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Exploring and Evaluating Array Layout
Restructuration for SIMDization

Christopher Haine, Olivier Aumage, Enguerrand Petit, and Denis Barthou

Univ. Bordeaux, LaBRI / INRIA, France
firsname.lastname@labri.fr

Abstract. SIMD processor units have become ubiquitous. Using SIMD
instructions is the key for performance for many applications. Mod-
ern compilers have made immense progress in generating efficient SIMD
code. However, they still may fail or SIMDize poorly, due to conserva-
tiveness, source complexity or missing capabilities. When SIMDization
fails, programmers are left with little clues about the root causes and
actions to be taken.
Our proposed guided SIMDization framework builds on the assembly-
code quality assessment toolkit MAQAO to analyzes binaries for pos-
sible SIMDization hindrances. It proposes improvement strategies and
readily quantifies their impact, using in vivo evaluations of suggested
transformation. Thanks to our framework, the programmer gets clear
directions and quantified expectations on how to improve his/her code
SIMDizability. We show results of our technique on TSVC benchmark.

Keywords: SIMDization, performance tuning, performance model

1 Introduction

Nowadays microprocessors feature SIMD vector units, potentially providing sub-
stantial performance improvement by concurrently applying the same instruction
to all the elements of a vector. A rich and complex API of SIMD instructions
has been developed on multiple architectures (such as AVX for Intel or NEON
for ARM). Thus, the performance of a code is highly dependent on the use of
the SIMD instructions, and compilers are virtually unavoidable for performing
SIMDization in an efficient and portable manner. However, the performance of
an SIMD code is itself highly dependent on data structure layouts. Unfortu-
nately, although commercial compilers (e.g. IBM xlc, Intel icc, PGI pgcc) have
made significant advances in auto-SIMDization, a lot of source codes remain too
complicated for a compiler to SIMDize, especially when complex data structures
or memory access patterns are involved.

Optimizing for SIMDization may require transformations on code and data
structure. A lot of research work has been devoted to improve the capability of
compilers to perform appropriate transformations on the code structure [1–5]. On
the data structure side instead, compilers usually do not override the data layout
chosen by the programmer. Several works have studied data layout restructuring
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for specific applications (e.g. stencils [6]). For general purpose compilers, the
impact of such transformations on the whole application is difficult to assess at
compile-time, even with inter-procedural optimization enabled. It is also difficult
for a compiler to determine whether the layout of a data structure should be
changed for the whole application or for a limited scope (inducing extra copies),
such as a performance critical kernel. The consequence is that the choice of
the right data structure still largely depends on the programmer. And, when
SIMDization fails due to sub-optimal data layouts, the compilers leave the user
with little clue about what may be the cause of performance inefficiency, let
alone about how the source code and data structures could be transformed in
order to improve SIMDization. This is unfortunate, as in certain cases only a
moderate amount of modifications would be required from the programmer to
enable SIMDization by the compiler.

Tools such as Intel VTune [7] may suggest that the user hand-SIMDizes his
code using intrinsics on the x86 architecture. However, resorting to intrinsics
may hinder the portability of the code. More elaborate works focus on specific
code optimization [8][9], other works [6] suggest data restructuring, but are lim-
ited to very specific cases such as stencils here. In a recent work [10] we proposed
a framework built on the MAQAO toolkit, to analyze binary codes and to for-
mulate user-targeted hints about SIMDization potentials and hindrances. These
hints provide the user with possible strategies to remove SIMDization hurdles,
such as code transformations or data restructuring. However, this preliminary
work conducted a qualitative analysis only, thus lacking worthiness quantifica-
tion in applying advised transformations.

We propose a new integrated qualitative and quantitative approach to guided
SIMDization. Our approach reports possible code improvement strategies involv-
ing data layout restructuring. Moreover, it offers a fast assessment of the per-
formance improvement (or lack thereof) to be expected from applying each such
strategy respectively using the concept of in vivo transformation evaluation.

