
Specific Read Only Data Management for Memory

Hierarchy Optimization

Gregory Vaumourin, Dombek Thomas, Guerre Alexandre, Denis Barthou

To cite this version:

Gregory Vaumourin, Dombek Thomas, Guerre Alexandre, Denis Barthou. Specific Read Only
Data Management for Memory Hierarchy Optimization. Jalil Boukhobza; Jean Philippe Diguet;
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ABSTRACT
The multiplication of the number of cores inside embedded
systems has raised the pressure on the memory hierarchy.
The cost of coherence protocol and the scalability problem
of the memory hierarchy is nowadays a major issue. In this
paper, a specific data management for read-only data is in-
vestigated because these data can be duplicated in several
memories without being tracked. Based on analysis of stan-
dard benchmarks for embedded systems, we show that read-
only data represent 62% of all the data used by applications
and 18% of all the memory accesses. A specific data path for
read-only data is then evaluated by using simulations. On
the first level of the memory hierarchy, removing read-only
data of the L1 cache and placing them in another read-only
cache improve the data locality of the read-write data by
30% and decrease the total energy consumption of the first
level memory by 5%.
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1. INTRODUCTION
As demands for higher performance keep growing, multi-
core systems have become popular in embedded systems.
Memory system design is a critical problem for multi-core
embedded systems. With the increasing number of cores,
the cost of adopting hardware-controlled caches and insur-
ing coherency in embedded systems becomes extremely high.
There are two reasons for this cost increase. Firstly, the
power overhead of automatic memory management in mem-
ory caches is growing prohibitively. It represents almost half
of the overall energy for a single-processor [1]. Secondly, the
coherence protocols lack scalability beyond a certain number
of cores.

Two basic memory models are used for the memory [11]:
hardware-managed caches and software-managed scratch-

pads (also called local stores or streaming memories). Unipro-
cessors have dominant and well-understood models for mem-
ory organizations. Whereas for multi-core designs, there is
no widespread agreement on the memory model.

Cache memories are composed of tag, data RAM and man-
agement logic that make them transparent to the user. They
exploit the spatial and temporal locality of data. Their ma-
jor drawbacks are their important power consumption and
the lack of scalability of current cache coherence systems.

One solution to these problems is to use scratchpad memo-
ries. They consume less energy for the same memory size [1]
and have a smaller latency because they are composed of
simple array of SRAM cells without tags or complex logic
comparators. Moreover, they do not generate traffic caused
by the coherence protocol but they introduce programma-
bility burdens because they need to be explicitly managed
by the user. In order to resolve this problem, users can
rely on compiler code generation for scratchpads manage-
ment. Methods for automatic data management for specific
data on scratchpads have been proposed in many related
works [12] [7] [14] [5]. These solutions are mostly specific to
the behavior of data in the application.

This paper is focused on a particular kind of data: read-
only data, that is data that are set only once for the whole
application execution. We will consider also some particu-
lar cases where data is read-only for a limited span of the
execution. They offers interesting optimization possibilities
thanks to the fact that they are easier to manage. Indeed,
they can be duplicated in the memory system without being
tracked. By handling differently the read-only data, the en-
ergy consumption of the memory hierarchy could be reduced
without adding complexity for developers.

Data are used in a read-only way either for the whole ap-
plication execution like input data, or for a limited scope
such as a function, or a kernel. In the latter case, read-
write data are in a read mode for a long time during the
application’s execution. The memory accesses of these data
may also benefit from this specific memory organization. A
data transferring cost between the two data paths must be
considered in this case.

The long term perspective is to propose an architecture
where read-only data are removed from the original memory
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Figure 1: Proportion of read-only data and memory accesses done on read-only data

hierarchy and are managed in a different memory organiza-
tion. This idea is similar to the one in Harvard architecture
where instruction and data are handled in different memo-
ries. This new memory subsystem would be added in paral-
lel to a classic memory system, and optimized for read-only
data. This solution aims to be transparent for the user and
generic to embedded systems. In order to use this system
transparently, some steps are to be considered during com-
pilation. Compiler has to detect read-only data, and may
use some user information, such as those provided in parallel
languages like OpenCL, or OpenACC.

