
Deiding Where to Call Performane LibrariesChristophe Alias and Denis BarthouLaboratoire PRiSM, Université de Versailles, Frane.Christophe.Alias�prism.uvsq.frDenis.Barthou�prism.uvsq.frAbstrat. As both programs and mahines are beoming more omplex, writing highperformane odes is an inreasingly di�ult task. In order to bridge the gap betweenthe ompiled-ode and peak performane, resorting to domain or arhiteture-spei�libraries has beome ompulsory. However, deiding when and where to use a libraryfuntion must be spei�ed by the programmer. This partition between library and userode is not questioned by the ompiler although it has a great impat on performane.We propose in this paper a new method that helps the user �nd in its appliation allode fragments that an be replaed by library alls. The same tehnique an be usedto hange or fusion multiple alls into more e�ient ones. The results of the alternativedetetion of BLAS 1 and 2 in SPEC are presented.1 IntrodutionThe reent generation of miroproessors an deliver high performane thanksto a large number of mehanisms: ahe hierarhies, branh predition, spei�instrutions suh as fused multiply add, speulative exeution, prediated in-strutions, prefethes, et. One way to obtain high performane ode is to relyon ompiler optimizations. However the omplex optimizations that tap thesehardware features ome at the expense of performane stability. For instane,multiversioning is an optimization generating several versions for the same odefragment, these versions are seleted dynamially depending on parameters suhas loop iteration ount or data alignment. But a bad hoie for the strategy selet-ing the di�erent versions an introdue important latenies. Another approahhas foused on library tuning as a more reliable way to deliver performane. Theassembly ode is either generated by hand, using arhiteture spei� instru-tions, or by adaptative ode generation (e.g. ATLAS [14℄, FFTW [10℄ or STAPL[12℄). The important ompilation time is then balaned by the reusability ofthe libraries. In all ases, library funtions an be onsidered as the buildingbloks, essential to get high performane on real odes. In general programminglanguages, ode tuning is performed in the last stage of the development pro-ess. The seletion of the library funtions and the rewriting of the ode fallsunder the responsibility of the user. The usual steps of this proess are: �nd outode fragments and library funtions that are semantially equivalent, replaethese fragments by funtion alls with orret parameters, debug the appliationand �nally evaluate performane. In the ase of non-portable libraries, this time



2onsuming proess has to be reonduted for eah target arhiteture. It is sur-prising how little the ompiler helps the user in this tedious task. Compile-timeoptimizations neither hange the partition between library and user ode, norross library boundaries.This paper presents an e�ient method to �nd in a program all ode frag-ments that math library funtions. Programs under study are any C or Fortranodes, and libraries an be template libraries (with the meaning of C++ tem-plates). In general, deiding whether two odes are semantially equivalent isundeidable. The equivalene onsidered in our approah does not take into a-ount any speial operator semantis, suh as assoiativity or ommutativity.Within this framework, the method presented is onservative: some of the frag-ments found are not semantially equivalent to the library odes, but none of thetruly equivalent fragments is missed. The analysis produes �may� information:between lines 537 and 541, it may be a matrix-vetor produt. Combined with anexat but more expensive method [2℄ applied only on fragments, both analyseswould produe �must� information, also providing the e�etive parameters forthe library all and its instantiation if this is a template. Finally, we desribe inthis paper the onditions for whih ode substitution by funtion alls is safe.Note that as a prerequisite for the detetion step, eah library funtion has to bedesribed by a program. We do not assume that the analysis has aess to thesoure of the library. Instead we assume the library designer provides a publiversion for eah funtion. This program must have the same semantis than theoptimized, private version but the algorithm used an be ompletely di�erent.Setion 2 presents some related work. Setion 3 desribes the new detetiontehnique. In Setion 4, we sum up, out of ompletion, the method used toprove the equivalene and to �nd the parameters of the all. We then give theonditions for a safe substitution in Setion 5 and onlude in Setion 6 with theresults of our experiments on SPEC benhmarks.2 Related WorkThe detetion of ode mathing library funtions is related to the detetion ofslies, whih onsists of identifying all the statements ontributing to a givenomputation. Cimetile et al. [1℄ propose a semi-automati approah to extratprogram parts (slies) verifying pre- and post-onditions. They rely on a theoremprover whih requires user interation to assert some invariants, and has a highomplexity, whih makes it unrelevant to large appliations.Another approah proposed by Paul and Prakash [16℄ desribes an extensionof grep in order to �nd program patterns in soure ode. They use a patternlanguage with wild-ards on syntati entities e.g. delaration, type, variable,funtion, expression, statement,. . . allowing to searh for spei� sequenes andnested ontrol strutures. Their algorithm has a O(n2) omplexity with n theode size. This detetion method has the same goal as ours; one of its draw-baks is that the same pattern annot handle variations in ontrol (loop unroll,