This paper is organized as follows. Section 2 gives the context and motivat-
ing example for this work. Section 3 presents the big picture of our proposal.
Section 4 exposes the binary analysis stage of our proposal identifying SIMDiza-
tion issues related to data layout and memory access patterns. Section 5 exposes
the assessment stage of our proposal. Section 6 presents evaluation results on
kernels from the TSVC benchmark suite. Section 7 discusses positioning of our
contribution with respect to related works. Section 8 concludes this paper.

2 Motivating Example

The listing on Figure 1 shows a kernel extracted from the TSVC benchmark
suite [11, 12], a suite of codes for the evaluation of SIMDization capabilities of
compilers. This kernel is part of the function s1115.

Array c is stored row-major, but accessed column-major, which hinders
SIMDization. A possible strategy is to transpose the c array. Another classi-
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1 f o r ( i = 0 ; i < N; i++) {
2 f o r ( j = 0 ; j < N; j++) {
3 a [ i ] [ j ] = a [ i ] [ j ]∗ c [ j ] [ i ]
4 + b [ i ] [ j ] ;
5 }
6 }
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Fig. 1: Kernel "s1115" from TSVC suite, showing the need for quantified opti-
mization strategy assessment.

cal strategy is to perform partial loop unrolling. A third strategy is to combine
both data transpose and loop unrolling.

The barplot on Figure 1 shows the relative speed-ups of these strategies com-
pared to the original version. Comparisons are made both for an x86 architecture,
the Intel Sandy Bridge E5-2650 @2GHz using icc 13.0.1, and an ARM architec-
ture, the ST-Ericsson Snowball (ARMv7 Cortex-A9 @800MHz) using gcc 4.6.3.
Both architectures clearly show very dissimilar behaviors on this example, to
the point that the two strategies showing good results on x86 perform poorly
on the ARM architecture. To address such situations, we propose a framework
enabling the fast assessment of SIMDization strategies.

3 Principle of Fast Data Layout Exploration

Our framework reports possible code improvement strategies involving data lay-
out restructuring using a binary-level static and dynamic analysis. It then enables
the programmer to explore the value of these strategies before actually engag-
ing into expensive source code modifications. It offers a fast assessment of the
performance improvement (or lack thereof) to be expected from applying these
strategies. For that, it uses the concept of in vivo transformation evaluation.
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Fig. 2: Overview

The benefit of strategies is evaluated as shown on Picture 2 through the fol-
lowing steps: 1) The original application binary is instrumented with MAQAO [13]
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in order to trace the targeted hotspot region (a key application function for in-
stance). 2) The instrumented binary is then run to generate a trace of memory
references. This trace consists of the sequence of addresses accessed for each read-
/write operation and for each thread. 3) The application binary together with the
generated memory traces are analyzed in order to propose possible transforma-
tion strategies to improve SIMDizability. The analysis determines which arrays
are accessed and how they are accessed, then the transformation changes this
data layout in order to enhance spatial locality. Transformations are array con-
traction, transposition and transformation from Arrays of Structures (AoS) into
Structures of Arrays (SoA). A SIMDization step is performed if possible, trans-
lating instructions into their SIMD counterparts. Finally, a transformed code is
generated for each such strategy. Since these codes are generated with transfor-
mations relying on trace information, they may not be semantically equivalent
to the initial code. They are called mockups. 4) Each transformed mockup is
then run within the context of its host application. Its performance is measured
to assess the relevance of the corresponding strategy.

In order to speed-up the process, the application is checkpointed during step 2
just before executing the hotspot region. Then, each transformed kernel test at
step 4 restarts from the checkpointed state of the application.

