
On the Equivalene of Two Systems of AÆneReurrene EquationsDenis Barthou1, Paul Feautrier2, and Xavier Redon31 Universit�e de Versailles Saint-Quentin, Laboratoire PRiSM,F-78035 Versailles, Frane,Denis.Barthou�prism.uvsq.fr,2 INRIA, F-78153 Le Chesnay, Frane,Paul.Feautrier�inria.fr,3 Universit�e de Lille I, �Eole Polyteh. Univ. de Lille & Laboratoire LIFL,F-59655 Villeneuve d'Asq, Frane,Xavier.Redon�eudil.fr,Abstrat. This paper deals with the problem of deiding whether twoSystems of AÆne Reurrene Equations are equivalent or not. A solu-tion to this problem would be a step toward algorithm reognition, animportant tool in program analysis, optimization and parallelization. We�rst prove that in the general ase, the problem is undeidable. We thenshow that there nevertheless exists a semi-deision proedure, in whihthe key ingredient is the omputation of transitive losures of aÆne rela-tions. This is a non-e�etive proess whih has been extensively studied.Many partial solutions are known. We then report on a pilot implemen-tation of the algorithm, desribe its limitations, and point to unsolvedproblems.1 Introdution1.1 MotivationAlgorithm reognition is an old problem in omputer siene. Basially, onewould like to submit a piee of ode to an analyzer, and get answers like \Lines 10to 23 are an implementation of Gaussian elimination". Suh a faility would en-able many important tehniques: program omprehension and reverse engineer-ing, program veri�ation, program optimization and parallelization, hardware-software odesign among others.Simple ases of algorithm reognition have already been solved, mostly usingpattern mathing as the basi tehnique. An example is redution reognition,whih is inluded in many parallelizing ompilers. A redution is the appliationof an assoiative ommutative operator to a data set. See [9℄ and its referenes.This approah has been reently extended to more ompliated patterns byseveral researhers (see the reent book by Metzger [8℄ and its referenes).In this paper, we wish to explore another approah. We are given a library ofalgorithms. Let us try to devise a method for testing whether a part of the soure



program is equivalent to one of the algorithms in the library. The stumbling blokis that in the general ase, the equivalene of two programs is undeidable. Ouraim is therefore to �nd sub-ases for whih the equivalene problem is solvable,and to insure that these ases over as muh ground as possible.The �rst step is to normalize the given program as muh as possible. Oneandidate for suh a normalization is onversion to a System of AÆne ReurreneEquations (SARE)[3℄. It has been shown that stati ontrol programs [4℄ an beautomatially onverted to SAREs. The next step is to design an equivalenetest for SAREs. This is the main theme of this paper.1.2 Equivalene of two SAREsSuppose we are given two SAREs with their input and output variables. Supposefurthermore that we are given a bijetion between the input variables of the twoSAREs, and also a bijetion between the output variables. In what follows, twoorresponding input or output variables are usually denoted by the same letter,one of them being aented.The two SAREs are equivalent with respet to a pair of output variables, i�the outputs evaluate to the same values provided that the input variables areequal. In order to avoid diÆulties with non-terminating omputations, we willassume that both SAREs have a shedule.The equivalene of two SAREs depends learly on the domain of values usedin the omputation. In this preliminary work, we will suppose that values belongto the Herbrand universe (or the initial algebra) of the operators ourring in theomputation. The Herbrand universe is haraterized by the following property:!