
Performance evaluation and analysis of thread pinning

strategies on multi-core platforms: Case study of SPEC

OMP applications on intel architectures

Abdelhafid Mazouz, Sid-Ahmed-Ali Touati, Denis Barthou

To cite this version:

Abdelhafid Mazouz, Sid-Ahmed-Ali Touati, Denis Barthou. Performance evaluation and analy-
sis of thread pinning strategies on multi-core platforms: Case study of SPEC OMP applications
on intel architectures. High Performance Computing and Simulation (HPCS), Jul 2011, Istan-
bul, Turkey. IEEE, pp.273 -279, 2011, <10.1109/HPCSim.2011.5999834>. <inria-00636845>

HAL Id: inria-00636845

https://hal.inria.fr/inria-00636845

Submitted on 9 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00636845

Performance Evaluation and Analysis of Thread Pinning Strategies on

Multi-Core Platforms: Case Study of SPEC OMP Applications on Intel

Architectures

Abdelhafid Mazouz

Univ. of Versailles St-Quentin

en Yvelines

Abdelhafid.Mazouz@prism.uvsq.fr

Sid-Ahmed-Ali Touati

Univ. of Versailles St-Quentin

en Yvelines

Sid.Touati@uvsq.fr

Denis Barthou

Univ. of Bordeaux

Denis.Barthou@labri.fr

ABSTRACT

With the introduction of multi-core processors, thread affin-

ity has quickly appeared to be one of the most important

factors to accelerate program execution times. The current

article presents a complete experimental study on the per-

formance of various thread pinning strategies. We investi-

gate four application independent thread pinning strategies

and five application sensitive ones based on cache shar-

ing. We made extensive performance evaluation on three

different multi-core machines reflecting three usual utilisa-

tion: workstation machine, server machine and high per-

formance machine. In overall, we show that fixing thread

affinities (whatever the tested strategy) is a better choice

for improving program performance on HPC ccNUMA ma-

chines compared to OS-based thread placement. This

means that the current Linux OS scheduling strategy is

not necessarily the best choice in terms of performance on

ccNUMA machines, even if it is a good choice in terms of

cores usage ratio and work balancing. On smaller Core2

and Nehalem machines, we show that the benefit of thread

pinning is not satisfactory in terms of speedups versus OS-

based scheduling, but the performance stability is much bet-

ter.

KEYWORDS: OpenMP, Thread Level Parallelism,

Thread Affinity, Operating Systems, Multi-Cores.

1. INTRODUCTION

Parallel programming is an old and still active research

topic for high performance computing. Multiple parallel

programming paradigms exist: dataflow, synchronous

programming, shared memory model (pthread, OpenMP),

distributed memory model (MPI, PVM), etc. In this article,

we focus on OpenMP applications running on a shared

memory machine.

The introduction of multi-core processors did not fun-

damentally change parallel computing paradigms. Any

parallel application can be run safely on multi-core

processor as if it is run on a classical multi-processor

machine. The operating system (OS) considers every

core as a distinct processor. If we have a processor with,

say 8 cores, the OS sees 8 homogeneous processors that

are capable of executing concurrent threads, processes or

jobs. However, in terms of performance tuning, we cannot

consider the cores as homogeneous because they share

common micro-architectural resources: L2 or L3 shared

caches, shared memory buses, etc. Consequently, the

placement of threads on the cores, called thread pinning,

is of high importance. For instance, if two threads make

extensive accesses to common data in memory, it is better

to place them on adjacent cores sharing the same L2 or L3

cache, or the same NUMA node. Data locality and reuse

are not the unique performance factors that influence the

program execution times in case of concurrent applications.

Other factors may play influence: memory bus bandwidth,

non uniform memory access (NUMA) effects, OS (syn-

chronisation costs, Input/Output, thread scheduling), etc.

Our article focuses the study on cache sharing only.

In [1] we did multiple runs of various parallel applications.

We studied performance variations when we execute an

OpenMP application multiple times (with the same data in-

put) in a batch mode. We demonstrated the following con-

clusions:

• Work balancing is satisfactory because threads are

scheduled and placed to optimise the usage of all cores.

