
De
iding Where to Call Performan
e LibrariesChristophe Alias and Denis BarthouLaboratoire PRiSM, Université de Versailles, Fran
e.Christophe.Alias�prism.uvsq.frDenis.Barthou�prism.uvsq.frAbstra
t. As both programs and ma
hines are be
oming more 
omplex, writing highperforman
e 
odes is an in
reasingly di�
ult task. In order to bridge the gap betweenthe 
ompiled-
ode and peak performan
e, resorting to domain or ar
hite
ture-spe
i�
libraries has be
ome 
ompulsory. However, de
iding when and where to use a libraryfun
tion must be spe
i�ed by the programmer. This partition between library and user
ode is not questioned by the 
ompiler although it has a great impa
t on performan
e.We propose in this paper a new method that helps the user �nd in its appli
ation all
ode fragments that 
an be repla
ed by library 
alls. The same te
hnique 
an be usedto 
hange or fusion multiple 
alls into more e�
ient ones. The results of the alternativedete
tion of BLAS 1 and 2 in SPEC are presented.1 Introdu
tionThe re
ent generation of mi
ropro
essors 
an deliver high performan
e thanksto a large number of me
hanisms: 
a
he hierar
hies, bran
h predi
tion, spe
i�
instru
tions su
h as fused multiply add, spe
ulative exe
ution, predi
ated in-stru
tions, prefet
hes, et
. One way to obtain high performan
e 
ode is to relyon 
ompiler optimizations. However the 
omplex optimizations that tap thesehardware features 
ome at the expense of performan
e stability. For instan
e,multiversioning is an optimization generating several versions for the same 
odefragment, these versions are sele
ted dynami
ally depending on parameters su
has loop iteration 
ount or data alignment. But a bad 
hoi
e for the strategy sele
t-ing the di�erent versions 
an introdu
e important laten
ies. Another approa
hhas fo
used on library tuning as a more reliable way to deliver performan
e. Theassembly 
ode is either generated by hand, using ar
hite
ture spe
i�
 instru
-tions, or by adaptative 
ode generation (e.g. ATLAS [14℄, FFTW [10℄ or STAPL[12℄). The important 
ompilation time is then balan
ed by the reusability ofthe libraries. In all 
ases, library fun
tions 
an be 
onsidered as the buildingblo
ks, essential to get high performan
e on real 
odes. In general programminglanguages, 
ode tuning is performed in the last stage of the development pro-
ess. The sele
tion of the library fun
tions and the rewriting of the 
ode fallsunder the responsibility of the user. The usual steps of this pro
ess are: �nd out
ode fragments and library fun
tions that are semanti
ally equivalent, repla
ethese fragments by fun
tion 
alls with 
orre
t parameters, debug the appli
ationand �nally evaluate performan
e. In the 
ase of non-portable libraries, this time



2
onsuming pro
ess has to be re
ondu
ted for ea
h target ar
hite
ture. It is sur-prising how little the 
ompiler helps the user in this tedious task. Compile-timeoptimizations neither 
hange the partition between library and user 
ode, nor
ross library boundaries.This paper presents an e�
ient method to �nd in a program all 
ode frag-ments that mat
h library fun
tions. Programs under study are any C or Fortran
odes, and libraries 
an be template libraries (with the meaning of C++ tem-plates). In general, de
iding whether two 
odes are semanti
ally equivalent isunde
idable. The equivalen
e 
onsidered in our approa
h does not take into a
-
ount any spe
ial operator semanti
s, su
h as asso
iativity or 
ommutativity.Within this framework, the method presented is 
onservative: some of the frag-ments found are not semanti
ally equivalent to the library 
odes, but none of thetruly equivalent fragments is missed. The analysis produ
es �may� information:between lines 537 and 541, it may be a matrix-ve
tor produ
t. Combined with anexa
t but more expensive method [2℄ applied only on fragments, both analyseswould produ
e �must� information, also providing the e�e
tive parameters forthe library 
all and its instantiation if this is a template. Finally, we des
ribe inthis paper the 
onditions for whi
h 
ode substitution by fun
tion 
alls is safe.Note that as a prerequisite for the dete
tion step, ea
h library fun
tion has to bedes
ribed by a program. We do not assume that the analysis has a