4 Static/Dynamic Binary Code Analysis for SIMDization

A static and dynamic analysis of the binary code is performed. We assume a lim-
ited code fragment (a function for instance), identified with usual profiling tools,
is the target of this analysis. This analysis finds loops, blocks and functions in
the binary, instruments the code in order to produce traces of memory addresses
and computes the dependence graph, essential for vectorization. For the instru-
mentation and generation of the binary code we use the MAQAO framework.
We recall its main features thereafter. The following section explains how the
array structures accessed by the code are detected through trace analysis.

4.1 Framework for Static/Dynamic Analysis of Binary Code

We use the MAQAO framework for performing both the static and dynamic
analysis of binary code. MAQAO is a performance tuning tool [13] that ana-
lyzes the binary code of applications. It builds the control flow graph and the
call graph of the code, and detects loop nests. It also proposes an API and a
domain-specific language called MIL to instrument a binary code [14]. This in-
strumentation is able to capture any value in the code, and in particular can
be used to trace memory accesses, count loop iterations, capture function pa-
rameters. Compared to PIN [15], a tool with similar functionalities, MAQAO
performs static rewriting-based instrumentation from binary to binary and fur-
ther analyzes the collected information in a post-mortem fashion. PIN, on the
contrary, dynamically rewrites binary codes while they execute, and performs
analysis on the fly. As most of MAQAO work is done offline, the overall cost for
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analyzing a binary with MAQAO is much smaller than with PIN. With MAQAO,
it is possible to captures memory streams by instrumenting all instructions that
access memory, on a specified code fragment (such as a function or loop). For
each instruction instrumented, the flow of addresses captured is compressed on-
the-fly using a lossless algorithm, NLR, designed by Ketterlin and Clauss [16].
This compressed trace represents the accessed regions with a union of polyhedra,
captures access strides and multidimensional array indexing (when possible).

Beyond instrumentation probes, the MIL language makes it possible to add
any kind of assembly instruction to the binary, thus to implement code trans-
formation. Our framework does not yet attempt to manage register allocation.
Consequently the code transformation must use identical registers, completely
unused registers, or spill/fill. However, this current limitation may be lifted in the
future. Moreover, MAQAO can perform an induction variable detection mecha-
nism removing the need for dynamic pointer dependence checking through trac-
ing, as part of the code transformation process.

4.2 Analysis of Data Structure Accesses

This analysis consists in determining the layout of data accessed by each assem-
bly instruction. The data layout detection focuses on finding out: How many
arrays are accessed, with how many dimensions, with which element structure
(that is, how many fields per array element). This assumes that each load/store
assembly instruction of the studied function accesses exactly one single array
(no indirection, no pointer aliasing in particular).

Memory addresses accessed for each load/store of the code fragment are
compacted as shown in Figure 3. Traces are here represented by loops iterating
over the successive address values taken during the execution. The first step of
the analysis consists in identifying the load/store that access the same array.
To this end, each region accessed by a load/store is converted to a simpler
representation, using a strided interval (lower address, upper address, access
stride). Out of clarity, in the trace the name of the array in Figure 3 is shown in
comments. Actually, the analyzer only knows the assembly instruction accessing
this memory region. The goal is to find which traces share the same arrays.

Formally, let I denote the set of assembly instructions accessing memory. We
define a relation ≡array between instructions i1, i2 ∈ I as: i1 ≡array i2 iff i1 and
i2 access to the same array. ≡array is an equivalence relation, the classes repre-
senting the different arrays. The idea is that two instructions with overlapping
accessed memory region are equivalent. Algorithm 1 finds the different arrays by
merging overlapping regions. Its complexity of is O(N logN), due to the sorts.

Lemma 1. Algorithm 1 finds the sets of instructions that access to the same

arrays. More formally, it computes I/ ≡array.

