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Abstract. As both programs and machines are becoming more complex, writing high
performance codes is an increasingly difficult task. In order to bridge the gap between
the compiled-code and peak performance, resorting to domain or architecture-specific
libraries has become compulsory. However, deciding when and where to use a library
function must be specified by the programmer. This partition between library and user
code is not questioned by the compiler although it has a great impact on performance.
We propose in this paper a new method that helps the user find in its application all
code fragments that can be replaced by library calls. The same technique can be used
to change or fusion multiple calls into more efficient ones. The results of the alternative
detection of BLAS 1 and 2 in SPEC are presented.

1 Introduction

The recent generation of microprocessors can deliver high performance thanks
to a large number of mechanisms: cache hierarchies, branch prediction, specific
instructions such as fused multiply add, speculative execution, predicated in-
structions, prefetches, etc. One way to obtain high performance code is to rely
on compiler optimizations. However the complex optimizations that tap these
hardware features come at the expense of performance stability. For instance,
multiversioning is an optimization generating several versions for the same code
fragment, these versions are selected dynamically depending on parameters such
as loop iteration count or data alignment. But a bad choice for the strategy select-
ing the different versions can introduce important latencies. Another approach
has focused on library tuning as a more reliable way to deliver performance. The
assembly code is either generated by hand, using architecture specific instruc-
tions, or by adaptative code generation (e.g. ATLAS [14], FFTW [10] or STAPL
[12]). The important compilation time is then balanced by the reusability of
the libraries. In all cases, library functions can be considered as the building
blocks, essential to get high performance on real codes. In general programming
languages, code tuning is performed in the last stage of the development pro-
cess. The selection of the library functions and the rewriting of the code falls
under the responsibility of the user. The usual steps of this process are: find out
code fragments and library functions that are semantically equivalent, replace
these fragments by function calls with correct parameters, debug the application
and finally evaluate performance. In the case of non-portable libraries, this time



consuming process has to be reconducted for each target architecture. It is sur-
prising how little the compiler helps the user in this tedious task. Compile-time
optimizations neither change the partition between library and user code, nor
cross library boundaries.

This paper presents an efficient method to find in a program all code frag-
ments that match library functions. Programs under study are any C or Fortran
codes, and libraries can be template libraries (with the meaning of C++ tem-
plates). In general, deciding whether two codes are semantically equivalent is
undecidable. The equivalence considered in our approach does not take into ac-
count any special operator semantics, such as associativity or commutativity.
Within this framework, the method presented is conservative: some of the frag-
ments found are not semantically equivalent to the library codes, but none of the
truly equivalent fragments is missed. The analysis produces “may” information:
between lines 537 and 541, it may be a matrix-vector product. Combined with an
exact but more expensive method [2] applied only on fragments, both analyses
would produce “must” information, also providing the effective parameters for
the library call and its instantiation if this is a template. Finally, we describe in
this paper the conditions for which code substitution by function calls is safe.
Note that as a prerequisite for the detection step, each library function has to be
described by a program. We do not assume that the analysis has access to the
source of the library. Instead we assume the library designer provides a public
version for each function. This program must have the same semantics than the
optimized, private version but the algorithm used can be completely different.

Section 2 presents some related work. Section 3 describes the new detection
technique. In Section 4, we sum up, out of completion, the method used to
prove the equivalence and to find the parameters of the call. We then give the
conditions for a safe substitution in Section 5 and conclude in Section 6 with the
results of our experiments on SPEC benchmarks.

2 Related Work

The detection of code matching library functions is related to the detection of
slices, which consists of identifying all the statements contributing to a given
computation. Cimetile et al. [1] propose a semi-automatic approach to extract
program parts (slices) verifying pre- and post-conditions. They rely on a theorem
prover which requires user interaction to assert some invariants, and has a high
complexity, which makes it unrelevant to large applications.

Another approach proposed by Paul and Prakash [16] describes an extension
of grep in order to find program patterns in source code. They use a pattern
language with wild-cards on syntactic entities e.g. declaration, type, variable,
function, expression, statement,. ..allowing to search for specific sequences and
nested control structures. Their algorithm has a O(n?) complexity with n the
code size. This detection method has the same goal as ours; one of its draw-
backs is that the same pattern cannot handle variations in control (loop unroll,



tiling) or in data structures (array expansion, scalar promotion) whereas this is
addressed in our framework.