• However, in terms of performance, the execution times

exhibit high variations. For every new run of the paral-

lel application (with the same data input), the OS may

decide for a different thread placement that has an im-

portant impact on performance. In addition, threads

may be migrated from one core to another to improve

work balancing and core utilisation ratio.

• When thread affinity is fixed, performance variations

are greatly reduced, but are still present in few cases.

Work balancing is a classical performance criteria in

parallelism and task scheduling, targeted by OS, distributed

systems, grid computing, etc. However, its direct impact

on code performance is not guaranteed. The reason is

that work balancing aims to keep all cores busy. While

all cores are busy (executing threads), the performance

may still be poor because of bad harmony between the

code and the micro-architecture: the OS may see that all

cores are busy while threads are spending most of their

times servicing cache misses, doing pipeline stalls and

branch mispredictions. Consequently, work balancing may

improve synchronisation costs by making all threads to

reach the synchronisation barrier conjointly, but with poor

performance.

Thread affinity has quickly appeared to be one of the most

important factors to accelerate program execution times

on multi-core processors. Still now, it is not clear how to

decide for the best thread placement that considers all the

possible performance factors (data locality, memory bus

bandwidth, OS synchronisation overhead, NUMA effects,

etc.). This article makes an exhaustive empirical study of

nine thread placement strategies on three distinct machines.

Among them, four strategies are application independent:

they apply the same thread placement decision whatever

the application. Five strategies are dependent on the

application: they fix the thread placement after a profile-

guided analysis. For popularity in the HPC community

and availability for our work, the three test machines are

based on Intel X86 (64 bits) with three distinct designs (to

be precised later). Other multi-core architectures may be

tested with exactly the same methodology.

This article is composed as follows. Sect. II describes

our experimental setup and methodology (test machines,

running methodology, statistical significance analysis).

Sect. III defines all the thread pinning strategies tested in

this study. Sect. IV shows a synthesis of the experimental

results and analysis. Related work and discussion are pre-

sented in Sect. V, then we conclude

2. EXPERIMENTAL SETUP AND

METHODOLOGY

Our experiments have been conducted using all the SPEC

OMP benchmarks, executed on three distinct machines, us-

ing both ref and train data inputs. We tested multiple

numbers of threads for every application according to the

available number of cores. We tested various thread place-

ment strategies for every application, thread number, input

data set. For statistical significance, each measure was re-

peated 35 times and special care has been taken to limit

any external interference on performance measures. Our

experiments lasted more than two full years to be prepared,

accomplished, collected and analysed carefully. Below we

describe the detailed experimental setup and methodology.

2.1. Test Machines Description

1. Desktop workstation (8 cores) that we name the

Core2 machine. It is a single SMP machine with

two Clovertown sockets (Intel Xeon E5345 with

the Core2 micro-architecture). Each processor has 4

cores, each pair of cores have a shared L2 cache. The

platform has two L2 4MB caches per socket, for both

instructions and data. The core frequency is 2.33 GHz.

Each core has a separate 32KB L1 data and instruction

caches. The main memory size is 4 GB RAM. The

front-side bus has a clock rate of 1.33 GHz.

2. Server (8 cores) that we name the Nehalem machine.

It is a single SMP machine with two Gainestown

sockets (Intel Xeon X5570 with the Nehalem micro-

architecture). Each processor has 4 cores with a shared

L3 cache. The platform has two L3 caches of 8 MB,

one on each chip, for both instructions and data. The

core frequency is 2.93 GHz. Each core has a private

256KB L2 cache unified for data and instructions. In

addition, each core has a separate L1 data and instruc-

tions caches with 32 KB each. The main memory size

is 24 GB. Each chip in the platform features an inte-

grated memory controller.

3. High performance computer (96 cores) that we

name the ccNUMA machine. It is an IBM System

X3950M2 ccNUMA shared memory machine with four

compute nodes. Each node has four Dunnington

sockets (Intel Xeon X7460 with the Core2 micro-

architecture). Each socket (chip) has 6 cores, where

each pair of cores have a shared 3MB L2 cache. The

6 cores of a chip have a shared 16MB L3 cache. The

L2 and L3 caches are unified for data and instructions.