Proof. All instructions within a set CLASS are equivalent according to ≡array.
This boils down to merging overlapping intervals. Consider an instruction added
to CLASS, with index k in L. According to the algorithm, the lower address



6 C. Haine et al.

1 f o r ( n l = 0 ; n l < nt imes ; n l++) {
2 f o r ( i = 0 ; i < N; i+=2) {
3 a [ i ] = a [ i −1] + b [ i ] ;
4 }
5 }

1 # Trace f o r a c c e s s a [ i −1] S t r i d e d i n t e r v a l f o r a [ i −1]
2 f o r i 0 = 0 to 999
3 f o r i 1 = 0 to 1535
4 v a l 0x1525d40 + 8∗ i 1 => [ 0 x1525d40 ; 0 x1525d40 + 8∗999; 8 ]
5 end fo r
6 end fo r
7 # Trace f o r a c c e s s b [ i ] S t r i d e d i n t e r v a l f o r b [ i ]
8 f o r i 0 = 0 to 999
9 f o r i 1 = 0 to 1535

10 v a l 0x1528d84 + 8∗ i 1 => [ 0 x1528d84 ; 0 x1528d84 + 8∗999; 8 ]
11 end fo r
12 end fo r
13 # Trace f o r a c c e s s a [ i ] S t r i d e d i n t e r v a l f o r a [ i ]
14 f o r i 0 = 0 to 999
15 f o r i 1 = 0 to 1535
16 v a l 0x1525d44 + 8∗ i 1 => [ 0 x1525d44 ; 0 x1525d44 + 8∗999; 8 ]
17 end fo r
18 end fo r

Fig. 3: Trace example on function s111 from TSVC. Each trace is compacted
with NLR algorithm into loops in this simple example, iterating over successive
addresses. A simplified representation with strided intervals is used.

Algorithm 1: Identifying distinct arrays from access traces.

Data: I = list of load/store triplets [loweri, upperi, stridei], i = 1..N
Result: OUT = I/Rarray, the set of instructions grouped by array they access.

1 L = {loweri, i = 1..N} ;
2 U = {upperi, i = 1..N} ;
3 sort L by increasing address;
4 sort U by increasing address;
5 CLASS = {I1} ;
6 for k = 2..N do

7 if Lk > Uk−1 then

8 OUT = OUT ∪ {CLASS};
9 CLASS = ∅ ;

10 CLASS = CLASS ∪ {Ik} ;

11 OUT = OUT ∪ {CLASS};

bound Lk of the region accessed by this instruction is such that Lk ≤ Uk−1, with
Uk−1 the upper bound of an other instruction in CLASS. There are k regions
starting before Lk and only k − 1 closed at Uk−1. Hence at least one region
starting before Lk is ending after Uk−1, this shows that instruction k accesses
the same interval as another instruction of the set CLASS. Reciprocally, we can
show that if two instructions are not in the same set CLASS, they do not access
the same array. Let p and q be their index in L, assuming p < q. Since they do
not belong to the same set ARRAY, there exists k such that Lk > Uk−1 and
p < k ≤ q. It implies that there are k − 1 regions that are ending before Lk,
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that is, all k−1 regions starting before Lk are also ending before Lk. The arrays
of these regions are different from the array accessed by Lk. In particular, since
p < k, the array accessed by instruction p is different from the array accessed
by instruction q.

For example, the analysis of the three regions from Figure 3 builds the sets
L = {0x1525d40, 0x1525d44, 0x1528d84} and U = {0x1525d40+8∗999, 0x1525d44+
8∗999, 0x1528d84+8∗999}. The two first regions are found as being accesses to
the same array, while the third one is not since 0x1526d84 > 0x1525d44+8∗999.

Now, the second step of the analysis consists in finding load/store instructions
accessing the same element field within an array of structures (e.g. t[0].x,
t[1].x, .., t[n].x). Among the instructions accessing to the same array of
structures, we define a relation ≡field between each pair of instructions accessing
the same field in the same array. Thus formally, for each two instructions i1, i2
accessing the same array (i1 ≡array i2), the relation i1 ≡field i2 is verified iff
i1 ≡array i2 and:

lower1 ≡ lower2 (mod gcd
i∈[i1]≡array

(stridei)).

