
Applications of Fuzzy Array Data
ow AnalysisDenis Barthou, Jean-Fran�cois Collard and Paul FeautrierLaboratoire PRiSM, Universit�e de Versailles-StQuentin45, avenue des �Etats-Unis, 78035 Versailles, FRANCEAbstract. Array data
ow analysis can be exact in the general casewhen it involves only a�ne constraints on loop counters. This paper �rstpresents an iterative method in the framework of Fuzzy Array Data
owAnalysis and then describes applications of fuzzy analysis on some usualtechniques in compilation and parallelization.1 IntroductionThe performances of a compiler rely on its capacity to �nd in the source pro-gram the information it needs to optimize code generation or exhibit parallelism.Detailed information is provided by methods such as Array Data
ow Analysis[4, 7] designed to compute, for every array cell value read in a right-hand side ex-pression the very operation which produced it. However few methods can handlenon-static programs. For programs using if, while loops or non-a�ne array sub-scripts, no exact information can be hoped for in the general case. The purposeof this paper is twofold: describe an iterative method gathering partial informa-tion that can be used in the framework of the Fuzzy Array Data
ow Analysis(FADA)[3] and present some applications of this technique such as programchecking, parallelization and minimal memory expansion.2 From Exact to Fuzzy Array Data
ow AnalysisThe basic problem of array data
ow analysis is, given an operation hR;yi calledthe \sink", which is an iteration of a statement R whose iteration domain isI(R), and an element a(g(y)) of an array a which is read by hR;yi to �nd the\source" of a(g(y)) in hR;yi. The source is an operation �(hR;yi) which writesinto a(g(y)), which is executed before hR;yi and such that no operation whichexecutes between �(hR;yi) and hR;yi also writes into a(g(y)). The computationof the source is in two steps: �rst compute the source for each statement, knownas the direct dependence since [2], then combine these sources in the expression of�(hR;yi), as detailed in [4]. Suppose that we are investigating source candidatesfrom a statement S: hS;xi, writing into array a at subscripts f(x). The candidatesource has to verify the following constraints:{ Existence predicate: hS;xi is a valid operation: x 2 I(S).{ Subscript equation: hS;xi and hR;yi, access the same array cell: f (x) = g(y),{ Sequencing condition: hS;xi is executed before hR;yi: hS;xi � hR;yi,



{ Environment: sources have to be computed under the hypothesis that hR;yiis a valid operation, i.e. y 2 I(R):The direct dependence is then given by hS;KS(y)i where KS(y) = max�fxjx 2I(S); f(x) = g(y); hS;xi � hR;yig and where � represents the lexicographic order.As soon as the program model includes conditionals, while loops or non-a�ne do loop bounds or subscripts, the existence predicate and subscript equa-tion may contain non-linear terms and the exact computation of KS cannot beachieved in the general case. However, linear relations may be found betweenconstraints in order to compute the smallest set of all the exact sources forany shape of the non-linear constraints verifying these relations. To reach thisgoal, a solution is to make the source depend on parameters representing thenon-linear terms. Pugh and Wonnacott [7] proposed to keep the parametric ex-pression of the non-linear functions in the source when they depend only on y.Given a statement S, they may be represented by the set of vectors DS(y) forwhich they are veri�ed, called parameter domain[1]. Note that the dimensionMS of the vectors of DS(y) is lower or equal to the dimension of the iterationvector of S. The expression of KS(y) is maxLS(y) \ fxjx[1::MS] 2 DS(y)gwhere LS is the set of vectors verifying all linear constraints. If KS(y) is de-�ned, there exists a vector �S(y) called parameter of the maximum such thatKS(y) = maxLS \ fxjx[1::MS] = �S(y)g. Hence the source can be computedas a function of the parameters of the maximum of all direct dependences. Wehave shown that for any property P that is a relation of inclusion between unionor intersection of parameter domains and linearly de�ned sets, the set of theparameters of the maximum corresponding to all the parameter domains verify-ing P is de�ned by linear constraints and is therefore computable [1]. The aimthen is to �nd some properties on the parameter domains. This can be done byan algorithm based on the abstract symbolic tree of the program [3] and moreprecise relations may be found by analyzing the expressions of the non-linearconstraints.3 Iterative AnalysisThe purpose of the iterative analysis is to �nd relations between the non-linearconstraints coming from di�erent statements so as to compare parameter do-mains. Given two constraints that are the same function but appear at di�erentplaces in the program, we can say that they have the same value if the vari-ables they use are the same and have the same values. As a variable has thesame value in two operations if it has the same source, the equality of the valuesof constraints may be proved in some cases by a data
ow analysis. Since thisdata
ow analysis can be fuzzy, the method can then be applied once more andeventually the fuzziness will be reduced by successive analyses. More formally,given two statements S and S0 writing into array a, we will suppose that only onenon-linear constraint appears in the computation of KS(y) and KS0(y). Let cand c0 be the non-linear constraints respectively involved in KS(y) and KS0 (y),appearing in statements T and T0 .