Finally, several approaches encode the knowledge of the functions to be iden-
tified in the form of programming plans. Top-down methods [15] use the knowl-
edge of the goals the program is assumed to achieve and some heuristics to
detect both the program slice and the library functions that can achieve these
goals. Bottom-up methods [9] start from statements and try to find the cor-
responding plans. Wills [9] represents programs by a flow-graph, and patterns
by grammar rules. The recognition is performed by parsing the program graph
according to the grammar rules and has an exponential cost at worst. Metzger
and Wen [13] have built a complete environment to recognize and replace al-
gorithms. They first normalize both program and pattern abstract syntax tree
by applying usual program transformations (if-conversion, loop-splitting, scalar
expansion...). Then they consider all strongly connected components in the de-
pendence graph, containing at least one for statement as candidate slices. Their
method provides therefore a large number of candidate slices with many false
detections, which is balanced by the low complexity of their equivalence test.
Compared to the combination of the detection with the instantiation test we re-
call in this paper, they can handle fewer program variations (reuse of temporaries
across loop iterations for instance is not handled) for a lower cost.

3 Detection of Library Templates

The detection of library templates consists in localizing in a code the lines that
possibly correspond to a given library function or template. In the case of a
template, the code detected is a possible instance of the template. We propose
an efficient method based on a symbolic execution of both program and template,
following the def-use chains. The method symbolically executes both program
and template slices simultaneously and compares the sequence of operators along
these slices, abstracting away the number of iterations of the loops.

3.1 Principle

The template and the program are assumed to be given in SSA-form, and nor-
malized with one operator by statement. Each edge of the program SSA-graph
is labeled with its operator. Loops create cycles in this graph but we abstract
away the number of iterations. The sequence of operators along a path is con-
sidered as a word and the graph can be considered as a finite automaton. The
idea of the algorithm is to check whether the language of operators generated
by some code fragment is included in the language of operators generated by a
library function. Intuitively, this ensures that the same sequence of operations
can happen in the code and in the library function.

Figure 1 provides a very simple example of matching problem between a
template and a program. The template and the program are assumed to be
given in SSA-form, which means that the variables are assigned one time at



most in the program text. In addition, each reference to a variable is substituted
by a ¢-function providing the set of its potential values. For example, the ¢-
function used in the assignment P, means that z2 = 1/z1 or z2 = 1/z3. Since
statements assigning a constant such as 77, P, or P, have no predecessors in the
graph of def-use chains, they can be taken as a starting point for the inspection.

Ty rli =1 P ozl =1
do ir = 1,nr P, t =0
Ty r2 = X (¢(r1,r3)) P; a = tan(t)
T3 r3 = 1+r2 do ip = 1,np
enddo Py z2 = 1/(¢(z1,23))
Tsrop 14 = exp(¢(rl,r3)) Ps z3 = 1+z2
enddo

Ps r = exp(¢(z21,23))

Fig. 1. A template (left) and a program (right)

Starting from P, a stepping among def-use chains would follow the sequence:

1 1/.

1+.
P +

Py Ps Ps

Likewise for the template a possible sequence of operators is:

1 X(.)

1+.
LN ) +

exp

T T3 Tstop-
Walking through both program and template, with the condition that for each
transition, the operator must be the same, we obtain the sequence:

exp

EORE (1, Py s (T, Ps) —22 (Tsrop, Po).

(T, Py)
This provides the candidate slice { Py, Py, Ps, Ps}, that possibly corresponds to
the template provided that X (.) = 1/. (this condition appears on the transition).
This condition is necessary for the sequence to be the same for both template and
program. Note however that the method will not check the coherence between
the values of template variables. Likewise, the number of iterations in loops or
the branches chosen in conditionals are ignored. These important points will be
checked during the exact instantiation test (see Section 4).

3.2 Detailed Algorithm

Following the idea described above, we build an automaton recognizing the se-
quences of operators executed by all possible instances of the template, and an
automaton recognizing the sequences of operators executed by the program. The



simultaneous stepping of he template and the program is then achieve by com-
puting the Cartesian product of the template’s and the program’s automaton,
which provides the candidate slices.

Figure 2 provides the automata built from the template and the program pro-
vided in the above example. we associate the states represent the assignments,
and the transitions are driven by the flow-dependences given in the ¢-functions,
and labeled by the operator used in the destination state. Since the template’s
automaton aims to recognize all possible template’s instances in the program,
the states involving a template variable X are handled by adding a looping tran-
sition for each program’s operator. Since most operators have an arity greater

rl
r2 = X(¢(r1,r3)) 1+ ., 1/., tan, exp a = mn(t)‘ z2 = 1/({0(21,23)‘
1+. 1+. 1/.
r3 =1 z3 =1+ 22
exp exp

rd = exp(¢(rl,r3) r = exp(¢(z,23))

Fig. 2. Automata build associated to the template (left), and the program (right)

than 2, word automata are not expressive enough in general. Instead we build
a tree-automaton, using the algorithm described in figure 3. There is no major
difference with the word automata: we associate a state to each assignment then
we add transitions according to the dependences given by the ¢-functions (step
2). Remark that when n = 1, we obtain a word automaton since f(q1) — ¢
can be interpreted as ¢; —— ¢. X is handled as a wild-card, which leads to add
looping transitions with the operators used in the program (step 3). Likewise,
remark the e-transitions ¢; — q.

