On Domain-Specific Languages Reengineering

Christophe Alias and Denis Barthou

Laboratoire PRiSM, Université de Versailles, France.
Christophe.Alias@prism.uvsq.fr
Denis.Barthou@prism.uvsq.fr

Abstract. Domain-specific languages (DSL) provides high-level func-
tions making applications easier to write, and to maintain. Unfortu-
nately, many applications are written from scratch and poorly docu-
mented, which make them hard to maintain. An ideal solution should
be to rewrite them in a appropriate DSL. In this paper, we present TeMa
(Template Matcher), an automatic tool to recognize high-level functions
in source code. Preliminary results show how TeMa can be used to re-
formulate Fortran code into Signal Processing Language (SPL) used in
SPIRAL. This opens new possibilities for domain-specific languages.

1 Introduction

With domain-specific languages, algorithms are described in a more abstract and
compact way than with traditional imperative programming languages. Express-
ing algorithms at a higher level of abstraction adds portability and improves pro-
grammer productivity for code writing and maintenance. Moreover, the higher
the representation of the program, the more aggressive the compiler optimiza-
tions can be: for instance a generative approach can yield from a mathematical
formula in SPIRAL [16] a finely tuned code for a particular architecture, explor-
ing both algorithmic variations and traditional code optimizations. The same
benefit appears also for code verification.

However, this approach assumes that the user specifies his algorithm using a
domain-specific language. Starting from an existing C or Fortran program and
finding in it fragments that correspond to domain specific templates would be
desirable but seems difficult to obtain. The reason is that it amounts to algo-
rithm recognition, an old problem in computer science. Basically, one would like
a compiler or analyzer to automatically find that lines 10 to 23 are an implemen-
tation of a DFT for instance. A natural solution would be to search the code for
patterns of known functions (matrix-matrix product, tensor product or direct
sum for the DFT). Such a facility would enable many important techniques:

— Program comprehension and reverse engineering: we can rewrite part of the
code with a higher level language, enhancing code maintenance and porta-
bility.

— Program optimization: if we have the necessary items in our library or if
we can use a generative approach, we may replace lines 10 to 23 by an

automatically tuned version. We may even replace the relevant part of the
code by a completely different implementation.

— Program verification: if we know that the program specification asks for a
DFT and the analyzer does not find it, we may suspect an error.

— Hardware-software co-design: if we recognize in the source program a piece
of code for which we have a hardware implementation (e.g. as a co-processor
or an Intellectual Property component) we can remove the code and replace
it by an activation of the hardware.

The pattern could be a naive implementation of the function but obviously the
approach is interesting only if the detection abstracts away some variations be-
tween the code fragment and the reference implementation. Program variations
can arise from data structure variations (coming from scalar promotion, array
expansion, structures instead of arrays,. . .), control variations (coming from loop
fusion, unroll, skewing,...), organization variations (coming for permutation of
program statements) or semantic variations (using associativity or commutativ-
ity for instance). Obviously, the abstraction obtained depend on the range of
variations handled by the detection.

In this paper, we present an approach to automatically find, in linear time,
all possible instances of a given template in a program. Implemented in the TeMa
tool and connected with a more expressive method already described in [1], the
method is able to find the parameters of the template corresponding to a partic-
ular instance. It handles many implementation variations and extends previous
works by handling variations concerning data structures using arrays. Experi-
mental results on SPEC benchmarks show that our method is able to abstract
away many variations. Finally, preliminary results show that this technique is
able to reformulate Fortran code into Signal Processing Language (SPL) used in
SPIRAL. This opens new possibilities for domain-specific languages.

The paper is organized as follows: Section 2 introduces the notations and
definitions used in the paper. Section 3 describes the algorithmic content of TeMa
and provides a classification of program variations handled. Finally, section 4
presents the TeMa tool and provides experimental results.