This study considered several scenarios where read-only data
are removed from the original memory organization and han-
dled in a different one. The special management of read-only
data is not optimized yet and will be considered in future
work. Firstly, read-only data are detected and quantified
for a whole set of applications. Secondly, by using simula-
tion, different data management are tested and compared
in terms of energy consumption and data locality. The rest
of the paper is organized as follow: Section 2 describes a
quantification on read-only data. In Section 3, several sce-
narios of memory access separation are introduced. These
scenarios are compared in terms of data locality in Section
4 and in terms of energy consumption in Section 5. Finally,
related works are discussed in Section 6.

2. READ-ONLY DATA ANALYSIS
The first step of the evaluation is to show that read-only data
count for a significant part of the working set of applications
in embedded systems. This analysis is a trace-driven anal-
ysis on the standard Mibench benchmark [10]. Mibench is
studied because it is a representative set of applications used
in embedded systems. All the applications of the benchmark
are compiled on a x86 platform and are used with their de-
fault input data set given with the applications.

The memory access analysis is performed through traces. A
trace records the flow of memory access occurring during an
execution of the application (including those done in exter-
nal libraries and in the stack). the Study focuses only on
data, instruction fetches are not recorded. The trace allows
to launch several simulations on the same flow of memory

accesses to compare different memory hierarchies and data
management policy.

The generation of the trace file is achieved by Maqao [2], a
static instrumentation tool that operates directly on binary
code. It is used to record which address is read/written for
every instruction that access the memory and the size of the
acceded data. The memory trace is compressed on the fly
with the zlib library. Statistics about read-only data are
deducted from the trace.

The analysis results are shown in Fig.1. On average, 62% of
used data are in a read-only state but they represent only
18% of the accesses made by the application. The propor-
tions of read-only data and the number of accesses are very
asymmetrical. It could be partially explained by the fact
that the stack is not removed from the analysis. The data
in the stack represent few data, but the same stack addresses
are used many times. Intuitively, this asymmetry between
access proportion and data proportion suggests that read-
only data are not reused as much as other data and can
cause some pollution in the memory systems.

This simple analysis shows that read-only data count for a
significant proportion of data used by applications in embed-
ded systems. It is important enough to consider some spe-
cific memory hierarchy optimizations for these data. In the
following sections, the data path separation between read-
only and read-write data is studied.

3. SCENARIOS PROPOSITION
In order to explore the possibility of adding specific data
path in the memory hierarchy for read-only data, memory
accesses are divided in several categories. Two scenarios of
memory access separation are tested on simulation and ana-
lyzes are performed for comparison between those scenarios.

3.1 Classification of memory access
For this study, memory accesses are classified as follow : 1)
accesses to read-only data, 2) accesses to detected read areas
or 3) accesses that do not belong to one of the two previous
categories. Read areas are defined as a group of read accesses
which are not separated from each other by write accesses in
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Figure 2: Example of the memory access classifica-
tion

time and address directions. This corresponds for instance
to a read access to an array region. Read areas are detected
on read-write data and cannot include accesses to read-only
data so an access belongs to only one of three categories
defined previously. The concept of read areas is introduced
in order to place in the specific read-only memory, read-
write data that present read-only behavior during execution.
For example, read areas can be detected with intermediate
results of an algorithm that are generated (written) first and
then read for the rest of the algorithm.

For a better understanding, an example of this classification
is shown in Fig. 2. It represents the accesses made by an
application during the first time frames. The data set is
composed of 7 distinct data (A, B, C, D, E, F, G). All the
data are initialized (written) in the first time frame. Then,
A,B and C are only read (never written to) so they are con-
sidered as read-only data and all accesses to these A,B,C
belong to the first category. Then, the area detection al-
gorithm is launched on the remaining accesses and one read
area is detected, the accesses in the dark green area in Fig. 2
belongs to the second category. All other accesses belongs
to the third category.