The detection is achieved by stepping simultaneously the template’s and
program’s automata as soon as the operators are the same. Each stepping leading
to the final state of the template will provide a candidate slice in the program,
built of all reached program’s statements. These steppings can be performed
in an exhaustive manner by computing the Cartesian product Ar x Ap of the



Algorithm Build _Automaton

Input: The template or the program.
Output: The corresponding tree automaton.

1. Associate a new state to each assignment statement.
2. For each state:

g=|r = f(#(Q1) .. (Qn))]

Add the transitions: f(qi1...qn) — g, for each ¢; € Q.
3. For each state:

¢=|r = X(6(Q1) .- $(Qn)]

Add the transitions: ¢; — ¢, for each ¢; € Q.
And: f(q...q) — q, for each operator f used in the template and the program,
including constants (0-ary operators).

Fig. 3. Build_Automaton

program and template automata. It remains to mark the states (¢r, gp) with a
final state gr of Ap, and to emit the states of Ap on a path from the initial
state as a potential instance.

Our method is able to detect any template variation which does not involve
the semantic properties of operators such as associativity, or commutativity. Par-
ticularly we can handle any loop transformation and most control restructuring
transformations. Moreover, our method is completely independent of data struc-
ture used, which allows the detection of a large amount of template variations
in the program. Whether a slice detected is a real instantiation of the template
is determined during the exact instantiation test.

In the worst case, the construction of the Cartesian product of the template
and the program automata is computed in O(T x P) where T is the number
of template statements and P is the number of program statements, i.e. the
complexity is linear in the size of the program analyzed.

4 Exact Instantiation Test

Once the candidate slices are found, we have only detected a code that “"may”
match the library template. Either the user decides from this information to
substitute or not, or another procedure decides if both program and template
are indeed equivalent and finds the instantiations. We recall the main steps of
this procedure eliminating false detections, described in [2].

The instantiation test follows the steps of the detection method described
in Section 3. An exact instance-wise reaching definition analysis is performed.
As reaching definitions may depend on the values of iteration counters, these



conditions are put on the transitions of the tree-automata. Deciding if the code
fragment under study is an instantiation of the template boils down to compute
the loop counter values that can reach final states of the Cartesian-product
automaton. Efficient heuristics [17] perform this computation.

The power of this instantiation test is assessed according to its capacity to
prove the equivalence between two codes, one a variation of the other. The test
handles variations coming from loop transformations (splitting, fusion, skewing,
tiling, unroll,...), from data structures (scalar expansion, scalar promotion, use
of temporaries), from common subexpression elimination or other factorization
of computation. However, the test does not handle the semantic properties of
the operators, such as commutativity or associativity.

5 Substitution

Once candidate slices are found, it remains to substitute them by a call to
an optimized library. We describe thereafter an algorithm to decide whether a
substitution preserves the program semantics, and to perform the substitution
in case of success.

Detected slices are often interleaved with other program statements. We have
first to separate them from these statements. Consider an algorithm A consisting
in the set of operations {(A1,11)... (44, 1.)}, where A; is a statement, and I; a
set of iteration vectors. Let (Aj,41) be its first operation, and (A,,1,) its last
operation. Its complementary is the set of program operations executed between
the first and the last operations of A:

A=1{(S,4) | (A1,41) < (S,4) < (Apn,i,) and S is not an A;} (1)
Consider the following example (left):
P1 s =0 Pl s =0
do i=1, 10 do i=1, 10
P a(i) = a(i-1) + 1 P a(i) = a(i-1) + 1
if i >= 9 then ifi ¢ {9, 10 } then
A1 | | dot = dot + 2%a(d) if i >= 9 then
endif Ay | dot = dot + 2*a(i)
enddo endif
As dot = dot + bxc endif
P;s s=s+1 enddo
doi=1, 4 (A2 removed)
P, s = s + b(i) P;s s=s+1
As dot = dot + a(i)*b(i) doi=1, 4
enddo P, s = s + b(i)

if i = 4 then call Optimized_A
ifi ¢ {1, 2, 3, 4} then
Az | dot = dot + a(i)*b(i)
endif
enddo

(a). Original Program (b). Program with substitution



where the recognized algorithm is constituted of operations:

A= {(Ala {9’ 10})) (AQ’ {0})’ (A?H {15 2,3, 4})}

Its complementary is thus: A = {(Py, {10}), (Ps,{0}), (P4, {1,2,3,4})}. For each
statement P in the program, we compute the set of corresponding operations
between the first and last operations of A by giving relation (1) to a solver [5].
If it is not empty, we emit it.