Each core has a separate L1 data and instruction caches

of size 32 KB. The core frequency is 2.66 GHz. Each

node has a quad 1066 MHz FSBs (one per socket) and

a 47 GB RAM memory domain (188 GB in total). In

this platform, 256 MB of virtual cache per node is used

for interprocessor communications between nodes, to

keep data in synchronization (this amounts to as much

as 1 GB in total taken from main memory).

The benchmarks have been compiled using three different

compilers (gcc 4.1.3, gcc 4-3.2, icc 11.1) with flag -O3

-openmp. In this article, we report the performance num-

bers obtained using the vendor compiler icc 11.1 because it

provided the best performance in overall. The tested Linux

kernel is X86 64 2.6 patched with perfmon kernel 2.81.

2.2. Running and Performance Measurement
Methodology

The test machines were entirely dedicated during the exper-

iments to a single user. No more than one application was

executed at a time. The execution of each benchmark was

repeated 35 times for each software configuration and ma-

chine. This high number of runs allows us to report statistics

with a high confidence level [2, 3]. The successive execu-

tions are performed sequentially in a back-to-back way (the

termination of an execution launches the following repeti-

tive run). We unset all the shell environment variables that

were inessential, to avoid starting stack address bias [4]. We

also deactivated the randomisation of the starting address of

the stack (this is an option in the Linux kernel versions since

2.6.12). The dynamic voltage scaling was disabled to avoid

core frequency variation. We used the build system and

scripts of SPEC OMP2001 to compile and optimise the ap-

plications, launch them, measure the execution times, check

validity of the results and report the performance numbers.

Finally, the applications have been executed with various

numbers of threads (4, 6, 8 on Core2 and Nehalem ma-

chines, 16 and 96 on the ccNUMA). Because of performance

scalability reasons on OpenMP programs, we fixed an up-

per limit of the number of threads as the number of available

cores (8 or 96 depending on the test machine).

2.3. Statistical significance analysis

When faced to variations of observed execution times, we

must use rigorous statistics to study the validity of our em-

pirical conclusions. Empirical conclusions must not rely

on sample metrics such as sample means or averages [2],

we must rely on statistical tests. This is done thanks to the

Speedup-Test methodology described in [3]. Declaring a

statistical significance of a speedup (either mean or median

execution times) follows a formal protocol:

• Comparing between the average execution times of

two samples (two thread placement strategies) is done

thanks to the one-sided Student t-test.

• Comparing between the median execution times of

two samples (two thread placement strategies) is done

thanks to the one-sided Wilcoxon-Mann-Whitney test.

3. TESTED THREAD PINNING STRATE-

GIES

We classify the thread pinning strategies into two main fam-

ilies. 1) Application insensitive thread pinning strategies

place threads on cores independently of the characteristics

of the program: threads are placed exactly in the same way

for any application. 2) Application sensitive thread pinning

strategies place threads on cores according to the character-

istics of the program. In this article, we focus on data shar-

ing between threads to decide about the best thread place-

ment. Below, we detail the two main thread pinning fami-

lies.

3.1. Application Insensitive (Independent) Affinity

The application independent class consists of the following

thread affinity strategies:

1. Run the application without affinity (No

affinity), this means we let the OS to decide

about the thread placement on the cores. The OS

scheduler tries to improve work balancing between the

cores. This strategy allows thread migration between

cores during the execution of the application.

2. Random strategy. The application threads are placed

at launch time randomly through the cores of the ma-

chine. Every repeated run corresponds to a new ran-

dom affinity. Affinity between threads is fixed during

the whole run, there is no thread migration during a

single run.

3. Compact icc strategy. The icc compiler uses this

strategy to assign successive (in order of their creation)

OpenMP threads to cores as close as possible in the

topology map of the platform (filling all the cores of

a single socket before starting to fill the next socket).