The gcd of the strides of all accesses on the array corresponds to the size in
bytes of the structure. The values of lower1 and lower2 modulo this size corre-
spond to the offset of the field within a structure. Then, fields for each partition
I/Rarray can be sorted according to their lower value modulo the gcd of the
strides. Determining the field layout of an array of structures can be done with
a O(N logN) complexity.

In the previous example, the two strided intervals [0x1525d40; 0x1525d40 +
8∗999; 8] and [0x1525d44; 0x1525d44+8∗999; 8] are not found equivalent, since
0x1525d40 6≡ 0x1525d44 (mod 8). Therefore the two instructions access differ-
ent fields in an array of structures. Note that in the initial C code, there is no
structure. However, the stride 2 on the loop counter entails that all loads on a

are on even indices while the stores are on odd indices, a behavior similar to an
access to a 2 field structure. The following section explains how these structures
are transformed.

Last, for all instructions accessing the same fields of the same array, strides
of the NLR trace are considered in order to determine whether a transposition is
required or not. In the NLR trace with its for loops, this boils down to determine
whether the stride of the innermost loop is the smallest one. If a transposition
is required for all instructions accessing the same field, then it is performed by
the proposed transformation described in the following.

5 Fast Exploration and Assessment of Data
Restructuration for SIMDization

Data layout together with access pattern knowledge provides precious clues
about SIMDization issues and ways to address them. However the corrective
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steps to enable or improve SIMDization may have other, unwanted side-effects
leading to an overall performance degradation instead of the expected gain.
Therefore the second part of the transformation process we propose is to di-
rectly and quickly assess the potential of such a transformation on the binary
code. For that, we adopt an in vivo approach, by running a “mock-up” of a
transformed kernel within its host application. Thanks to the use of a check-
point/restart mechanism, only the relevant part of the application is tested with
the kernel mock-up. In this section we discuss technical aspects of our in vivo

approach.

5.1 Checkpointing for Fast Exploration

One solution for assessing the potential of code transformations is to run the
different versions generated and measure their execution times. This auto-tuning
technique has proved its efficiency in particular for tuning performance of library
functions. For application codes, this would mean to run the whole application
multiple times, only for assessing an optimization on a limited code fragment,
entailing large execution times.

We propose to resort instead to checkpoint/restart technique in order to be
able to execute multiple versions of the same code, within the same context.
The principle of this technique was first described by Lee and Hall [17]. The
idea is to first run the application, instrumented so that there is a checkpoint at
the entry of the function to optimize. The binary code of the function is then
modified in order to change data structures and/or SIMDize one of its loops.
This modified code is then restarted using the previous checkpoint. Note that
the binary codes used for the checkpoint and for the restart are not the same.
This technique works if binaries have the same size and if the only modified
function is the function where the restart occurs. Binary sizes are kept the same
by using code padding, and the instrumentation with MAQAO allows pinpointed
code transformation (to functions or loops).

The advantages of this technique are numerous:

– By restarting different versions of the code, these codes can be evaluated
within the same applicative context, at no cost.

– The method works with parallel, multithreaded codes.
– Array addresses, pointers keep the same value after a restart as at the time of

checkpoint. It implies that the optimization can be dependent on the values
collected by traces, in particular address traces. We use this approach to
restructure data layouts. A first run after restart collects all memory accesses,
and the analysis technique proposed in the previous section is applied. Then
a new version of the code is generated (see next section) with restructured
data layout and it is restarted in order to measure its performance.

The following section presents how the code is modified once the trace has been
collected and arrays and structures are discovered. In our implementation, we
use the Berkeley lab checkpoint/restart (BLCR) tool [18].
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5.2 Array Contraction and AoS to SoA Transformation

From the addresses collected by the trace, the different arrays and structures
are identified by the algorithm presented in Section 4.2. To transform Arrays of
Structures into Structures of Arrays, new arrays are allocated. The restructuring
corresponds to a mapping function, mapping indices of the initial array to indices
in the new array. The mapping we propose has two objectives:

– Reduce the stride between elements accessed successively whenever possible

– Transform AoS into SoA. For this transformation, the size of the array is
deduced from the trace.

