authors in [12] limit the numbler o
phases (to 10 or 15 as example). Consequently, the numbeseof p
sible combinations becomes bounded which makes the praiflem
4.1 Models with Compila_tion Costs phase ordering decidable. Algorithm 1 can be used to gentrat

In Section 3, the phase ordering problem is defined using-a per best compilation sequence if we consider a cost functionfexed

formance evaluation function. In this section, we add agofiinc- 4The time on an executing machine is discrete since we hagk clo
tion ¢ that models a cost. Such cost may be the compilation time, cycles.




Algorithm 1 Computing a Good Compilation Sequence in the
Compilation Cost Model
Require: a program P
Require: a costK € N
Require: an execution timg” € N
Require: 1 aneutral optimizationi(P) = P A c(P,1) =0
[* we first compute the SET of all possible compilation se-
guences under the cost limit K */
SET — {1}
stop «— false
while —stop do
stop < true
forall s € SET do
visited[s] < false
end for
forall s € SET do
if ~wisited|s] then
for all m; € M do {for each compilation phaje
if ¢(P,s om;) < K then {save a new compilation
sequence with a bounded cost if the cost is bounded
by K'}
SET «— SET U{som;}
stop «— false
end if
end for
end if
visited[s] « true
end for
end while
/* now, we look for a compilation sequence that produces a pro
gram with the bounded execution time */
exists_solution «— false
forall s € SET do
if t(P,s) < T then
exists_solution «— true
return s
end if
end for
if —mexists_solution then
print “No solution exists to Problem 5”
end if

number of phases.

The next section presents another simplified case in phdse-or
ing, which is generative compilation.

4.2 One-Pass Generative Compilers

Generative compilation is a subclass of iterative comipihatin
such simplified classes of compilers, the code of an inteiaed
program is optimized and generated in a one pass traversiaé of
abstract syntax tree. Each program part is treated andateds
to a final code without any possible backtracking in the cogle o
timization process. For instance, we can take the case ob-a pr
gram given as an abstract syntax tree. A set of compilati@sedh
treats each program paite. each sub-tree, and generates a na-
tive code for such part. Another code optimization module wa
longer re-optimize the already generated program partesamy
optimization module in generative compilation takes asiirgnly
program parts in intermediate form. When a native code geioer
for a program part is carried out, there is no way to re-oé@siuch
program portion, and the process continues for other fdstuntil

Algorithm 2 OptimizeNode(n)

Require: an abstract syntax tree with root
Require: a finite set of program transformationd
if n is not leafthen
for all « child of n do
Optimize_Node(u)
end for
/*Generate all possible codes and choose the best one*/
best «— ¢ {best code optimizatidn
time < oo {best performande
forall s € M do
if t(n,s) < timethen
best «— s
time «— t(n, s)
end if
end for
apply thebest transformation to the node without changing
any child
else{Generate all possible codes and choose the be$t one
best — ¢ {best code optimizatidn
time — oo {best performande
forall s € M do
if t(n,s) < timethen
best «— s
time — t(n, s)
end if
end for
apply thebest transformation to the node
end if

finishing the whole tree. Note that the optimization prodessach
sub-tree is applied by a finite set of program transformatioim
other words, generative compilers look for local “optindzeode
instead of a global optimized program.

Given a program represented as an abstract syntax treegthe p
gram optimization process computes the best compilatiasglo-
cally to each node, starting from leaves. For example, tHR &SP
project in [14] is a generative compiler. It performs a loogti-
mization to each node as shown by Algorithm 2. It recursiagly
plies a set of program transformations at each node, sjarm
the leaves. Each node is transformed locally without angicien-
ation of its children.

As can be seen, finding a compilation sequence in generative
compilation that produces the fastest program is a de@daigb-
lem (Algorithm 2). Since the size of intermediate repreaton
forms decreases at each local application of program wemsf
tion, we are sure that the process of program optimizatiomite
nates when all intermediate forms have been transformedtizen
codes. In other terms, the number of possible distinct gassa
program becomes finite and bounded as shown in Algorithmr2: fo
each node of the abstract syntax tree, we apply locally desaugle
optimization (we iterate over all possible code optimiaatmod-
ules and we pick up the one that produces the best perforna@ace
cording to the chosen performance model). Furthermoreode c
optimization sequence is searched locally (only a sing$s ap-
plied). Thus, if the total number of nodes in the abstractayn
tree is equal tai, then the total number of applied compilation se-
quences does not exceplt| x 7.