2 Background

SPL [21] (Signal Processing Language) is a domain-specific language for describ-
ing matrix factorizations, and thus fast algorithms for computing matrix-vector
products. In particular, it can be used for describing fast signal transforms such
as FFT or WHT. An SPL program is an expression involving a variety of op-
erations including composition, direct sum and tensor product. Let us give an
example of SPL program. Briefly recall that given two matrices A and B, the
tensor product of A and B, is the matrix A @ B = [a;; B]. The WHT (Walsh-
Hadamard Transform) over a sampled signal of 2" elements can be written

WHTs» = F», ® ... Q Fy n times , where F, = [} _11] denotes the FFT trans-

form over 2-dimensionnal vectors. The SPL program computing the WHT over
23-dimensionnal input vectors can thus be written:

(tensor (F 2) (temsor (F 2) (F 2)))

In addition to improve readability and thus maintenance, recovering an SPL
program from a C or Fortran program allows to benefit of the SPL compiler
optimizations.

The approach investigated in this paper is to recognize within the program
the slices corresponding to naive implementations of SPL functions, then to re-
build the SPL formula. The naive implementations to find are expressed with
program patterns. A pattern is a schema of program with wildcards values and
functions. For example, figure 1 gives the pattern of a reduction, where wild-cards
are denoted by 0. One contribution of this paper is the algorithm to quickly find

s =0
doi=1,n

| s = O(s,0)
enddo
return s

Fig. 1. Pattern of a reduction

all possible instances of a pattern within a program. In the TeMa tool presented
thereafter, it is connected with a more expensive method already described in
[1] to check if the program slices found are effectively instances of the pattern.
In case of success, our exact method provides the corresponding values of [J.

Finding instances of a pattern in a program means finding all program
slices equivalent to an instance of the pattern. But what does exactly means
«equivalenty ? We will consider a weak version of semantic equivalence called
Herbrand-equivalence and denoted by =4,. Instead of indicating whether two al-
gorithms compute the same (mathematical) function, Herbrand-equivalence just
indicates if they used the same mathematical formula, syntactically. In this way,
Herbrand-equivalence can be considered as a true algorithmic equivalence. Even
if Herbrand-equivalence is weaker than semantic equivalence, and seems to be
easier to check, it has been unfortunately proven undecidable [2].

Our detection algorithm uses a powerful extension of automata called tree-
automata. A tree automatonis a tuple A = (¥, Q, Q¢, A), where X is a signature,
Q the set of states, Q¢ C @ the set of final states, and A a set of transition rules
of the type f(q1...qn) — ¢, where n >0, f € ¥ and ¢,q1,...,qn € Q. Tree
automata were introduced by Doner [5, 6] and Thatcher and Wright [17,18] in
the context of circuit verification. Most of usual operations on word automata
(determinization, minimization, cartesian product, ...) extend naturally to tree
automata [4].

3 Detecting SPL functions

In this section, we present our method to detect SPL functions in a given C or
Fortran program. We also present our preliminary approach to build an SPL pro-
gram from relevant program slices. Finally, we evaluate the detection capabilities
of our method in terms of program variations handled.

3.1 Overview of the method

Figure 2 gives the main steps of our method. The slicing method search through
the program the slices which potentially implement an SPL function. Then we
check whether the slices are equivalent to a given SPL function by applying our
exact instantiation test, already described in [1].

Candidate slices

Naive implementations
Exact Instantiation Test ‘ P

of SPL functions

Equivalent slices

Equivalent slices

Substitution

[Program with high-level functions]

Fig. 2. Overview of the method

The aggregation allows to detect slices with multiple output statements,
which is not allowed by previous steps. This is typically the case of matrix
operations. Once implementations of SPL functions are found in program, it re-
mains to substitute them by the relevant call to the SPL function (substitution).
The program is then ready to be translated into an SPL program.

The contributions of this paper are the slicing method and the aggregation.
We also propose a preliminary approach to recover SPL programs from relevant
program slices. These important steps are described thereafter.

3.2 Slicing method

The aim of our detection algorithm is to provide the parts of the program which
potentially compute the same arithmetic expression than an instance of the
pattern. The main idea is to walk through the pattern and the program def-use
chains as long as pattern and program operators are equal. If the method reaches
the last statement of the pattern, all reached program statements will be yield
as a candidate slice, meaning that they may be Herbrand-equivalent since the
expressions computed may have the same sequence of operators.

Algorithm Build Automaton

Input: The pattern or the program.
Output: The corresponding tree automaton.