– Transpose arrays if successive accesses are not performed along successive
addresses, for multi-dimensional accesses detected through the NLR traces.

When the first instruction to access these data is a read, a copy performing this
mapping is required. When the first instruction is a write, no copy is needed.

New arrays are allocated inside the function analyzed, before the loop to
vectorize. Besides, if a copy from the initial array to the new array is required, it
is also inserted right after the allocation of the new array. Allocation and copy
are then placed after the last write to the initial array (if any). Several locations
may be possible. We choose to place the copy at the earliest possible location in
the code, so that the impact of the copy on performance may be reduced. The
sizes of the new arrays allocated on the heap are determined by the trace and
the type of transformation involved (whether applying contraction or not).

The array contraction consists in removing unnecessary strides separating
elements of an array. Consider an array [a; b; s], assuming each data is 4 bytes
long, it is contracted into a new array [a′; a′+(b−a)∗4/s; 4] with starting address
a′. When multiple regions access the same array, as analyzed by the previous
algorithm, the gcd of the strides for all regions is considered and the extreme
addresses accessed define the boundaries of the initial array. The code allocating
the contracted array is inserted for the mockup code.

Now consider an array of structures [a; b; 4]. The size of the structure, n, and
the number of elements in the array, N are deduced from the trace analysis (see
Section 4.2). A field of this structure is characterized by an offset k corresponding
to the displacement in bytes from the beginning of a structure element. The
ith element of field k in the array is positioned at k + n ∗ i bytes from the
beginning of the array, for 0 ≤ i < N . To transform this AoS into SoA, the
ith element of field k is mapped to the ith element of subarray k, at offset
k ∗ N + 4 ∗ i. Therefore if the AoS [a; b; 4] is remapped into the SoA [a′′; b′′; 4]
with b′′ − a′′ = b − a (same size), each access region [ak; bk; sk] of the field k is
remapped into [a′′+k∗N+4∗(ak−k−a)/n; a′′+k∗N+4∗(bk−k−a)/n; 4∗sk/n].

For the example of Figure 3, considering the two regions accessing the same
array but different fields, the size of the structure found is 8 byte long. The size
of the new structure of arrays replacing the array of structure is 1000 ∗ 8 bytes.
The two regions are mapped to a new array starting at index 0 for the first one
and 1000 ∗ 4 for the second one. Their stride is now 4 instead of 8. The creation
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of this array and copy of the elements (only those that are read) is inserted in
this case right before the loop.

In terms of code transformation, this implies that for any load and store
instruction, its address is changed into addresses inside the new array. For a
transformation of AoS into SoA, using the previous notation, an address addr
is changed into a′′ + k ∗ N + 4 ∗ (addr − k − a)/n with a′′ + k ∗ N a constant
corresponding to the address within the new array where the array for fields
k starts. The assembly code for a load instruction load .., [address] for
instance is changed into the following code (all constants are prefixed by #):

XOR RDX, RDX

LEA RAX, address

SUBQ RAX, #a+k

MULQ RAX, #4

DIVQ #n

MOVQ RAX, a’’ // newly allocated array

ADDQ RAX, #k*N

load .. , [RAX]

This code requires that registers %RDX and %RAX are available since the integer
division makes an implicit use of them. This may requires to perform register
reallocation on the modified code, or a spill/fill for these two registers. While
this transformation is correct for any access, its impact on performance can be
important due to the memory access of the spill/fill and the integer division.
The later is replaced by a shift whenever n is a power of 2 (removing also the
constraint on the use of RDX : RAX). A simpler transformation is possible
whenever an induction variable detection computation on the initial code finds
that the address accessed is of the form a + n ∗ i with i an induction variable
(a register here). The transformation then consists in adding a new induction
variable with stride 4 and modify the base register of the load. There is no
integer division involved then. We use in our implementation this transformation
whenever possible. The code modification is similar for the array contraction
transformation. The code modification in case of a transposition is similar to
the previous case.