3tiling) or in data strutures (array expansion, salar promotion) whereas this isaddressed in our framework.Finally, several approahes enode the knowledge of the funtions to be iden-ti�ed in the form of programming plans. Top-down methods [15℄ use the knowl-edge of the goals the program is assumed to ahieve and some heuristis todetet both the program slie and the library funtions that an ahieve thesegoals. Bottom-up methods [9℄ start from statements and try to �nd the or-responding plans. Wills [9℄ represents programs by a �ow-graph, and patternsby grammar rules. The reognition is performed by parsing the program graphaording to the grammar rules and has an exponential ost at worst. Metzgerand Wen [13℄ have built a omplete environment to reognize and replae al-gorithms. They �rst normalize both program and pattern abstrat syntax treeby applying usual program transformations (if-onversion, loop-splitting, salarexpansion...). Then they onsider all strongly onneted omponents in the de-pendene graph, ontaining at least one for statement as andidate slies. Theirmethod provides therefore a large number of andidate slies with many falsedetetions, whih is balaned by the low omplexity of their equivalene test.Compared to the ombination of the detetion with the instantiation test we re-all in this paper, they an handle fewer program variations (reuse of temporariesaross loop iterations for instane is not handled) for a lower ost.3 Detetion of Library TemplatesThe detetion of library templates onsists in loalizing in a ode the lines thatpossibly orrespond to a given library funtion or template. In the ase of atemplate, the ode deteted is a possible instane of the template. We proposean e�ient method based on a symboli exeution of both program and template,following the def-use hains. The method symbolially exeutes both programand template slies simultaneously and ompares the sequene of operators alongthese slies, abstrating away the number of iterations of the loops.3.1 PrinipleThe template and the program are assumed to be given in SSA-form, and nor-malized with one operator by statement. Eah edge of the program SSA-graphis labeled with its operator. Loops reate yles in this graph but we abstrataway the number of iterations. The sequene of operators along a path is on-sidered as a word and the graph an be onsidered as a �nite automaton. Theidea of the algorithm is to hek whether the language of operators generatedby some ode fragment is inluded in the language of operators generated by alibrary funtion. Intuitively, this ensures that the same sequene of operationsan happen in the ode and in the library funtion.Figure 1 provides a very simple example of mathing problem between atemplate and a program. The template and the program are assumed to begiven in SSA-form, whih means that the variables are assigned one time at



4most in the program text. In addition, eah referene to a variable is substitutedby a φ-funtion providing the set of its potential values. For example, the φ-funtion used in the assignment P4 means that z2 = 1/z1 or z2 = 1/z3. Sinestatements assigning a onstant suh as T1, P1 or P2 have no predeessors in thegraph of def-use hains, they an be taken as a starting point for the inspetion.
T1 r1 = 1do iT = 1,nT