1. Associate a new state to each assignment statement.
2. For each state:

g=|r = f($(Q1) - $(Qn))]

Add the transitions: f(qi...gn) — g, for each ¢; € Q;.
3. For each state:

=1 = D(¢(Q1) - 4(Qn))]

Add the transitions: ¢; — g, for each ¢; € Q; (input transitions).
And: f(q...q) — q, for each operator f used in the pattern and the program,
including constants (0-ary operators) (looping transitions).

Fig. 3. Build_ Automaton

The pattern and the program are assumed to be given in scalar SSA-form,
a classical form in compilation that provides def-use chains. We first associate
to the program and the pattern a tree automaton allowing to step them easily.
This is done by using the algorithm described in figure 3. Basically, each state
corresponds to a statement (step 1), and the transitions to a state are driven by
def-use chains, and labeled by the statement operator (step 2). Pattern wildcards

are handled as Kleene star in word automata. Note that the wildcard value is a
particular case of wildcard function O(...) with arity 0. Step 3 of the method
builds a loop for these states with any operator which appears in the program.

Consider the pattern and the program given in figure 4. For sake the of clarity,
we have chosen a pattern and a program with unary operators which will lead
to the word automata given in figure 5. But of course, our method can handle
operators with any arity. The ¢-functions can be seen as multiplexers selecting
the last definition for a given value.

rli =1 zli =1
doi=1,n t =0
r2 = O(¢(r1,r3)) a = tan(t)
r3 = 1+r2 do 7 = 1,10
enddo z2 = 1/(¢(z1,23))
rd = exp(r3) z3 = 1+z2
enddo
r = exp(z3)

Fig. 4. Pattern (left) and Program (right)

The idea is now to step simultaneously the two automata up to the pattern
final state while the operators are equal. The two automata have as many entry
points as constant leaves (1(), 2() here), and we have to start a comparison
from each couple of leaves. The operations corresponds to the definition of the
cartesian product of the pattern and program automata. The detected slices can
then be computed by collecting all program states along the paths from initial
states to each state with a final pattern state (ggp,1,.). The detection step is
summarized in the algorithm described in figure 6.

Let us summarize our algorithm. Given a pattern and a program we first com-
pute their tree-automata by applying Build Automaton. The slices of “good”
candidates are then obtained by stepping simultaneously A7 and Ap. This task
is achieved by Output_Slices. We finally apply the exact equivalence test de-
scribed in [1] to check whether the slices are instances of patterns or not.

3.3 Aggregation

Our method is able to detect template occurrences with only one output state-
ment. We present thereafter an extension to detect slices with several outputs
by using an aggregation hierarchy of domain-specific functions.

Motivating example The templates to match often use an array. Yet our
method is able to detect the occurrences with only one output statement. Figure
7 provides an example of matching, where the template is the daxpy function of
BLAS 1. Our slicing method yields the candidates slices S; and Sy, but the

1
oy
€
r2 = X (¢(r1,r3)) 1+ ., 1/., tan, exp

a= tan(t)‘ z2 = 1/(}5(21,23)‘
1+ €
1+. 1/
r3 =1+ 1r2
z3 =1 + 22
exp

exp
r4 = exp(¢p(rl,r3)
r = exp(4(z,z3))

Fig. 5. Pattern automaton (left), and Program automaton (right)

Algorithm Output_ Slices

Input: A7 and Ap, pattern and program automata.
Output: {s;...s,}, the last statements of each candidate slice.

1. Compute the Cartesian product A = Ar x Ap.
2. Mark the nodes with a final state of Az, and emit the Ap part of marked states.
3. For each marked node ¢:

Compute the set of previous states Slice(q) = {¢', ¢ —* q}.

Then return the Ap part of Slice(q).

Fig. 6. Output_ Slices

candidate Sy U Sz where a = 2, z = [s(1),5(2),5(3),u] and y = [1,1,1,v] is
missing since its outputs are shared by several statements.

Aggregation hierarchy One can remark that daxpy is constituted of 1-dimension
daxpy instances. Another solution would be to detect «atomicy daxpy using the
slicing method, then to aggregate them to make a larger daxpy.