ess to thesour
e of the library. Instead we assume the library designer provides a publi
version for ea
h fun
tion. This program must have the same semanti
s than theoptimized, private version but the algorithm used 
an be 
ompletely di�erent.Se
tion 2 presents some related work. Se
tion 3 des
ribes the new dete
tionte
hnique. In Se
tion 4, we sum up, out of 
ompletion, the method used toprove the equivalen
e and to �nd the parameters of the 
all. We then give the
onditions for a safe substitution in Se
tion 5 and 
on
lude in Se
tion 6 with theresults of our experiments on SPEC ben
hmarks.2 Related WorkThe dete
tion of 
ode mat
hing library fun
tions is related to the dete
tion ofsli
es, whi
h 
onsists of identifying all the statements 
ontributing to a given
omputation. Cimetile et al. [1℄ propose a semi-automati
 approa
h to extra
tprogram parts (sli
es) verifying pre- and post-
onditions. They rely on a theoremprover whi
h requires user intera
tion to assert some invariants, and has a high
omplexity, whi
h makes it unrelevant to large appli
ations.Another approa
h proposed by Paul and Prakash [16℄ des
ribes an extensionof grep in order to �nd program patterns in sour
e 
ode. They use a patternlanguage with wild-
ards on synta
ti
 entities e.g. de
laration, type, variable,fun
tion, expression, statement,. . . allowing to sear
h for spe
i�
 sequen
es andnested 
ontrol stru
tures. Their algorithm has a O(n2) 
omplexity with n the
ode size. This dete
tion method has the same goal as ours; one of its draw-ba
ks is that the same pattern 
annot handle variations in 
ontrol (loop unroll,



3tiling) or in data stru
tures (array expansion, s
alar promotion) whereas this isaddressed in our framework.Finally, several approa
hes en
ode the knowledge of the fun
tions to be iden-ti�ed in the form of programming plans. Top-down methods [15℄ use the knowl-edge of the goals the program is assumed to a
hieve and some heuristi
s todete
t both the program sli
e and the library fun
tions that 
an a
hieve thesegoals. Bottom-up methods [9℄ start from statements and try to �nd the 
or-responding plans. Wills [9℄ represents programs by a �ow-graph, and patternsby grammar rules. The re
ognition is performed by parsing the program grapha

ording to the grammar rules and has an exponential 
ost at worst. Metzgerand Wen [13℄ have built a 
omplete environment to re
ognize and repla
e al-gorithms. They �rst normalize both program and pattern abstra
t syntax treeby applying usual program transformations (if-
onversion, loop-splitting, s
alarexpansion...). Then they 
onsider all strongly 
onne
ted 
omponents in the de-penden
e graph, 
ontaining at least one for statement as 
andidate sli
es. Theirmethod provides therefore a large number of 
andidate sli
es with many falsedete
tions, whi
h is balan
ed by the low 
omplexity of their equivalen
e test.Compared to the 
ombination of the dete
tion with the instantiation test we re-
all in this paper, they 
an handle fewer program variations (reuse of temporariesa
ross loop iterations for instan
e is not handled) for a lower 
ost.3 Dete
tion of Library TemplatesThe dete
tion of library templates 
onsists in lo
alizing in a 
ode the lines thatpossibly 
orrespond to a given library fun
tion or template. In the 
ase of atemplate, the 
ode dete
ted is a possible instan
e of the template. We proposean e�
ient method based on a symboli
 exe
ution of both program and template,following the def-use 
hains. The method symboli
ally exe
utes both programand template sli
es simultaneously and 
ompares the sequen
e of operators alongthese sli
es, abstra
ting away the number of iterations of the loops.3.1 Prin
ipleThe template and the program are assumed to be given in SSA-form, and nor-malized with one operator by statement. Ea
h edge of the program SSA-graphis labeled with its operator. Loops 
reate 
y
les in this graph but we abstra
taway the number of iterations. The sequen
e of operators along a path is 
on-sidered as a word and the graph 
an be 
onsidered as a �nite automaton. Theidea of the algorithm is to 
he
k whether the language of operators generatedby some 
ode fragment is in
luded in the language of operators generated by alibrary fun
tion. Intuitively, this ensures that the same sequen
e of operations
an happen in the 
ode and in the library fun
tion.Figure 1 provides a very simple example of mat
hing problem between atemplate and a program. The template and the program are assumed to begiven in SSA-form, whi
h means that the variables are assigned one time at