5.3 SIMDization

Once the data layout has been transformed, the code is SIMDized. The transfor-
mation we propose here is simple and only vectorizes arrays of floats or doubles.

In order to trigger SIMDization, all arrays accessed have to fulfill two condi-
tions: (i) Elements are either 4 or 8 byte long, and instructions are floating point
operations; (ii) The strides used by all modified arrays is either 4 or 8 (depend-
ing on the data type). If one of the condition is not fulfilled, SIMDization is not
performed and a warning is emitted.

Besides, the memory traces are used to compute a dependence graph, taking
into account register and memory dependences, as presented in [19]. The condi-
tions for a possible vectorization are deduced from such dependence graph and
instruction schedule compatible with dependences is generated.
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Arithmetic operations are vectorized using a simple correspondence between
scalar/SIMD instructions. Load/store instructions are rewritten as aligned or
unaligned accesses, depending on the address alignments. SSE registers are al-
located. Finally, the iteration count is changed by adding a new loop counter.
These transformations are eased by the fact that the trace provides the iteration
count and array alignment information.

6 Experimental Results

We assess the accuracy of our mockup-driven predictions on a suite of bench-
marks, TSVC. TSVC consists of 151 functions intended to explore the typical
difficulties a compiler can meet in the context of vectorization. Out of these
151 benchmarks, 31 matches data layout access issues, our primary focus in this
study. The others correspond to control issues, mostly already well handled by
compilers. In Figure 4, we report speedups obtained by mockup kernels and by
manually restructured (correct) kernels over compiled basis kernel compiled with
icc 13.0.1, on Intel Sandy Bridge E5-2650 @2GHz. These kernels are a subset
of the data layout issue category. More complex kernels of this category will be
studied using future evolutions of our prototype infrastructure.

Non-contiguous stride accesses are an obstacle to vectorization, compilers
may see the opportunity of vectorization but consider it not efficient enough to
vectorize. This is the case for benchmarks s111 and s128, performing accesses
with strides 2. Their respective mockups show significant gain to expect from
data restructuring.

When 2-dimensional arrays are accessed column-wise (in C) or row-wise (in
Fortran), accesses with large strides are performed, and one may resort to data
transposition prior to massive computations, in order to allow vectorization.
Code mockup here predicts significant gains to expect from restructured kernel,
which is effectively perfectly reached.

One big challenge for compiler autovectorization is brought by rescheduling
issues, that is, codes where compilers see vector dependences it can not resolve,
although such dependences could be fixed by permuting instructions or loop
peeling. All s241, s243, s211, s212, s1213, s244 and s1244 benchmarks have
rescheduling issues and are not vectorized by the compiler. Here, the dynamic
dependence graph enables to find a correct schedule for SIMD code.

In some cases, a non-contiguous data pattern may not cause performance
issues, as they are already well handled by the compiler and/or the architecture.
Here, benchmarks showing no speedup over the basis kernel (s1111, s131, s121,
s151 ) correspond to alignment issues, which can be solved by unaligned accesses
or vector permutations. On this very architecture, unaligned accesses do not
produce a significant performance overhead, therefore data restructuring will
not bring better performance.

For all these measures, the time to restructure data (using a copy) is not
included. Indeed, the benchmarks are small functions and a copy is, with a few
exception, not amortized. Performance of the mockup is in most cases close to the
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Fig. 4: TSVC Mockup Prediction on x86

real transformed code. When there are differences, this is explained by the fact
that the mockup results from a binary transformation, while the correct hand-
tuned code results from a source-to-source transformation. Hence, the binary
code resulting from hand-tuning the source code may not be exactly the same
as the mockup code due to compiler optimizations.