In a more general manner, consider an algorithm A which produces an array,
and a family of algorithms (A;);, where A; outputs the i-th array cell of A for
each possible input:

Ai(I) = A(I)[4]

For each relevant input I and array index 2. Then A is said to be an aggregation
of the A.L

do i =1,n S1 doi=1,3

y(i) = a*x(i) + y(i) S1 s(i) = 2*s(i) + 1
enddo S1 enddo
return y So u=2%u+ v

Fig. 7. Two detections of daxpy

Aggregation induces a hierarchy between algorithms, and particularly be-
tween templates. Typically, a daxpy is an aggregation of several scalar daxpy ,
and a matrix-vector product is an aggregation of dot products. Figure 8 provides
an aggregation hierarchy between some BLAS 1 and 2 functions. A — B means
“B is an aggregation of A instances”.

dtrmv dgemv
BLAS 2 AZ o AZ + By
daxpy ddot dscal
BLAS 1 af + §f .y aF

@ @,

Fig. 8. Aggregation hierarchy of BLAS 1 and 2 functions

A solution is to detect the templates of the hierarchy by using the slicing
method. Then we aggregate them in a bottom-up manner, from the leaves func-
tions to the top functions. If A is an aggregation of (A;);, all combinations of
A; instances are aggregated, and yielded as A instances. The aggregation is just
a concatenation of slice outputs, as stated in the motivating example.

3.4 SPL code generation

Once the program is rewritten by using SPL functions, it remains to generate
the corresponding SPL program. The preliminary approach investigated in this
paper, but not yet implemented, is to select the program slices which can be
completely unrolled, then to use the data-flow dependences to build the corre-
sponding SPL program. The output of the SPL generation step is thus a set
of unrollable program slices, and their corresponding SPL program. Unrolling
is possible whenever the program slice uses for loops with bounds as expres-
sions with constants and surrounding loop counters. The reaching definitions can

be easily computed on the unrolled program slice by using usual methods [15].
These restrictive conditions lead to select the slices which can be unrolled, then
to translate them into an SPL program. We believe that this approach is able
to recover SPL programs corresponding to relevant program slices.

3.5 Program variations detected

The efficiency of our approach directly depends on its capacity to recognize SPL
functions in a source code. A common way to evaluate an algorithm recognition
system is to provide the different kinds of pattern variations it can handle [20,
9,13, 14]. We provide thereafter a detailed description of each variation. We also
state whether our algorithm is able to detect them.

Organization variations Any permutation of independent statements and in-
troduction of temporary variables. The following example provides an orga-
nization variation with legal permutations (LP), garbage code (GC) and
temporaries (T):

s = a(0) s = a(0)
c=0 c=0

GC garbage = 0
doi=1,n

LP c=c+1

doi=1,n
s = s + a(i)
c=c+1

enddo T temp = a(i)
return s + ¢ do j=1,p
GC garbage = garbage + 1
enddo

s = s + temp
GC garbage = garbage + a(i)
enddo
OUTPUT = s + ¢

Our algorithm works on a def-use graph, which avoids the artificial prece-
dence constraints due to the text representation of the program. This allows
our algorithm to handle legal permutations and garbage code. Our method
compares two by two the operators used in the template and the program
without handling variables, this allows to handle temporaries.

Data structure variations The same computation with a different data struc-
ture. The following example gives a data structure variation with arrays and
non-recursive structures:

s(0) = a(0) s.suml = a(0)
do i =1, 2*%n doi=1,n
s(i) = s(i-1) + a(di) s.suml = s.suml + a(i)
enddo enddo
OUTPUT = s(2*n) s.sum2 = a(n+1)

do i = n+2, 2#%n

s.sum?2 = s.sum2 + a(i)
enddo
OUTPUT = s.suml + s.sum2

10

One of the important add-on of the paper is the ability of the detection to
cope with different representation of arrays. Transformations such as scalar
promotion (transforming an array section into as many scalars) or array
expansion (the reverse) are handled thanks to the aggregation step.

Control variations Any control transformation as if-conversion, dead-code sup-
pression and loop transformations as peeling, splitting, skewing, etc. The
following example give a control variation with a simple peeling:

s = a(0) s = a(0)
s =s + a(1l)

do i =1,n

s=s+a(i) do i = 2,n—1.
enddo s =s +a(i)
QUTPUT = s enddo

s =s + a(n)
OUTPUT = s

In a general manner, we are abe to hande any variation which does not affect
the operators nest of the expression computed by the program.