4most in the program text. In addition, ea
h referen
e to a variable is substitutedby a φ-fun
tion providing the set of its potential values. For example, the φ-fun
tion used in the assignment P4 means that z2 = 1/z1 or z2 = 1/z3. Sin
estatements assigning a 
onstant su
h as T1, P1 or P2 have no prede
essors in thegraph of def-use 
hains, they 
an be taken as a starting point for the inspe
tion.
T1 r1 = 1do iT = 1,nT

T2 r2 = X(φ(r1,r3))
T3 r3 = 1+r2enddo
TSTOP r4 = exp(φ(r1,r3)) P1 z1 = 1

P2 t = 0
P3 a = tan(t)do iP = 1,nP

P4 z2 = 1/(φ(z1,z3))
P5 z3 = 1+z2enddo
P6 r = exp(φ(z1,z3))Fig. 1. A template (left) and a program (right)Starting from P1, a stepping among def-use 
hains would follow the sequen
e:

1
−−→ P1

1/.
−−−→ P4

1+.
−−−−→ P5

exp
−−−−→ P6Likewise for the template a possible sequen
e of operators is:

1
−−→ T1

X(.)
−−−−→ T2

1+.
−−−−→ T3

exp
−−−−→ TSTOP .Walking through both program and template, with the 
ondition that for ea
htransition, the operator must be the same, we obtain the sequen
e:

1
−−→ (T1, P1)

1/.,X(.)=1/.
−−−−−−−−−−→ (T2, P4)

1+.
−−−−→ (T3, P5)

exp
−−−−→ (TSTOP , P6).This provides the 
andidate sli
e {P1, P4, P5, P6}, that possibly 
orresponds tothe template provided that X(.) = 1/. (this 
ondition appears on the transition).This 
ondition is ne
essary for the sequen
e to be the same for both template andprogram. Note however that the method will not 
he
k the 
oheren
e betweenthe values of template variables. Likewise, the number of iterations in loops orthe bran
hes 
hosen in 
onditionals are ignored. These important points will be
he
ked during the exa
t instantiation test (see Se
tion 4).3.2 Detailed AlgorithmFollowing the idea des
ribed above, we build an automaton re
ognizing the se-quen
es of operators exe
uted by all possible instan
es of the template, and anautomaton re
ognizing the sequen
es of operators exe
uted by the program. The



5simultaneous stepping of he template and the program is then a
hieve by 
om-puting the Cartesian produ
t of the template's and the program's automaton,whi
h provides the 
andidate sli
es.Figure 2 provides the automata built from the template and the program pro-vided in the above example. we asso
iate the states represent the assignments,and the transitions are driven by the �ow-dependen
es given in the φ-fun
tions,and labeled by the operator used in the destination state. Sin
e the template'sautomaton aims to re
ognize all possible template's instan
es in the program,the states involving a template variable X are handled by adding a looping tran-sition for ea
h program's operator. Sin
e most operators have an arity greater
r1 = 1r2 = X(�(r1,r3))r3 = 1 + r2r4 = exp(�(r1,r3)

1"1 + : exp " 1 + :; 1=:; tan; exp z1 = 1t = 0 z2 = 1/�(z1,z3)z3 = 1 + z2r = exp(�(z,z3))
1 + :exp

a = tan(t)tan 1=: 1=:
0 1

Fig. 2. Automata build asso
iated to the template (left), and the program (right)than 2, word automata are not expressive enough in general. Instead we builda tree-automaton, using the algorithm des
ribed in �gure 3. There is no majordi�eren
e with the word automata: we asso
iate a state to ea
h assignment thenwe add transitions a

ording to the dependen
es given by the φ-fun
tions (step2). Remark that when n = 1, we obtain a word automaton sin
e f(q1) −→ q
an be interpreted as q1
f

−−→ q. X is handled as a wild-
ard, whi
h leads to addlooping transitions with the operators used in the program (step 3). Likewise,remark the ε-transitions qi −→ q.The dete
tion is a
hieved by stepping simultaneously the template's andprogram's automata as soon as the operators are the same. Ea
h stepping leadingto the �nal state of the template will provide a 
andidate sli
e in the program,built of all rea
hed program's statements. These steppings 
an be performedin an exhaustive manner by 
omputing the Cartesian produ
t AT ×AP of the