7 Vectorization Issues and Related Works

A lot of work has already been devoted to help programmers harness the power
of SIMD instruction sets, once called “multimedia” extensions. Multiple ap-
proaches have been followed in this attempt to group isomorphic elementary
computations together. Loop-level approaches have been explored for several
decades. Back in 1992, Hanxleden and Kennedy [1] made proposals for balanc-
ing loop nest iterations over multiple lanes of a SIMD machine. MMX instruction
sets and alike started to gather interest with works such as Krall’s [2] proposing
to apply vectorization techniques to generate code for SIMD extensions. Larsen
introduced the concept of Superword-Level Parallelism (SLP) [3] which groups
isomorphic statements together, when potentially packable and executable in
parallel. More recently Nuzman et al. [4] explored SIMDization at the outer-loop
level. Much work has also been devoted into employing polyhedral methods [5].
Several works have been conducted to allow compilers to accept more complex
code and data structures, such as alignment mismatch [20], flow-control [21],
non-contiguous data accesses [22] or minimizing in-register permutations [23],
for examples. SIMDizing in the context of irregular data structures is also being
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studied [24]. All these works have in common that they accept unmodified source
code as input and they attempt to generate the best SIMDized binary code for
the target hardware. They do not involve the programmer in their attempt to
produce good SIMD code and usually give little information back to the pro-
grammer when their attempt fails. Our proposal differs and complement these
works in that it offers to diagnose and alter produced binary codes in order to
help programmers improve they source code with respect to SIMDizability.

Some works have followed the path to act on the source code side. Frame-
works such as the Scout [25] source-to-source compiler enable the programmer
to annotate the source code with pragma directives that are subsequently trans-
lated to SIMDized code. A recent work of Evans et al. [26] presents a method
to analyze vector potential, based on source annotated code and an on-the-fly
dependence graph analysis using the PIN framework. Other works aim at spe-
cialized fields and will produce efficient code for a selected class of applications,
e.g. stencil computations [27, 6] for instance, or allow to auto-tune specific ker-
nels [8]. Our solution differs in that it aims at helping the programmer to improve
his/her original code in a generic manner instead of specializing it or augment-
ing it with annotations. It also again complements these works because it can
analyse their output for quality assessment as well as to devise and experiment
further optimizations.

Profiling tools such as Intel VTune or the suite Valgrind, for instance, can
diagnose code efficiency and pinpoint issues such as memory access patterns
with bad locality. Intel VTune may even suggest that the programmer resorts
to SIMD intrinsics. However, such an action is not always desirable for code
readability and maintainability.

Our approach is able to make higher-level transformation suggestions based
on instruction flow dependence analysis of the binary code, and to quantify their
expected performance gain over the code using in vivo code evaluation. Several
previous works have proposed techniques to extract pieces of code for evalua-
tion [17, 28], and shown that such an operating mode is viable for performance
measurements [29].

8 Conclusion

This paper presented a new technique for transforming and evaluating data
layout transformations for SIMDization, directly from the binary code. This
method changes Arrays of Structures for instance into Structures of Arrays,
performs SIMDization if possible on the code and provides a quick assessment
“in-vivo” of any performance gain/loss resulting from this transformation. Be-
ing trace-based, the transformation proposed is not to be integrated in a static
compiler but provides the user with a good estimation of the real source-code
transformation, before deciding to perform expensive source code modification.
The transformation is achieved at the binary level, ensuring no interference with
compiler optimizations. Moreover, we have proposed an original use of check-
point/restart techniques in order to reduce the cost of our method. The prelimi-
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nary results on TSVC benchmarks show that performance estimations are close
to those actually obtained after a source code transformation.

For future work, we plan to extend the use of our technique to larger ap-
plications and to a wider range of data layout transformations. We are also
working on addressing multithreaded applications. The trace collection stage al-
ready supports application with multiple threads, and most of the work will now
concentrate on the strategy building stage.
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