(t1; : : : ; tn) = !0(t01; : : : ; t0n0), ! = !0; n = n0 and ti = t0i; i = 1 : : : n: (1)where ! and !0 are operators and t1; : : : ; tn, t01; : : : ; t0n0 are arbitrary terms. Thegeneral ase is left for future work.It an be proved that, even in the Herbrand universe, the equivalene of twoSAREs is undeidable. The proof is rather tehnial and an be found in [1℄.In Set. 2 we de�ne and prove a semi-deision proedure whih may prove ordisprove the equivalene of two SAREs, or fails. In Set. 3 we report on a pilotimplementation of the semi-deision proedure. We then onlude and disussfuture work.2 A Semi-deision ProedureFrom the above result, we know that any algorithm for testing the equivaleneof two SAREs is bound to be inomplete. It may give a positive or negativeanswer, or fail without reahing a deision. Suh a proedure may neverthelessbe useful, provided the third ase does not our too often. We are now going todesign suh a semi-deision proedure. To eah pair of SAREs we will assoiatea memory state automaton (MSA) [2℄ in suh a way that the equivalene of ourSAREs an be expressed as problems of reahability in the orresponding MSA.Let us onsider the two parametri SAREs (with parameter n):



O[i℄ = 1; i = 0;= f(I[i℄); 1 � i � n; (2) O0[i0℄ = 1; i0 = 0;= f(X0[i0; n℄); 1 � i0 � n;X0[i0; j0℄ = I0[i0℄; 0 � i0 � n; j0 = 0;= X0[i0; j0 � 1℄; 0 � i0 � n; 1 � j0 � n: (3)The reader familiar with systoli array design may have reognized a muh sim-pli�ed version of a transformation known as pipelining or uniformization, whoseaim is to simplify the interonnetion pattern of the array.The equivalene MSA is represented by the following drawing. Basially, MSAare �nite state automata, where eah state is augmented by an index vetor. Eahedge is labelled by a �ring relation, whih must be satis�ed by the index vetorfor the edge to be traversed.x0O[i℄=O0[i0℄ x4f(I[i℄)=f(X0[i0; n℄) x5I[i℄=X0[i0; n℄ x6I[i℄=X0[i0; j0℄x11=1 x21=f(X0[i0; n℄) x3f(I[i℄)=1 x8I(i)=X0[i0; j0 � 1℄ x7I[i℄=I0[i0℄R0 R1 R2R3 R4 R5 R6R7R8
The automaton is onstruted on demand from the initial state O[i℄ = O0[i0℄,expressing the fat that the two SAREs have the same output. Other states areequations between subexpressions of the left and right SARE. The transitionsare built aording to the following rules: If the lhs of a state is X [u(ix)℄, it anbe replaed in its suessors by X [iy℄, provided the �ring relation inludes theprediate iy = u(ix) (R8). If the lhs is X [ix℄ where X is de�ned by n lausesX [i℄ = !k(: : : Y [uY (i)℄ : : :); i 2 Dk then it an be replaed in its n suessorsby !k(: : : Y [uY (iy)℄ : : :) provided the �ring relation inludes fix 2 Dk; iy = ixg(R0; : : : ; R3 and R6; R7). There are similar rules for the rhs. Note that equationsof the suessor states are obtained by simultaneous appliation of rules forlhs and rhs. Moreover, the suessors of a state with equation !(:::) = !(:::)are states with equations between the parameters of the funtion !. The �ringrelation is in this ase the identity relation (R4). For instane, R3 and R8 are:R3 = 8>><>>:� ix0i0x0 �! � ix4i0x4 � ;8>><>>: ix4 = ix0i0x4 = i0x01 � ix0 � n1 � i0x0 � n9>>=>>; 9>>=>>; ; R8 = 8<:24 ix8i0x8j0x8 35! 24 ix6i0x6j0x6 35 ;8<: ix6 = ix8i0x6 = i0x8j0x6 = j0x8 � 19=; 9=; :States with no suessors are �nal states. If the equation of a �nal state is alwaystrue, then this is a suess (x1; x7), otherwise this is a failure state (x2; x3). Theaess path from the initial state x0 to the failure state x2 is Rx2 = R1 andto x7 is Rx7 = R3:R4:R5:(R7:R8)�:R6. When atual relations are substituted to



letters, the reahability relations of these states are:Rx2 = 8>><>>:� ix0i0x0 �! � ix2i0x2 � ;8>><>>: i0x2 = i0x0ix0 = 0ix2 = 01 � i0x2 � n9>>=>>; 9>>=>>; ; Rx7 8>><>>:� ix0i0x0 �! � ix7i0x7 � ;8>><>>: ix7 = ix0i0x7 = i0x01 � ix0 � n1 � i0x0 � n9>>=>>; 9>>=>>; :Theorem 1. Two SAREs are equivalent for outputs O and O0 i� the equivaleneMSA with initial state O[i℄ = O0[i0℄ is suh that all failure states are unreahableand the reahability relation of eah suess state is inluded in the identityrelation.In our example, reahability relations of suess states are atually inluded inthe main diagonal (obviously true for Rx7 sine ix0 = i0x0 implies ix7 = i0x7) andit an be shown that the relations for the failure states are empty (veri�ed forRx2 sine ix0 = i0x0 implies 1 � 0). Hene, the two SAREs are equivalent.It may seem at �rst glane that building the equivalene MSA and thenomputing the reahability relations may give us an algorithm for solving theequivalene problem. This is not so, beause the onstrution of the transitivelosure of a relation is not an e�etive proedure [6℄.3 PrototypeOur prototype SARE omparator, SAReQ, uses