{ Partial equality: the constraints c and c0 are the same, use the same variablesand a data
ow analysis shows that these variables have the same sources inboth operations in a context C that is de�ned by linear inequalities. Therelation is DS \C = DS0 \C.{ Image of a parameter domain: the constraints c and c0 are the same, use thesame variables and the sources of the variables of c at operation hT;xi arethe same as the sources of the variables of c0 at operation hT0; f(x)i, with fan a�ne function w.r.t. the iteration vector. The relation is f(DS) = DS0 .These relations can be generalized to any number of statements and non-linearconstraints. The reader is referred to [1] for technical details.4 ApplicationsWe present thereafter the application of FADA to variable initialization checkingand code parallelization.4.1 Variable Initialization CheckingIn a correct program, all variables are initialized before they are used. Verifyingthis by a data
ow analysis can help to check the correctness of the program orvalidate some properties on non-linear constraints. When the analysis is fuzzy,the condition for which the source of the value of a does not come from S isa conjunction of a�ne constraints on y and �S. Let q(y) and r(y;�S) be thepredicates forming this condition. When the source comes from S, 8y 2 I(R) s.t.q(y) then r(y;�S) = false. According to the de�nition of the parameter of themaximum, this is equivalent to: 8y 2 I(R) s.t. q(y) = true; 9x s.t. (r(y;x) =false) ^ (c(y;x) = true) where c is the non-linear constraint involved. Thiscondition can be generalized to any number of direct dependences and non-linearconstraints. Checking the condition can be left to the programmer or submittedto an assertion generator.4.2 Code ParallelizationThere are two basic techniques for extracting parallelism from a dependencegraph: one consists in computing a schedule, the other one in computing a place-ment.Fuzzy Scheduling Wemust guarantee that: �(S; x)+1 � �(R;y). In the result of thecorresponding FADA, x is an a�ne function � of x and of parameters �S whichmust satisfy a set of a�ne predicates P (x). We may re�ne the above inequalityinto y 2 I(R); � 2 P (y) ) �(S; �(y; �)) + 1 � �(R;y). Suppose we have expressedthe schedule � as an a�ne form with unknown coe�cients. Since everything isa�ne, we are in a position to apply Farkas lemma; the result is a set of linearequations in the coe�cients of the schedule and new positive unknowns, theFarkas multipliers. These equations may be solved as in [5].



Memory Expansion In order to take into account memory based dependences inthe above schedule, a solution is to �nd the minimal memory expansion whichis consistent with this schedule. The method presented by Lefebvre [6] can beused in the present case with little or no modi�cation. Indeed, it is obviousthat, even in the case of dynamic control structures and non-linear arrays, wemay still compute an ordinary dependence graph. In the case of FADA, theshape of the source is exactly the same as in the exact analysis case, hence thesame algorithms apply. In some cases, parameters will disappear, for instance,when expansion of a scalar has been deemed unnecessary. When a parameteris actually needed, its value must be recorded when the corresponding controloperations are executed. If speculation has been used, this means that a readoperation may not be executed before the results of the controlling operationsare known. This is a new constraint which has to be taken into account whencomputing the schedule.5 ConclusionMany applications in the compilation and parallelization �eld take advantage ofour technique, with little change in their algorithms. The Fuzzy Array Data
owAnalysis extends the scope of variable initialization checking, code paralleliza-tion to some programs with dynamic control structures. Moreover, even a fuzzyresult can give enough information for a signi�cant improvement of the output ofthese techniques. Further developments on the combination of compilation andparallelization methods with fuzzy analysis will be the subject of future work.References1. Denis Barthou, Jean-Fran�cois Collard, and Paul Feautrier. Fuzzy array data
owanalysis. Technical Report 95/33, PRiSM Laboratory, 1995.2. Thomas Brandes. The importance of direct dependences for automatic paralleliza-tion. In ACM Int. Conf. on Supercomputing, St Malo, France, July 1988.3. J.-F. Collard, D. Barthou, and P. Feautrier. Fuzzy array data
ow analysis. In Proc.of 5th ACM SIGPLAN Symp. on Principles and Practice of Parallel Programming,Santa Barbara, CA, July 1995.4. Paul Feautrier. Data
ow analysis of scalar and array references. Int. J. of ParallelProgramming, 20(1):23{53, February 1991.5. Paul Feautrier. Some e�cient solutions to the a�ne scheduling problem, I, onedimensional time. Int. J. of Parallel Programming, 21(5):313{348, October 1992.6. Vincent Lefebvre. Gestion de la m�emoire dans les programmes parall�eles. In 8emerencontres francophones du parall�elisme, pages 149{152, May 1996.7. William Pugh and David Wonnacott. An exact method for analysis of value-basedarray data dependences. In Lecture Notes in Computer Science 768: Sixth AnnualWorkshop on Programming Languages and Compilers, Portland, OR, August 1993.Springer-Verlag.This article was processed using the LaTEX macro package with LLNCS style