Of course, the decidability of one-pass generative comgpiees
not prevent them from having potentially high complexitgck lo-
cal code optimization may be exponential (if it tackles NiPrplete
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Figure 1: Classes of Phase-Ordering Problems

problem for instance). The decidability result only proteat, if

timizing modules belonging to a finite sétl. We assume thatis
composed of. compilation sequences.

We associate for each optimization module € M a unique
integer parametek; € N. The set of all parameters is grouped
inside a vectork ¢ N", such that the*" component ofk is the
parameterk; of the m,, the i** module inside the considered se-
guencess. If the sequence contains multiple instances of the same
optimization modulen, the parameter of each instance may have
a distinct value from those of the other instances.

For a given prograr®, applying a program transformation mod-
ulem € M requires a parameter value. Then, we write the trans-

formed program a®’ = m(P, & ).

As in the previous sections devoted to the phase orderingr pro
lem, we assume here the existence of a performance evaluatio
function ¢ that predicts (or evaluates) the execution time of a pro-
gramP having I as input data. We denotéP, I) the predicted
execution time. The formal problem of computing the besapar
eter values of a given set of program transformations inrotale

we have a high computation power, we know that we can compute achieve the best performance can be written as follows.

the optimal code after a bounded compilation time (possifi).

This first part of the article investigates the decidabititpblem
of phase ordering in optimizing compilation. Figure 1 sysizes
a whole view of the different classes of the investigatedlams
with their decidability results. The largest class of thegd or-
dering problem that we consider, denoted@®y, assumes a finite
set of program transformations with possible optimizaamnam-
eters (to explore). If the performance prediction functi®rarbi-
trary, typically if it requires program execution or simtiten, then
this problem is undecidable. The second class of the phakss-or
ing problem, denoted by'> C C,, has the same hypothesis as
C1 except that the optimization parameters are fixed. The prob-
lem is undecidable too. However, we have identified two cdil
classes of phase ordering problem which@geandC, explained
as follows. The clas€'s C C> considers one-pass generative com-
pilation ; the program is taken as an abstract syntax tred@fAshd
code optimization applies a unique local code optimizatmdule
on each node of the AST. The claSs C C, takes the same as-
sumption ag”> plus an additional constraint which is the presence
of a cost model: if the cost model is a discrete increasingtfan,
and if the cost of the code optimization is bounded, thanis a
class of decidable phase ordering problem.

The next section investigates another essential questiopti-
mizing compilation, which is parameters space exploration

5. COMPILER OPTIMIZATION PARAME-
TERS SPACE EXPLORATION

Nowadays, many compiler optimization methods are paraneetr
For instance, loop unrolling requires an unrolling degleep block-
ing requires a blocking degree as well, etc. Actually, theplex-
ity of phase ordering problem does not allow to explore Jgittie
the best sequence of the compilation steps and the best rambi
tions of modules parameters. Usually, the community taefsnd
the “best” parameter combination when the compilation saqe
is fixed. This section is devoted to study the decidabilitysoth
problem.

5.1 Towards a Theoretical Model
First, we suppose that we haves M™ a given sequence of op-

PB. 6 (BESTPARAMETERS). Lett be afunction that predicts
the execution time of any prografgiven input datal. Let M be
a finite set of program transformations asé particular optimiza-
tion sequence. Does there exist an algorithn; that solves the
following problem ?vT" € N an execution time (in processor clock

cycles),vP a program,VI input data, A: s(P,I,T) = ¥ such
—
thatt(s(P, k),I) < T.

This general problem cannot be addressed as it is, sincenthe a
swer depends on the shape of the functionin this paper, we
assume that the performance prediction function is builaial-
gorithm a, taking s and P as parameters. Moreover, we assume
the performance function = a(P, s) built by a takes k and I
as parameters and is a polynomial function. Therefore, ¢hfop
mance of a prograr® with input I and optimization parameters
¥ is a(P,s)(I, ?). We want to decide whether there are some
parameters for the optimization modules that make the e pier-
formance bound reachable:

PB.7 (MODIFIED BEST-PARAMETERS). Let M be a finite
set of program transformations anda particular optimization se-
quence ofM*. Leta be an algorithm that builds a polynomial
performance prediction function, according to a prograndam
optimization sequence. For all prograr, for all inputs I and
performance bound’, we define the set of parameters as:

Py (P, 1,T) = { Kk |a(P,s)(k ,I) < T}.
Is P, (P,I,T)empty ?