6Algorithm Build_AutomatonInput: The template or the program.Output: The 
orresponding tree automaton.1. Asso
iate a new state to ea
h assignment statement.2. For ea
h state:
q = r = f(φ(Q1) . . . φ(Qn))Add the transitions: f(q1 . . . qn) −→ q, for ea
h qi ∈ Qi.3. For ea
h state:
q = r = X(φ(Q1) . . . φ(Qn))Add the transitions: qi −→ q, for ea
h qi ∈ Qi.And: f(q . . . q) −→ q, for ea
h operator f used in the template and the program,in
luding 
onstants (0-ary operators).Fig. 3. Build_Automatonprogram and template automata. It remains to mark the states (qT , qP ) with a�nal state qT of AT , and to emit the states of AP on a path from the initialstate as a potential instan
e.Our method is able to dete
t any template variation whi
h does not involvethe semanti
 properties of operators su
h as asso
iativity, or 
ommutativity. Par-ti
ularly we 
an handle any loop transformation and most 
ontrol restru
turingtransformations. Moreover, our method is 
ompletely independent of data stru
-ture used, whi
h allows the dete
tion of a large amount of template variationsin the program. Whether a sli
e dete
ted is a real instantiation of the templateis determined during the exa
t instantiation test.In the worst 
ase, the 
onstru
tion of the Cartesian produ
t of the templateand the program automata is 
omputed in O(T × P ) where T is the numberof template statements and P is the number of program statements, i.e. the
omplexity is linear in the size of the program analyzed.4 Exa
t Instantiation TestOn
e the 
andidate sli
es are found, we have only dete
ted a 
ode that �may�mat
h the library template. Either the user de
ides from this information tosubstitute or not, or another pro
edure de
ides if both program and templateare indeed equivalent and �nds the instantiations. We re
all the main steps ofthis pro
edure eliminating false dete
tions, des
ribed in [2℄.The instantiation test follows the steps of the dete
tion method des
ribedin Se
tion 3. An exa
t instan
e-wise rea
hing de�nition analysis is performed.As rea
hing de�nitions may depend on the values of iteration 
ounters, these



7
onditions are put on the transitions of the tree-automata. De
iding if the 
odefragment under study is an instantiation of the template boils down to 
omputethe loop 
ounter values that 
an rea
h �nal states of the Cartesian-produ
tautomaton. E�
ient heuristi
s [17℄ perform this 
omputation.The power of this instantiation test is assessed a

ording to its 
apa
ity toprove the equivalen
e between two 
odes, one a variation of the other. The testhandles variations 
oming from loop transformations (splitting, fusion, skewing,tiling, unroll,...), from data stru
tures (s
alar expansion, s
alar promotion, useof temporaries), from 
ommon subexpression elimination or other fa
torizationof 
omputation. However, the test does not handle the semanti
 properties ofthe operators, su
h as 
ommutativity or asso
iativity.5 SubstitutionOn
e 
andidate sli
es are found, it remains to substitute them by a 
all toan optimized library. We des
ribe thereafter an algorithm to de
ide whether asubstitution preserves the program semanti
s, and to perform the substitutionin 
ase of su

ess.Dete
ted sli
es are often interleaved with other program statements. We have�rst to separate them from these statements. Consider an algorithm A 
onsistingin the set of operations {(A1, I1) . . . (Aa, Ia)}, where Ai is a statement, and Ii aset of iteration ve
tors. Let (A1, i1) be its �rst operation, and (Aa, ia) its lastoperation. Its 
omplementary is the set of program operations exe
uted betweenthe �rst and the last operations of A:
A = {(S, i) | (A1, i1) ≺ (S, i) ≺ (An, in) and S is not an Ai} (1)Consider the following example (left):

P1 s = 0do i = 1, 10
P2 a(i) = a(i-1) + 1if i >= 9 then
A1 dot = dot + 2*a(i)endifenddo
A2 dot = dot + b*

P3 s = s + 1do i = 1, 4
P4 s = s + b(i)
A3 dot = dot + a(i)*b(i)enddo

P1 s = 0do i = 1, 10
P2 a(i) = a(i-1) + 1if i 6∈ { 9, 10 } thenif i >= 9 then
A1 dot = dot + 2*a(i)endifendifenddo(A2 removed)
P3 s = s + 1do i = 1, 4
P4 s = s + b(i)if i = 4 then 
all Optimized_Aif i 6∈ { 1, 2, 3, 4 } then
A3 dot = dot + a(i)*b(i)endifenddo(a). Original Program (b). Program with substitution