Each of these variations provide an Herbrand-equivalent slice, which our al-
gorithm is able to detect in a general way. But we are not able to detect non-
Herbrand-equivalent variations, such as semantics variations, which uses seman-
tics properties of operators such as associativity or commutativity. Nevertheless,
experimental results given thereafter shows that our method finds a large amount
of correct candidates.

4 Experimental results

In this section, we present TeMa, the implementation of our algorithm recog-
nition system. We provide experimental results on SPEC benchmarking suite
demonstrating the power of our slicing method. In addition, we show how TeMa
can be used to recover an SPL program from a naive implementation of the
Walsh-Hadamard transformation.

TeMa (Template Matcher) is the implementation of our algorithm recognition
system, including the slicing method, the exact instantiation test, the aggrega-
tion method described in figure 2 and the substitution. For the moment, TeMa
does not implements the SPL code generation. TeMa has been implemented in
Objective Caml, and represents 10 kloc. TeMa is declined in two versions: a batch
version for automatic usage such as benchmarking, or systematic discovery of
patterns in a large application ; and an interactive version with a GUI which aims
to be used in re-engineering, program comprehension or software maintenance.
Our front-end is able to handle C and Fortran 90 programs. C front-end uses
the LLVM compiler infrastructure [11], which is based on gcc front-end. Thus
TeMa is able to handle any C real-life application. We have also implemented
our own Fortran 90 front-end. Most Fortran 90 programs are correctly handled,
but some syntactic constructions are not yet accepted, and need to be modified

11

by hand. Our front-end has handled with success all fortran programs of SPEC
benchmarking suite.

We have applied our slicing method to detect potential calls to the BLAS
library [12] in LINPACK [7] and four programs involved in the SPEC benchmark-
ing suite [8]. Our pattern base is constituted of direct implementations of BLAS
functions from the mathematical description. Figure 9 shows the results.

120

110 1

100

20

&0

70

= | [(I#Substituted
d [#Trivial

50 4 . i — 'r; 1 W+¥ong

COFGHL CPFH CDEFHL CDFH CDFHINKL

LINPACK 171.swim 172.mgrid 177.mesa 183.equake
43.85 s 11.99 s 20.12 s 1696 s 644 s

Alixamax||C|xaxpy||E[xnrm2||G|xxdot ||| |xger |[K|xsyr
B{xasum [|D{xdot |[F|xscal [|H|xgemv||J|xspr2| L [xtrmv

Fig. 9. For each SPEC program, we provide each BLAS function found, the number of
non-equivalent slices (# Wrong), the number of equivalent slices with one statement
(# Trivial), and the number of other equivalent slices (# Substituted). The execution
times are given for a Pentium 4 1,8 GHz with 256 Mo RAM.

It appears that 50% of candidates do not match, 25% are instances of pat-
terns with one-dimension vectors, and 25% of candidates are correct and can be
replaced by a call to BLAS. We present the different kind of candidates involved
in these categories. Most of the incorrect detections are due to the approxima-
tion of the dependences with ¢-functions. Neither loop iteration count, nor if
conditions, nor complex dependences due to array index functions are taken into
account.

25% of the slice is constituted of interesting candidates whose substitution
can potentially increase the program performance. Our algorithm seems to have
discovered all of them, and particularly hidden candidates. Indeed, most slices
found are interleaved with the source code, and deeply destructured. Our method

12

has been able to detect a dot product in presence of a splitting and a loop unroll,
which constitute important program variations that a grep method would not
catch. The same remark applies on equake program. Two versions of matrix-
vector product appear, one hand optimized and the other not. Both are detected
whereas a method based on regular expressions would detect only the second.