As noted earlier, choosing an appropriate performance hiede
a central decision to define whether Problem 6 is decidabter
For instance, Problem 7 considers polynomial functionsckvare
a family of usual performance models (arbitrary linear esgion
models for instance). For instance, a three nested loopédrasin-
gle operation has a complexity af *ng xns, if n1, no andns are
the respective loop trip counts of the three loops. With sushm-
ple model, any polynomial can be generated. It is assumedtha
realistic performance evaluation function would be astlaasliffi-
cult as a polynomial function. Unfortunately, the followitemma



shows that ift is an arbitrary polynomial function, then Problem 7
is undecidable.

The following lemma states that Problem 7 is undecidable if
there are at least 9 integer optimization parameters. Incoof
text, this requires 9 optimizations in the optimizing setpee Note
that this number is constant when considering the best pEeam
and is not a parameter itself (this is equal to the number Gf op
mizations in the considered sequence). This number isy flaiv
compared to the number of optimizations found in statehefdrt
compilers (such agccor icc for instance). If there is only one pa-
rameter, then the problem is decidable. For a number of peteam
between 2 and 8, the problem is still open [17] and Matiyagevi
conjectured it as undecidable.

LEMMA 3. The Modified Best-Parameters Problem is undecid-
able if the performance prediction functian= a(P, s) is an ar-
bitrary polynomial and if there are at least 9 integer optaation
parameters.

PROOF The proof is based on a result published in 1982: given
an arbitrary polynomialf with nine variables, Jones [10] proved
that there is no recursive function which can determine hdref
has a non-negative integer zero, in the sense that it findsgiciée
zero or returns null otherwise.

Finding parameter values such that, for an arbitrary polyno-

mial p and for some given constant valll]ep(?, I) < Tis equiv-
alent to finding the zeros of an arbitrary polynomial. Givgody-
nomial p, the polynomialT + p(Z’, I) * p(*', I) reaches a value
lower thanT for some= only if 7 is a zero ofp. This shows that
to find the values for the bound is as difficult as finding theoger
of a polynomial. Ifa generates arbitrary polynomials, according to
the value ofP, and there are at least 9 optimization parameteis (
not considered as a variable, as its value is constant) Moelified
Best-Parameters Problem is undecidablel

5.2 Examples of Simplified Decidable Cases

Our formal problem Best-Parameters is the formal writingj-of
brary optimizations. Indeed, in such area of program opitions,
the applications are given with a training data set. Theoplgetry
to find the best parameter values of optimizing modules dasi
compiler usually with a given compilation sequence) thdtifiin
the best performance. In this section, we show that somdiieap
instances of Best-Parameters problem becomes easilyathbeidh
first example is the OCEAN project [2], and a second one is the
ATLAS framework [19].

The OCEAN project [2] optimizes a given program for a given
data set by exploring all combinations of parameter valegen-
tially, such value space is infinite. However, OCEAN resgrithe
exploration to finite set of parameter intervals. Consetjyethe
number of parameter combinations becomes finite, allowitny-a
ial exhaustive search of the best parameter values: eathingd
program resulting from a particular value of the optimiaatpa-
rameters is generated and evaluated. The one performingsbes
chosen. Of course, if we use such exhaustive search, threiiotgy
compilation time become very high. So, one can provide effiici
heuristics for exploring the bounded space of the param¢2d.
Currently, this is outside the scope of our article.

Finite Number of Parameters
Infinite Parameters Space

Arbitrary Performance Prediction Model
Undecidable Problem

C1

Arbitrary Polynomial Performance Prediction Model

Undecidable Problem

Fixed Polynomial Performance Model
Finite Parameters Space

Decidable Problem
Ex: ATLAS [19]

Finite Parameters Space
Decidable Problem

Ex : OCEAN project [2]

Figure 2: Classes of Best-Parameters Problems

of the cache) that, combined to the dynamic performanceuaval
tion, limits the number of program executionise( performance
evaluation) to do. For one level of cache and for matrix-iratr
multiplication, there are three level of blocking contedllby three
parameters, bounded by the cache size and a small numbepof lo
interchange possibles. Exhaustive enumeration insidasaihie
values enable to find the best parameter value.