8 where the re
ognized algorithm is 
onstituted of operations:
A = {(A1, {9, 10}), (A2, {0}), (A3, {1, 2, 3, 4})}Its 
omplementary is thus: A = {(P2, {10}), (P3, {0}), (P4, {1, 2, 3, 4})}. For ea
hstatement P in the program, we 
ompute the set of 
orresponding operationsbetween the �rst and last operations of A by giving relation (1) to a solver [5℄.If it is not empty, we emit it.On
e A is 
omputed, it remains to separate it from A in order to repla
e Aby a 
all to an optimized library. A is separable if all dependen
es go ex
lusivelyfrom A to A, or ex
lusively from A to A. In the �rst 
ase, A 
an be substitutedby a 
all to A before A. In the other 
ase, the 
all has to be insert after A.Otherwise, we do not perform substitution. In the example given above, A isseparable and 
an be repla
ed by a 
all after A be
ause of a dependen
e from

(P2, 10) to (A1, 10). In addition, if an intermediate variable is alive outside thesli
e, we do not perform the substitution.The substitution 
an now be performed by deleting operations of A, andpla
ing the relevant 
all before, or after A. Consider the above example (right).Relevant operations of statements A1 and A3 are disabled using a 
ondition.Be
ause A2 have no nesting loops, it is just removed from the program text(step 2). As said above, the optimized 
all is inserted after the last operationof A (P4, 4), using a 
ondition. A more e�
ient 
ode 
an be produ
ed by �rstres
hedule operations of A, and then generating e�
iently the 
ode with anappropriate method [6℄.6 Experimental resultsWe have implemented the SSA-graph 
onstru
tion from fortran appli
ations,and for C and C++ appli
ations using the LLVM 
ompiler infrastru
ture [3℄. Wehave applied our sli
ing algorithm to dete
t potential 
alls to the BLAS library[4℄ in LINPACK [7℄ and four programs involved in the SPEC ben
hmarking suite[8℄. Our pattern base is 
onstituted of dire
t implementations of BLAS fun
tionsfrom the mathemati
al des
ription. After having applied our algorithm to ea
hpair of pattern and program, we have 
he
ked by hand whether the sli
es areequivalent to the pattern, and if the substitution by a 
all to BLAS is possible.Figure 4 shows the results.It appears that 1/2 of 
andidates do not mat
h, 1/4 are instan
es of patternsfor ve
tors of size 1, and 1/4 of 
andidates are 
orre
t and 
an be repla
ed by a
all to BLAS. We present di�erent 
andidates involved in these 
ategories.Most of the in
orre
t dete
tions are due to the approximation of the depen-den
es with φ-fun
tions. Neither loop iteration 
ount, nor if 
onditions, nor
omplex dependen
es due to array index fun
tions are handled. In addition, ourmethod handles arrays as s
alar variables, whi
h 
an lead to dete
t a BLAS1xaxpy y(i) = y(i) + a*x(i) when there is a redu
tion s = s + a(i)*a(i).Likewise, the method dete
ts the same number of matrix-matrix multipli
ationthan of matrix-ve
tor multipli
ation. Note that the dete
tion is 
orre
t sin
e a



9

LINPACK 171.swim 172.mgrid 177.mesa 183.equake43.85 s 11.99 s 20.12 s 16.96 s 644 sA ixamax C xaxpy E xnrm2 G xxdot I xger K xsyrB xasum D xdot F xs
al H xgemv J xspr2 L xtrmvFig. 4. For ea
h kernel, we provide ea
h BLAS fun
tion re
ognized, the number ofwrong sli
es (# Wrong), the number of trivial dete
tions (# Trivial), and the numberof 
andidates interesting to repla
e (# Substituted). The experimentation was done ona Pentium 4 1,8 GHz with 256 MB RAM.ve
tor is a parti
ular 
ase of matrix, but the 
ode should not be substituted bya BLAS 3.For 1/4 of the sli
es, the substitution 
an potentially in
rease the programperforman
e. Our algorithm seems to have dis
overed all of them, and parti
u-larly hidden 
andidates. Indeed, most sli
es found are interleaved with the sour
e
ode, and deeply destru
tured. Our method has been able to dete
t a dot produ
tin presen
e of a splitting and a loop unroll, whi
h 
onstitute important programvariations that a grep method would not 
at
h. The same remark applies onequake program. Two versions of matrix-ve
tor produ
t appear, one hand opti-mized and the other not. Both are dete
ted whereas a method based on regularexpressions �ts only the se
ond. In addition, exe
ution times 
on�rm that ouralgorithm is linear in the program size. Thus, our sli
ing method is s
alable and
an be applied to real-life appli
ations.7 Con
lusionThe method presented shows that the 
ompiler 
an help the user write or rewritea 
ode with high performan
e libraries. Combined with an instantiation test,