A minimal size for the detected area is fixed for two main
reasons. First, if this limit is not set, every read memory ac-
cess can be considered as a read area on its own. Second, the
proposed detection focuses on big areas of read access with
data reuse, detecting data structures or data regions more
than individual data accesses. After experimentations, read
areas are kept for this study only if more than 128 memory
access are done on this area. According to the defined clas-
sification, on Mibench benchmarks, the repartition shows
that on average, 17.8% of all memory accesses are accesses
to read-only data and 6.9% are accesses to read areas. The
remainging 75.3% of the memory accesses are not concerned
by the solution.

3.2 Data Management Policy
As mentioned in the introduction, the possibility of adding
a new data path along the memory hierarchy specific for the
read-only data is studied. All the other data use a classic
cache hierarchy. The instructions are not considered in these
simulations and are supposed to be handled in a different
memory organization. The impact of adding this specific
memory is studied on the first level of memory hierarchy.
Fig. 4 shows three different scenarios studied in this anal-
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- Read-only access
- Read areas access

Scenario 1 
(Reference)

Scenario 2

Scenario 3

RW Cache:
- Read-write access
- Read areas access

RO Cache: 
- Read-only access

RW Cache:
- Read-write access
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- Read-only access
- Read areas access

CPU L2 Cache

Figure 4: Scenarios for the read-only data manage-
ment

ysis. Scenario n°1 is the reference scenario where there is
no specific management for the read-only data and all the
categories of access use the classic cache memory organiza-
tion. In scenario n°2, accesses to read-only data are removed
from the classic way and are handled in the specific memory.
Scenario n°3 is the same as scenario n°2, but the read areas
accesses are also placed in the specific memory. Since read
areas are detected on read-write data, the data in read areas
take both paths depending on the timing. During simula-
tions, the specific memory is modeled as a simple memory
cache. In order to simulate these scenarios, five memory
traces are generated, one for each memory of each scenario.
The original full trace of the application is used for the sce-
nario n°1 as a reference. For scenarios 2 and 3, partial mem-
ory traces are generated from the original trace, accesses are
removed according to the data management policy, in order
to form the memory access flow for each memory. If no read
area is detected, scenarios 2 and 3 are the same. This case
happens for 10 out of 26 benchmarks tested. The L2 cache
is unified for all the data. For the rest of the paper, the first
level cache for read-only data will be called the RO cache
and the first level cache for read-write data will be called
RW cache. In the following section, two analysis are pre-
sented, a data locality analysis and an energy consumption
analysis, to compare these scenarios.

4. DATA LOCALITY ANALYSIS
Data locality is important in order to take advantage of CPU
caching. The data locality can be evaluated by the stack dis-
tance which is computed for all scenarios on all benchmarks.

4.1 Definition
The stack distance [6] measures the distance in time between
the use and subsequent reuse of the same data location. It
is an indicator of the temporal locality of the data and de-
pends solely on the software. Bad temporal locality leads
to pollution in the memory hierarchy. The pollution hap-
pens when a data is loaded in the cache and is evicted from
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Figure 3: Stack Distance Variation between scenarios 1 and 2 for read-only data and read-write

the cache before being reused. In this situation, copying the
data in the cache is a waste. Moreover, it takes the place of
another potentially more interesting data in the cache. The
application should access the data directly through main
memory. For a LRU (least recently used) fully-associative
cache, cache misses can directly be deducted from the stack
distance computation. For more complex caches, the stack
distance remains still a good predictor [4]. Generally, the
higher the stack distance is, the higher is the probability
that this access provokes a cache miss. Lots of algorithms
are proposed in literature to compute the stack distance effi-
ciently. The algorithm implemented for the scenario is based
on the Bennet version [3].

4.2 Analysis
To allow a meaningful comparison of different scenarios, the
average stack distances are always compared separatly for
read-only and read-write data. Three steps are followed for
the analysis:

In a first step, for each application of Mibench, the stack
distances are computed on the full memory trace of the sce-
nario 1. Once the stack distances are computed for all ac-
cesses, the average stack distance is computed separately for
accesses to read-only data and accesses to read-write data
(read area accesses are included in the accesses to read-write
data). For all the applications, the average stack distance
of read-only data is 16 times higher than the average stack
distance of read-write data. So, the difference of locality
is very significant, and means that read-only data are less
reused and pollute the classic L1 cache.