TeMa allows to recover SPL programs by recognizing and substituting SPL
functions including matrix composition, direct sum and tensor product. Consider
the following program, which is a naive implementation of the Walsh-Hadamard
Transform (WHT):

c(1) = 2
do iter = 2,5
rank = 2 *x (iter - 1)

® | doi=0,1
® do j = 0,1
® do k = 0,rank-1
® do 1 = 0,rank-1
Q | c(iter,i*rank+k,j*rank+l) = £2(i,j)*c(iter-1,k,1)
® enddo
® enddo
® enddo
® enddo

enddo

wht = c(5)

TeMa detects the slice marked by ® as a tensor product between £2 and
c(iter - 1), and substitutes it in the following manner:

c(1) = 2
do iter = 2,5
rank = 2 ** (iter - 1)
c(iter) = f2 ® c(iter-1)
enddo
wht = c(5)

Applying by hand our preliminary SPL code generation method, we finally
obtain the following SPL program:

(tensor (F 2) (temsor (F 2) (temsor (F 2) (temsor (F 2) (F 2)))))

Even if the SPL generation is not yet implemented, the rewriting of the pro-
gram with high-level functions increases readability, making TeMa a promising
tool to improve program comprehension and help programmers in the tedious
task of software maintenance.

13

5 Related work

We first present related work about program slicing as a tool to help software
maintenance, then we present some methods for pattern detection, and more
specifically algorithm recognition.

Program slicing was first introduced by Mark Weiser [19], to help program-
mers to debug their code. He defined a slicing criterion as a pair (p, V), where
p is a program point and V a subset of program variables. A program slice on
the slicing criterion (p, V) is a subset of program statements that preserves the
behavior of the original program at the program point p with respect to the
program variables in V. Weiser has shown that computing the minimal subset of
statements which satisfies this requirement is undecidable [19]. However an ap-
proximation can be found by computing consecutive sets of indirectly relevant
statements, according to data-flow and control-flow dependences.

Cimetile et al. [3] defined a method to identify slices verifying given pre-
conditions and post-conditions. They first compute a symbolic execution of the
program, which assign to each statement its pre-condition, then they use a the-
orem prover to extract the slices. They need user interaction to associate post-
condition variables to program variables. Moreover, as the problem of finding
invariant assertions is in general undecidable, symbolic execution can require
user interaction in order to prove some assertions and assert some invariants. No
practical evaluation of their method, or theoretic study of complexity is given,
but their method seems to be costly. Moreover, the need of user interaction
makes the method inappropriate in a fully automatic framework.

Several approaches encode the knowledge about the functions to be identi-
fied in the form of programming plans, and can be classified as either top-down
or bottom-up methods. Top-down methods [9, 10] use the knowledge about the
goals the program is assumed to achieve and some heuristics to locate both
the program slice and the plan from the library which can achieve these goals.
Bottom-up methods [13,20] start from the program statements and try to find
the corresponding plans. Wills [20] represents programs by a particular kind of
dependence graph called flow-graph, and patterns by flow-graph grammar rules.
The recognition is performed by parsing the program’s graph according to the
grammar rules. She finally obtain a parsing tree which represents a hierarchi-
cal description of a plausible project of the program. This approach is a pure
bottom-up code-driven analysis based on exact graph matching. Patterns are
represented by grammars rules, encoding a hierarchy among them, but making
the pattern base difficult to maintain. Organization variation is partially sup-
ported and temporary variables can be handled by adding specific rules. All
others algorithmic variations can be handled only if they are explicitly described
in the pattern base.

Metzger and Wen [14] have built a complete environment to recognize and
replace algorithms. They first normalize the program and pattern AST by ap-
plying classical program transformations (if-conversion, loop-splitting, scalar ex-
pansion...). Then they look for good candidate slices within the program. The
candidate slices are SCCs of the dependence graph, containing at least one for

14

statement. Their equivalence test is based on an isomorphism between the slice
and pattern AST. Obviously, this approach is low cost, and scalable. One may
point out the large amount of candidate slices given by their method, but it is
not a real problem due to the low complexity of their equivalence test. Orga-
nization variations, resulting from the permutation of independent statements
or the introduction of temporaries are not handled by the algorithm itself, but
by pre-treatments applied to the program. Reuse of temporaries accross loop
iterations for instance is not handled. In the same way, the control variations
supported are bounded to pre-treatments.