10this pro
ess 
an be fully automati
. The advantages are a better portability andhigher produ
tivity of the programmer. The dete
tion only requires that ea
hlibrary fun
tion has a publi
 version, in C or Fortran, semanti
ally equivalentto the real 
ode. The experiments on the SPEC ben
hmarks are en
ouraging:the method dete
ts a signi�
ant number of linear algebra fun
tions with linear
omplexity. The evaluation of the performan
e gain expe
ted when using library
alls is still however an ongoing work.More generally, this approa
h 
an 
hange the abstra
tion level of the pro-gram, repla
ing C 
ode by algorithms or formulae. From this higher level ofabstra
tion, it enables a 
hange of algorithm [11℄ or simply improves 
ode 
om-prehension. For large s
ale appli
ations, high performan
e 
annot be at the ex-pense of portability. The method des
ribed 
ould be a solution to 
ombine bothand this will be the subje
t of future work.Referen
es1. A.Cimetile, A.De Lu
ia, and M.Munro. A spe
i�
ation driven sli
ing pro
ess foridentifying reusable fun
tions. J. of Software Maintenan
e: Resear
h and Pra
ti
e,8(3):145�178, 1996.2. C.Alias and D.Barthou. Algorithm re
ognition based on demand-driven data-�owanalysis. In Working Conf. on Reverse Engineering. IEEE, 2003.3. C.Lattner and V.Adve. LLVM: A Compilation Framework for Lifelong ProgramAnalysis & Transformation. In Pro
eedings of CGO'2004, Palo Alto, 2004.4. C.Lawson, R.Hanson, D.Kin
aid, and F.Krogh. Basi
 Linear Algebra Subprogramsfor Fortran usage. Trans. on Mathemati
al Software, 5(3):308�323, 1979.5. D.Wilde. A library for doing polyhedral operations. INRIA TR 2157, 1993.6. F.Quilleré, S.Rajopadhye, and D.Wilde. Generation of e�
ient nested loops frompolyhedra. Int. J. of Parallel Programming, 28(5):469�498, 2000.7. J.Dongarra. The linpa
k ben
hmark: An explanation. In Super
omputing, pages456�474. Springer-Verlag, 1988.8. J.Henning. Spe
 
pu2000: Measuring 
pu performan
e in the new millennium.Computer, 33(7):28�35, 2000.9. L.Wills. Automated Program Re
ognition by Graph Parsing. PhD thesis, MIT,1992.10. M.Frigo and S.Johnson. FFTW: An adaptive software ar
hite
ture for the FFT.In Pro
. Intl. Conf. A
ousti
s Spee
h and Signal Pro
essing, volume 3, pages 1381�1384. IEEE, 1998.11. M.Püs
hel, B.Singer, J.Xiong, J.Moura, J.Johnson, D.Padua, M.Veloso, andR.Johnson. Spiral: A generator for platform-adapted libraries of signal pro
ess-ing algorithms. J. of High Perf. Computing and Appli
ations, 1(18):21�45, 2004.12. N.Thomas, G.Tanase, O.Tka
hyshyn, J.Perdue, N.Amato, and L.Rau
hwerger. AFramework for Adaptive Algorithm Sele
tion in STAPL. In Pro
. ACM PPOPP'05,Chi
ago, 2005.13. R.Metzger and Z.Wen. Automati
 Algorithm Re
ognition: A New Approa
h toProgram Optimization. MIT Press, 2000.14. R.Whaley and J.Dongarra. Automati
ally tuned linear algebra software. In Su-perComputing. Springer-Verlag, 1998.



1115. S.Kim and J.Kim. A hybrid approa
h for program understanding based on graph-parsing and expe
tation-driven analysis. J. of Applied A.I., 12(6):521�546, 1998.16. S.Paul and A.Prakash. A framework for sour
e 
ode sear
h using program patterns.IEEE Trans. on S.E., 20(6):463�475, 1994.17. W.Kelly, W.Pugh, E.Rosser, and T.Shpeisman. Transitive 
losure of in�nite graphsand its appli
ations. Int. J. of Parallel Programming, 24(6):579�598, 1996.