In a second step, the values of the stack distances computed
previously, are compared to the stack distance of scenario
2. The variation of the stack distance for read-only data
and read-write data between the scenario 1 and 2 are shown
in Fig. 3. The decrease of the stack distance for scenario 2
is expected because separating data always leads to global
data locality improvement. The reason is that in each way
of the hierarchy, the number of accesses between two calls to
a same data is reduced. For the RW cache, only 18% of the
accesses are removed and the stack distance is reduced by
30% and for read-only data, 82% of the access are removed
and stack distance is reduced by 38%. This is asymmetric

between the number of removed accesses and the decrease
of the stack distance. Separating read-only and read-write
data improves vary significantly the read-write data locality.

In a third step, a metric is introduced in order to compare
the locality between all the scenarios. For the scenario 1, the
average stack distance of the full trace is computed without
data distinction. For scenario 2 and 3, a weighted sum is
computed by adding average stack distances for read-only
and read-write data in proportion of their respective number
of accesses. It gives a comparable global stack distance for
each scenario. The Fig. 5 shows the variation of the global
stack distance of scenario 2 and 3 compared to scenario 1.
On average, the global stack distance is improved by 19%
for the scenario 2 and 30% for the scenario 3. For almost
every application, the data separation improves the overall
locality.

These results suggest that it is profitable to separate the
read-only and read-write data in terms of data locality. The
following section studies the proposition with respect to of
energy consumption.

5. ENERGY CONSUMPTION ANALYSIS
The main motivation of this work is to reduce the energy
consumption of the memory hierarchy. An energy model is
introduced and the three scenarios are simulated to compute
energy consumption. On the contrary to the stack distance,
this analysis depends on the hardware.

5.1 Energy Consumption Model
The energy consumption of the cache is computed with a
simple energy model. The CPU is not modeled and the
study focuses only on the dynamic energy of the first level
memories of the memory hierarchy. For each cache, the dy-
namic energy consumption is determined as follow:

DynEnergyCache = energyPerAccessCache ∗ nbHitsCache
+energyMiss ∗ nbMissCache

energyMiss = energyPerAccessL2 + energyCPUStall
+energyCacheBlockFill

(1)
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Table 1: Memory hierarchy design for the simulation
Cache Design

Classic Cache 16KB, 2-way set associative, 64B per line
RO Cache 8KB, 2-way set associative, 64B per line
RW Cache 8KB, 2-way set associative, 64B per line
L2 Cache 4MB, 8-way set associative, 64B per line

The underlined terms are ignored for the moment. The
energyCPUStall is the energy consummed when the CPU
is stalled while waiting for the memory system to provide
data and the energyCacheBlockFill is the energy for writing
a block into the cache. The energyPerAccessL1 and ener-
gyPerAccessL2 are determined with Cacti v6.5 [13] and the
cacheHitsL1 and cacheMissL1 are determined by simula-
tions with the cache simulator dineroIV [8]. For the scenario
2 and 3, the energy consumption of the first level hierarchy
is the addition of the energy consumption of the RW cache
and the RO cache.

5.2 Analysis
The energy consumption of all the applications of the Mibench
benchmarks is studied. To simulate with dineroIV and Cacti
the described scenarios, cache designs have to be chosen.
First, the scenario 1 is explored extensively in order to de-
termine the most efficient design of the classic cache. The
cache’s design that minimizes the average energy consump-
tion on Mibench is a cache of 16KB with 2-way set asso-
ciativity. The energy consumption of the scenarios 2 and
3 is compared to this reference. To do a fair comparison
between scenarios, an equivalent storage at the first level of
the memory hierarchy for each scenario has to be used. In
Section 4, it has been pointed out that read-only data have
a weak locality, it suggests that the RO cache must have
an important size relatively to the number of memory ac-
cess it will handle. The choices for the design for the RW
cache and the RO cache are shown in Table 1. All the ap-
plications are simulated independently in the cache, and the
energy consumption model gives the total energy consumed
by each application for the first level memories. The energy
consumption of each application is then added to get the to-
tal energy consumption for each scenario of all the Mibench
applications.