T2 r2 = X(φ(r1,r3))
T3 r3 = 1+r2enddo
TSTOP r4 = exp(φ(r1,r3)) P1 z1 = 1

P2 t = 0
P3 a = tan(t)do iP = 1,nP

P4 z2 = 1/(φ(z1,z3))
P5 z3 = 1+z2enddo
P6 r = exp(φ(z1,z3))Fig. 1. A template (left) and a program (right)Starting from P1, a stepping among def-use hains would follow the sequene:

1
−−→ P1

1/.
−−−→ P4

1+.
−−−−→ P5

exp
−−−−→ P6Likewise for the template a possible sequene of operators is:

1
−−→ T1

X(.)
−−−−→ T2

1+.
−−−−→ T3

exp
−−−−→ TSTOP .Walking through both program and template, with the ondition that for eahtransition, the operator must be the same, we obtain the sequene:

1
−−→ (T1, P1)

1/.,X(.)=1/.
−−−−−−−−−−→ (T2, P4)

1+.
−−−−→ (T3, P5)

exp
−−−−→ (TSTOP , P6).This provides the andidate slie {P1, P4, P5, P6}, that possibly orresponds tothe template provided that X(.) = 1/. (this ondition appears on the transition).This ondition is neessary for the sequene to be the same for both template andprogram. Note however that the method will not hek the oherene betweenthe values of template variables. Likewise, the number of iterations in loops orthe branhes hosen in onditionals are ignored. These important points will beheked during the exat instantiation test (see Setion 4).3.2 Detailed AlgorithmFollowing the idea desribed above, we build an automaton reognizing the se-quenes of operators exeuted by all possible instanes of the template, and anautomaton reognizing the sequenes of operators exeuted by the program. The



5simultaneous stepping of he template and the program is then ahieve by om-puting the Cartesian produt of the template's and the program's automaton,whih provides the andidate slies.Figure 2 provides the automata built from the template and the program pro-vided in the above example. we assoiate the states represent the assignments,and the transitions are driven by the �ow-dependenes given in the φ-funtions,and labeled by the operator used in the destination state. Sine the template'sautomaton aims to reognize all possible template's instanes in the program,the states involving a template variable X are handled by adding a looping tran-sition for eah program's operator. Sine most operators have an arity greater
r1 = 1r2 = X(�(r1,r3))r3 = 1 + r2r4 = exp(�(r1,r3)

1"1 + : exp " 1 + :; 1=:; tan; exp z1 = 1t = 0 z2 = 1/�(z1,z3)z3 = 1 + z2r = exp(�(z,z3))
1 + :exp

a = tan(t)tan 1=: 1=:
0 1

Fig. 2. Automata build assoiated to the template (left), and the program (right)than 2, word automata are not expressive enough in general. Instead we builda tree-automaton, using the algorithm desribed in �gure 3. There is no majordi�erene with the word automata: we assoiate a state to eah assignment thenwe add transitions aording to the dependenes given by the φ-funtions (step2). Remark that when n = 1, we obtain a word automaton sine f(q1) −→ qan be interpreted as q1
f

−−→ q. X is handled as a wild-ard, whih leads to addlooping transitions with the operators used in the program (step 3). Likewise,remark the ε-transitions qi −→ q.The detetion is ahieved by stepping simultaneously the template's andprogram's automata as soon as the operators are the same. Eah stepping leadingto the �nal state of the template will provide a andidate slie in the program,built of all reahed program's statements. These steppings an be performedin an exhaustive manner by omputing the Cartesian produt AT ×AP of the