Figure 2 synthesizes a whole view of the different classebef
investigated problems with their decidability results. eTlargest
class of the best parameters exploration problem that wsiden
denoted byC'1, assumes a finite set of optimization parameters with
unbounded values (infinite space); The compiler optimirate-
quence is assumed fixed. If the performance prediction ifmmct
is arbitrary, then this problem is undecidable. The secdassmf
the best parameters exploration problem, denote@by. C,, has
the same hypothesis &% except that the performance model is
assumed as an arbitrary polynomial function. The problemmis
decidable too. However, a trivial identified decidable sl&sthe
case of bounded (finite) parameters space. This is the cake of
tools ATLAS (classC'3) and OCEAN (clas€’s).

6. FUTURE WORK

The phase ordering problem studied in this article does radem
any assumption about the kind or the family of the considered
gram transformations. Potentially, we can have an unbaliiolgt
finite) number of optimizing modules inside a compiler, asdas
they guarantee us the best performance. Consequentlyjizthefs
the compiler can be as large as we require. In a future work, we
want to explore the phase ordering problem with an additicma
striction which is the granted size to a compiler. For thigyose,
and thanks to the results presented in [1], we will resthietfamily

ATLAS [19]is another simplified case of the problem Best&aPaetersof program transformations to the polyhedral ones. Indéedau-

In the case of ATLAS, the optimization sequence is knownptioe
grams to optimize are known (BLAS variants), and it is assime
that the performance does not depend on the value of the (imput
dependence w.r.t. the matrix and vector values). Moredkere

is a performance model for the cache hierarchy (basicaléystze

thors in [1] give a matrix coding of all polyhedral transfations
and their possible combinations: the size of such matrixnisefi
and bounded, while its elements define all possible affinghgol
dral program transformations. This matrix coding has theefie
for consuming a bounded space and allowing to ease the compos



tion of program transformation. a method can never bring a guarantee that such iterativeogheth
would be efficient for other benchmarks. As a corollary, wa ca
Another future work to this article is to study the phase drdg safely state that, since it is impossible to mathematicadiypare
problem with another kind of restriction. Instead of limiji the between iterative compilation methods (or between libgeyera-
size of the optimizing compiler, we can put a limit on the sife tion tools) then we can consider that any proposed methaodffis s
the final transformed program. Does phase-ordering becane d ficiently “good” for only its set of experimented benchmagkd
cidable in this case ? cannot be generalized as a concept or as a method.
Our article proves too that using iterative or dynamic mdtho
Finally, an important open problem remains the definitiormof  for compilation is not fundamentally helpful for solvingetigeneral
general family of performance prediction functions thakesathe problem of code optimization. Such dynamic and iterativéhoes

phase ordering problem decidable. In this paper, we prdvetift define distinct optimization problems that are unfortulya#es un-

such function requires the execution or the simulation efabn- decidable as static code optimizations, even with fixedtidpta.
sidered program, then the phase ordering problem beconues un However, our article does not yet give information aboutdbe
cidable. But what if the performance predictor does notirequei- cidability of phase ordering or parameters space exptoratithe

ther the execution nor the simulation of the program ? Ofseur  performance prediction function does not require prograece-

if the performance modeling is too trivial or too simple (s&ec- tion. Simply because the answer depends on the nature of such
tion 4), it is highly probable that the phase ordering problee- function. If such function is too simple, then it is highlyga-

comes decidable, but in this case the model would not fit the re  ble that the phase ordering becomes decidable but the egreri
program performance. So, we require to define a more gereemal f  tal results would be weak (since the performance predictiodel
ily of performance prediction functions, that are efficienbugh to would be inaccurate). The problem of performance modelieg t

accurately model the real program performance while atigwd becomes the essential question. As far as we know, we did not
have a decidable phase ordering problem. As a first step, We wi find any model in the literature that has been formally vaéday
consider for instance linear regression models. statistical fitting checks as explained in [18].
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