Creating two caches system instead of one has two con-
sequences on the energy consumption. The resources are
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Figure 6: Energy Consumption of the scenario

not mutualized so some of them can be underutilized lead-
ing to energy consumption increase. In other hand, a good
data separation decreases the pollution in each cache which
reduces energy consumption. For each application of the
Mibench benchmark, the generated memory traces are simu-
lated through dineroIV and the energy consumption is com-
puted for each application. Then, the energy consumption
of each application is added for each scenario. As shown
in Fig. 6 energy consumptions in scenarios 2 and 3 are ap-
proximately the same. There is an improvement of 6.5% of
energy for scenario 2 and 5.0% for scenario 3 compared to
the scenario 1. It shows that read-only data can be han-
dled in a different memory without adding energy overhead.
Indeed, even with conventional caches for the specific read-
only memory, there is no overhead when dividing L1-cache.
For scenario 3, the cost of switching read accesses between
the RW and the RO cache has been ignored for the mo-
ment so the energy consumption for scenario 3 is probably
under-evaluated compared to a real situation.

6. RELATED WORK
Proposing special memories on the hierarchy to manage spe-
cific data is not new. A lot of solutions have been proposed
in literature to automatically use scratchpads memories for
specific data management. The rest of the data, are often
accessed directly through main memory or can go through
a cache parallel to the scratchpad. Some examples could be
found for the heap [7], the stack [14] or array tiles [12] [5].
These solutions targeted uni-core systems and also multi-
core systems. In [7], an algorithm for heap management in



scratchpad is proposed. Managing the heap is challenging
since the actual size of the data is known only at runtime.
This solution divides the application in region and a compile-
time analysis is performed on these regions to place the most
used heap variables in the scratchpad. Code is added auto-
matically to (des)allocate the scratchpad. In [12], an exten-
sion to the openMP compiler is proposed to place array tiles
on scratchpads. The compiler realizes pattern recognition.
It detects regular and irregular array access patterns and
automatically produces code to activate the DMA transfers
between scratchpads and the main memory in order to dis-
tribute the array tiles on the scratchpads.

Partitioning cache is another technique that allows specific
data management. The solution proposed in [15] separates
I/O data from CPU data by adding a specific cache for I/O
data. Even if the technique has different motivations, the
work makes an analysis similar to the one presented in this
paper.

The specific data management of read-only data is not widely
studied in literature. Some solutions have been proposed
like in the Fermi and Kepler architecture of the NVIDIA
GPU’s architectures. At the first level of the memory hi-
erarchy, a specific read-only cache is added in parallel to a
shared memory and a private L1 cache. The developer or
the compiler needs to indicate the data that will go through
the read-only cache. Another solution is proposed by Guo et
al [9], on a VS-SPM (virtually shared scratchpad memories)
architecture which proposes a solution of data management
for shared data is proposed. The proposed algorithm allows
the duplication of read-only data in several scratchpads if
the duplication comes with an energy reduction.

7. CONCLUSION
The paper has an analysis of the opportunity to handle
in different caches, data that is read-only, either for the
whole application or a limited amount of time. The results
show that there are some optimization potentials for spe-
cific data management for read-only data. Even if the mem-
ories where read-only data are placed do not yet exploit
the read-only property, simulations show that the division
between read-only and read-write data on the first level of
memory hierarchy improves the data locality (in average,
30% on Mibench benchmarks) and does not introduce en-
ergy consumption overhead. The main interest of exploiting
read-only data appears in a multi-core environment, since
they can be shared without being handled by a costly co-
herence protocol. The future work will focus on optimizing
the read-only sub-hierarchy in an actual multi-core environ-
ment. Furthermore, the impact of compiler on the detection
of read-only data and read areas need to be evaluated.
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