6Algorithm Build_AutomatonInput: The template or the program.Output: The orresponding tree automaton.1. Assoiate a new state to eah assignment statement.2. For eah state:
q = r = f(φ(Q1) . . . φ(Qn))Add the transitions: f(q1 . . . qn) −→ q, for eah qi ∈ Qi.3. For eah state:
q = r = X(φ(Q1) . . . φ(Qn))Add the transitions: qi −→ q, for eah qi ∈ Qi.And: f(q . . . q) −→ q, for eah operator f used in the template and the program,inluding onstants (0-ary operators).Fig. 3. Build_Automatonprogram and template automata. It remains to mark the states (qT , qP ) with a�nal state qT of AT , and to emit the states of AP on a path from the initialstate as a potential instane.Our method is able to detet any template variation whih does not involvethe semanti properties of operators suh as assoiativity, or ommutativity. Par-tiularly we an handle any loop transformation and most ontrol restruturingtransformations. Moreover, our method is ompletely independent of data stru-ture used, whih allows the detetion of a large amount of template variationsin the program. Whether a slie deteted is a real instantiation of the templateis determined during the exat instantiation test.In the worst ase, the onstrution of the Cartesian produt of the templateand the program automata is omputed in O(T × P ) where T is the numberof template statements and P is the number of program statements, i.e. theomplexity is linear in the size of the program analyzed.4 Exat Instantiation TestOne the andidate slies are found, we have only deteted a ode that �may�math the library template. Either the user deides from this information tosubstitute or not, or another proedure deides if both program and templateare indeed equivalent and �nds the instantiations. We reall the main steps ofthis proedure eliminating false detetions, desribed in [2℄.The instantiation test follows the steps of the detetion method desribedin Setion 3. An exat instane-wise reahing de�nition analysis is performed.As reahing de�nitions may depend on the values of iteration ounters, these



7onditions are put on the transitions of the tree-automata. Deiding if the odefragment under study is an instantiation of the template boils down to omputethe loop ounter values that an reah �nal states of the Cartesian-produtautomaton. E�ient heuristis [17℄ perform this omputation.The power of this instantiation test is assessed aording to its apaity toprove the equivalene between two odes, one a variation of the other. The testhandles variations oming from loop transformations (splitting, fusion, skewing,tiling, unroll,...), from data strutures (salar expansion, salar promotion, useof temporaries), from ommon subexpression elimination or other fatorizationof omputation. However, the test does not handle the semanti properties ofthe operators, suh as ommutativity or assoiativity.5 SubstitutionOne andidate slies are found, it remains to substitute them by a all toan optimized library. We desribe thereafter an algorithm to deide whether asubstitution preserves the program semantis, and to perform the substitutionin ase of suess.Deteted slies are often interleaved with other program statements. We have�rst to separate them from these statements. Consider an algorithm A onsistingin the set of operations {(A1, I1) . . . (Aa, Ia)}, where Ai is a statement, and Ii aset of iteration vetors. Let (A1, i1) be its �rst operation, and (Aa, ia) its lastoperation. Its omplementary is the set of program operations exeuted betweenthe �rst and the last operations of A:
A = {(S, i) | (A1, i1) ≺ (S, i) ≺ (An, in) and S is not an Ai} (1)Consider the following example (left):

P1 s = 0do i = 1, 10
P2 a(i) = a(i-1) + 1if i >= 9 then
A1 dot = dot + 2*a(i)endifenddo
A2 dot = dot + b*
P3 s = s + 1do i = 1, 4
P4 s = s + b(i)
A3 dot = dot + a(i)*b(i)enddo

P1 s = 0do i = 1, 10
P2 a(i) = a(i-1) + 1if i 6∈ { 9, 10 } thenif i >= 9 then
A1 dot = dot + 2*a(i)endifendifenddo(A2 removed)
P3 s = s + 1do i = 1, 4
P4 s = s + b(i)if i = 4 then all Optimized_Aif i 6∈ { 1, 2, 3, 4 } then
A3 dot = dot + a(i)*b(i)endifenddo(a). Original Program (b). Program with substitution