6 Conclusion

In this paper, we have presented an automatic method to find high-level func-
tions in a given program, and its implementation in the tool TeMa. We have also
proposed a preliminary approach to reformulate Fortran or C code into Signal
Processing Language (SPL). Our detection method has been validated by rec-
ognizing BLAS functions in different kernels of the SPEC benchmarking suite.
Our method is able to detect a large amount of program variations such as loop
transformations (unroll, splitting, tiling, etc...) and appears to be scalable, and
thus applicable to real-life applications. In addition, the rewriting of the program
with high-level functions increases readability, making TeMa a promising tool to
improve program comprehension and help programmers in the tedious task of
software maintenance.

In future works, we would like to automatize the generation of SPL code,
and validate it on benchmark applications. Additionnaly to portability and soft-
ware maintenance, it should also increase performance since SPL enable specific
algorithmic optimizations, which were not possible at a lower level of semantics.

References

1. C. Alias and D. Barthou. Algorithm recognition based on demand-driven data-
flow analysis. In 10th Working Conference on Reverse Engineering (WCRE). IEEE
Computer Society Press, November 2003.

2. D. Barthou, P. Feautrier, and X. Redon. On the equivalence of two systems of
affine recurrence equations. In 8th International Euro-Par Conference, page 309.
Springer, LNCS 2400, 2002.

3. A. Cimetile, A. De Lucia, and M. Munro. A specification driven slicing process
for identifying reusable functions. Journal of Software Maintenance: Research and
Practice, 8(3):145-178, 1996.

4. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and
M. Tommasi. Tree automata techniques and applications, 1997. release October,
1rst 2002.

5. J. E. Doner. Decidability of the weak second-order theory of two successors. Notices
Amer. Math. Soc., 12:365—-468, March 1965.

6. J. E. Doner. Tree acceptors and some of their applications. Journal of Comput.
and Syst. Sci., 4:406-451, 1970.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

15

. J. Dongarra. The linpack benchmark: An explanation. In Proceedings of the 1st In-
ternational Conference on Supercomputing, pages 456-474. Springer-Verlag, 1988.
J. Henning. Spec cpu2000: Measuring cpu performance in the new millennium.
Computer, 33(7):28-35, 2000.

S.-M. Kim and J. H. Kim. A hybrid approach for program understanding based on
graph-parsing and expectation-driven analysis. Journal of Applied A.I.,12(6):521—
546, September 1998.

W. Kozaczynsky, J. Ning, and A. Engberts. Program concept recognition and
transformation. IEEE Trans. on S.E., 18(12):1065-1075, December 1992.

C. Lattner and V. Adve. LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In Proceedings of CGO’2004, Palo Alto, California,
Mar 2004.

C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic Linear Algebra
Subprograms for Fortran usage. ACM Transactions on Mathematical Software,
5(3):308-323, September 1979.

B. Di Martino and G. Iannello. PAP recognizer: A tool for automatic recognition
of parallelizable patterns. In IWPC’04, pages 164-174. IEEE Computer Society
Press, 1996.

R. Metzger and Z. Wen. Automatic Algorithm Recognition: A New Approach to
Program Optimization. MIT Press, 2000.

S. S. Muchnick. Advanced compiler design and implementation. Morgan Kaufmann,
1997.

M. Piischel, B. Singer, J. Xiong, J. Moura, J. Johnson, D. Padua, M. Veloso, and
R. Johnson. Spiral: A generator for platform-adapted libraries of signal processing
algorithms. J. of High Perf. Computing and Applications, 1(18):21-45, 2004.
J.W. Thatcher and J.B. Wright. Generalized finite automata. Notices Amer. Math.
Soc., 1965.

J.W. Thatcher and J.B. Wright. Generalized finite automata with an application
to a decision problem. Mathematical System Theory, 2:57-82, 1968.

M. Weiser. Program slicing. IEEE Transactions on Software Engineering,
10(4):352-357, July 1984.

L. M. Wills. Automated Program Recognition by Graph Parsing. PhD thesis, MIT,
July 1992.

Jianxin Xiong, Jeremy Johnson, Robert Johnson, and David Padua. Spl: A lan-
guage and compiler for dsp algorithms. In Proceedings of the ACM SIGPLAN 2001
Conference on Programming Language Design and Implementation (PLDI), pages
298-308, 2001.