Once A is computed, it remains to separate it from A in order to replace A
by a call to an optimized library. A is separable if all dependences go exclusively
from A to A, or exclusively from A to A. In the first case, A can be substituted
by a call to A before A. In the other case, the call has to be insert after A.
Otherwise, we do not perform substitution. In the example given above, A is
separable and can be replaced by a call after A because of a dependence from
(P2, 10) to (A1, 10). In addition, if an intermediate variable is alive outside the
slice, we do not perform the substitution.

The substitution can now be performed by deleting operations of A, and
placing the relevant call before, or after A. Consider the above example (right).
Relevant operations of statements A; and Ajs are disabled using a condition.
Because As have no nesting loops, it is just removed from the program text
(step 2). As said above, the optimized call is inserted after the last operation
of A (Py,4), using a condition. A more efficient code can be produced by first
reschedule operations of A, and then generating efficiently the code with an
appropriate method [6].

6 Experimental results

We have implemented the SSA-graph construction from fortran applications,
and for C and C++ applications using the LLVM compiler infrastructure [3]. We
have applied our slicing algorithm to detect potential calls to the BLAS library
[4] in LINPACK [7] and four programs involved in the SPEC benchmarking suite
[8]. Our pattern base is constituted of direct implementations of BLAS functions
from the mathematical description. After having applied our algorithm to each
pair of pattern and program, we have checked by hand whether the slices are
equivalent to the pattern, and if the substitution by a call to BLAS is possible.
Figure 4 shows the results.

It appears that 1/2 of candidates do not match, 1/4 are instances of patterns
for vectors of size 1, and 1/4 of candidates are correct and can be replaced by a
call to BLAS. We present different candidates involved in these categories.

Most of the incorrect detections are due to the approximation of the depen-
dences with ¢-functions. Neither loop iteration count, nor if conditions, nor
complex dependences due to array index functions are handled. In addition, our
method handles arrays as scalar variables, which can lead to detect a BLAS1
xaxpy y(i) = y(i) + a*x(i) when there is a reduction s = s + a(i)*a(i).
Likewise, the method detects the same number of matrix-matrix multiplication
than of matrix-vector multiplication. Note that the detection is correct since a
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Fig. 4. For each kernel, we provide each BLAS function recognized, the number of
wrong slices (# Wrong), the number of trivial detections (# Trivial), and the number
of candidates interesting to replace (# Substituted). The experimentation was done on
a Pentium 4 1,8 GHz with 256 MB RAM.

vector is a particular case of matrix, but the code should not be substituted by
a BLAS 3.

For 1/4 of the slices, the substitution can potentially increase the program
performance. Our algorithm seems to have discovered all of them, and particu-
larly hidden candidates. Indeed, most slices found are interleaved with the source
code, and deeply destructured. Our method has been able to detect a dot product
in presence of a splitting and a loop unroll, which constitute important program
variations that a grep method would not catch. The same remark applies on
equake program. Two versions of matrix-vector product appear, one hand opti-
mized and the other not. Both are detected whereas a method based on regular
expressions fits only the second. In addition, execution times confirm that our
algorithm is linear in the program size. Thus, our slicing method is scalable and
can be applied to real-life applications.

7 Conclusion

The method presented shows that the compiler can help the user write or rewrite
a code with high performance libraries. Combined with an instantiation test,
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this process can be fully automatic. The advantages are a better portability and
higher productivity of the programmer. The detection only requires that each
library function has a public version, in C or Fortran, semantically equivalent
to the real code. The experiments on the SPEC benchmarks are encouraging:
the method detects a significant number of linear algebra functions with linear
complexity. The evaluation of the performance gain expected when using library
calls is still however an ongoing work.

More generally, this approach can change the abstraction level of the pro-
gram, replacing C code by algorithms or formulae. From this higher level of
abstraction, it enables a change of algorithm [11] or simply improves code com-
prehension. For large scale applications, high performance cannot be at the ex-
pense of portability. The method described could be a solution to combine both
and this will be the subject of future work.
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