8 where the reognized algorithm is onstituted of operations:
A = {(A1, {9, 10}), (A2, {0}), (A3, {1, 2, 3, 4})}Its omplementary is thus: A = {(P2, {10}), (P3, {0}), (P4, {1, 2, 3, 4})}. For eahstatement P in the program, we ompute the set of orresponding operationsbetween the �rst and last operations of A by giving relation (1) to a solver [5℄.If it is not empty, we emit it.One A is omputed, it remains to separate it from A in order to replae Aby a all to an optimized library. A is separable if all dependenes go exlusivelyfrom A to A, or exlusively from A to A. In the �rst ase, A an be substitutedby a all to A before A. In the other ase, the all has to be insert after A.Otherwise, we do not perform substitution. In the example given above, A isseparable and an be replaed by a all after A beause of a dependene from

(P2, 10) to (A1, 10). In addition, if an intermediate variable is alive outside theslie, we do not perform the substitution.The substitution an now be performed by deleting operations of A, andplaing the relevant all before, or after A. Consider the above example (right).Relevant operations of statements A1 and A3 are disabled using a ondition.Beause A2 have no nesting loops, it is just removed from the program text(step 2). As said above, the optimized all is inserted after the last operationof A (P4, 4), using a ondition. A more e�ient ode an be produed by �rstreshedule operations of A, and then generating e�iently the ode with anappropriate method [6℄.6 Experimental resultsWe have implemented the SSA-graph onstrution from fortran appliations,and for C and C++ appliations using the LLVM ompiler infrastruture [3℄. Wehave applied our sliing algorithm to detet potential alls to the BLAS library[4℄ in LINPACK [7℄ and four programs involved in the SPEC benhmarking suite[8℄. Our pattern base is onstituted of diret implementations of BLAS funtionsfrom the mathematial desription. After having applied our algorithm to eahpair of pattern and program, we have heked by hand whether the slies areequivalent to the pattern, and if the substitution by a all to BLAS is possible.Figure 4 shows the results.It appears that 1/2 of andidates do not math, 1/4 are instanes of patternsfor vetors of size 1, and 1/4 of andidates are orret and an be replaed by aall to BLAS. We present di�erent andidates involved in these ategories.Most of the inorret detetions are due to the approximation of the depen-denes with φ-funtions. Neither loop iteration ount, nor if onditions, noromplex dependenes due to array index funtions are handled. In addition, ourmethod handles arrays as salar variables, whih an lead to detet a BLAS1xaxpy y(i) = y(i) + a*x(i) when there is a redution s = s + a(i)*a(i).Likewise, the method detets the same number of matrix-matrix multipliationthan of matrix-vetor multipliation. Note that the detetion is orret sine a



9

LINPACK 171.swim 172.mgrid 177.mesa 183.equake43.85 s 11.99 s 20.12 s 16.96 s 644 sA ixamax C xaxpy E xnrm2 G xxdot I xger K xsyrB xasum D xdot F xsal H xgemv J xspr2 L xtrmvFig. 4. For eah kernel, we provide eah BLAS funtion reognized, the number ofwrong slies (# Wrong), the number of trivial detetions (# Trivial), and the numberof andidates interesting to replae (# Substituted). The experimentation was done ona Pentium 4 1,8 GHz with 256 MB RAM.vetor is a partiular ase of matrix, but the ode should not be substituted bya BLAS 3.For 1/4 of the slies, the substitution an potentially inrease the programperformane. Our algorithm seems to have disovered all of them, and partiu-larly hidden andidates. Indeed, most slies found are interleaved with the soureode, and deeply destrutured. Our method has been able to detet a dot produtin presene of a splitting and a loop unroll, whih onstitute important programvariations that a grep method would not ath. The same remark applies onequake program. Two versions of matrix-vetor produt appear, one hand opti-mized and the other not. Both are deteted whereas a method based on regularexpressions �ts only the seond. In addition, exeution times on�rm that ouralgorithm is linear in the program size. Thus, our sliing method is salable andan be applied to real-life appliations.7 ConlusionThe method presented shows that the ompiler an help the user write or rewritea ode with high performane libraries. Combined with an instantiation test,
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