existing high-level libraries.More preisely SAReQ is built on top of SPPoC, an Objetive Caml toolboxwhih provides, among other failities, an interfae to the PolyLib and to theOmega Library. Manipulations of SAREs involve a number of operations onpolyhedral domains (handled by the PolyLib). Computing reahability relationsof �nal states boils down to operations suh as omposition, union and transitivelosure on relations (handled by the Omega Library).The SAREs are parsed using the amlp4 preproessor for OCaml, the syntaxused is patterned after the language Alpha [7℄. We give below the text of thetwo SAREs of setion 2 as expeted by SAReQ:pipe [n℄ {O[i℄ = { { i=0 } : 1 ;{ 1<=i<=n } : f(I[i℄) }} pipe' [n℄ {X'[i',j'℄ = { { 0<=i'<=n, j'=0 } : I[i'℄ ;{ 0<=i'<=n, 1<=j'<=n } : X'[i', j'-1℄} ;O'[i'℄ = { { i'=0 } : 1 ;{ 1<=i'<=n } : f(X'[i',n℄) }}To make the program more friendly a WEB interfae is available at the URLhttp://sareq.eudil.fr. This interfae gives aess to a library of examples,allows the testing of new problems and presents the results in a readable way.4 Conlusions and Future WorkWe believe that our SARE omparator has about the same analyti power asmost automati parallelization tools. It an handle only aÆne array subsripts



and aÆne loop bounds. Comparison with the work of Metzger et. al. [8℄ is diÆ-ult, sine we do not have aess to an implementation. We believe our normalform is more powerful than theirs, sine we an upgrade an array to arbitrarydimension, while they are limited to salar expansion. Also, it does not seemthat they an deal with most loop modi�ations (interhange, skewing, indexset splitting) and are limited to loop distibution. On the other hand, providedthe program give them the neessary lues, they an handle some forms of asso-iativity and ommutativity.We believe that the most important problem with the present tool is thefat that it annot use semantial information on the underlying operators. Wewould like to speify a semantis by a set of simpli�ation rules or algorithms.In the present prototype, the possibility of applying simpli�ations is limited,sine omputation rules are never ombined. One suggestion is to add \forward"substitution rules. However, we still have to �nd a heuristis for driving thesubstitution proess.The present tool is just a building blok in a omplete program omparator.In the �rst plae, we have to onnet it to an array dataow analyzer ([4℄,[5℄). Seondly, we must build a library of referene algorithms, and this willdepends on the appliation domain. Lastly, many soure programs are built byomposition from several referene algorithms. Our tool an only be appliedif we have delineated the several omponents, and if we have identi�ed inputsand outputs. At the time of writing, we believe that this has to be handled byheuristis, but this an only be veri�ed by experiments.Referenes1. D. Barthou, P. Feautrier, and X. Redon. On the equivalene of two systems of aÆnereurrene equations. Tehnial Report RR-4285, INRIA, Ot. 2001.2. B. Boigelot and P. Wolper. Symboli veri�ation with periodi sets. In Proeedingsof the 6th International Conferene on Computer-Aided Veri�ation, volume 818 ofLeture Notes in Computer Siene, pages 55{67. Springer-Verlag, 1994.3. A. Darte, Y. Robert, and F. Vivien. Sheduling and automati Parallelization.Birkh�auser, 2000.4. P. Feautrier. Dataow analysis of salar and array referenes. Int. J. of ParallelProgramming, 20(1):23{53, Feb. 1991.5. M. Griebl and C. Lengauer. The loop parallelizer LooPo { Announement. In 9thLanguages and Compilers for Parallel Computing Workshop. Springer, LNCS 1239,1996. http://www.fmi.uni-passau.de/l/loopo.6. W. Kelly, W. Pugh, E. Rosser, and T. Shpeisman. Transitive losure of in�nitegraphs and its appliations. Int. J. of Parallel Programming, 24(6):579{598, 1996.7. H. Leverge, C. Mauras, and P. Quinton. The alpha language and its use for thedesign of systoli arrays. Journal of VLSI Signal Proessing, 3:173{182, 1991.8. R. Metzger and Z. Wen. Automati Algorithm Reognition: A New Approah toProgram Optimization. MIT Press, 2000.9. X. Redon and P. Feautrier. Detetion of sans in the polytope model. ParallelAlgorithms and Appliations, 15:229{263, 2000.