This strategy is convenient for applications that have

a high data reuse between threads, so they can profit

from shared caches inside sockets.

4. Scatter icc strategy. The icc compiler uses this

strategy to distribute the OpenMP threads as evenly

as possible across the entire sockets (one thread per

socket if possible). This strategy is convenient for ap-

plications that have a high data locality inside each

thread, so they can profit from a large private cache

inside a socket without sharing it with other threads.

3.2. Application Sensitive (Dependent) Affinity

This family of thread pinning strategies rely on an affinity

graph for each application. It is a directed valued graph

G = (V, E , α). V is the set of application threads,

E = V × V and α : E 7→ N is a gain function applied

to every pair of threads. The gain function models the

attraction factor between two threads. For instance, since

we rely on data reuse between threads to compute an

affinity, the gain function α(Ti, Tj) represents the number

of common accesses to common memory caches lines,

accessed by both the threads Ti and Tj .

Now the question is how to compute α for an application.

Currently, since we are faced to complex SPEC OMP

application, we use a profile guided method instead of a

static code analysis. We first fix n a number of threads

per application (‖V‖ = n). Then we use the Pin tool to

achieve a memory tracing analysis of the applications. We

can collect for every thread all the accesses to all memory

addresses (which are transformed to accesses to memory

cache lines). Then, we aggregate this information among

all the threads in order to compute α(Ti, Tj) for every pair

of threads.

Once an affinity graph constructed for an application for

a given number of threads, we can use it to investigate

multiple thread pinning strategies. The idea is based on

graph partitioning methods [5]. The affinity graph must

be decomposed into disjoint subsets, named a partition.

A partition V = {V1, V2, · · · , Vk} has the property that⋃
1≤l≤k Vl = V and Vl ∩ Vm = ∅, where l 6= m and

l,m ∈ [1, k]. Every subset Vl ∈ V contains a set of nodes

reprsenting threads that have to be placed on adjacent cores

sharing the same cache level (L2 or L3, depending on the

target machine). If we have k shared caches on the system,

then we compute a partition with k subsets [5]. The global

objective function is to maximise
∑

(Ti,Tj)∈Vl×Vl
α(Ti, Tj)

the sum of the gains between threads belonging to the

same partition. This optimisation problem is a classical

NP-complete problem, so we have to use a heuristics such

as [5]. Fortunately, we have a special polynomial case.

Indeed, if we are faced to a machine architecture where a

cache level is shared between two adjacent cores (such as in

the Core2 machine), then the problem becomes to seek for

partitions with a size equal to 2 (‖V ‖ = 2). It is easy to see

that in the case of seeking partitions of size 2 the problem

is equivalent to computing a set of thread pairs sharing a

common cache while maximising a global gain. In this

special case, the optimisation problem can be solved with

a simpler maximum-weight matching in general graphs

[6]. Precisely, it can be polynomially and optimally solved

thanks to the algorithm of Edmonds in O(‖V‖2
.‖E‖) [6].

On a parallel machine with a complex memory hierarchy,

the graph partitioning problem can be applied to reflect data

reuse at each level of shared caches. We define multiple

thread pinning strategies, corresponding to the application

of heuristics for solving the graph k-partitioning problems:

1. GP strategy. Apply a graph k-partitioning only to place

threads on sockets. For instance, on the Nehalemma-

chine, we compute two partitions since we have two

shared L3 caches (one L3 per socket).

2. LP compact strategy. After using the polynomial

method to optimally compute a set of thread pairs (al-

gorithm of Edmonds), this strategy assigns successive

thread pairs to cores with shared caches as close as

possible.

3. LP scatter strategy. After using the polynomial

method to optimally compute a set of thread pairs, it

distributes the thread pairs as evenly as possible across

the entire set of sockets of the machines (one thread

pair per socket if possible).

4. LPGP strategy. After an initial step of optimal com-

putation of thread pairs (algorithm of Edmonds), we

proceed by a graph k-partitioning [5]. It is a hierarchi-

cal bottom-up strategy, where threads are first paired

and pinned on shared L2 or L3 cache then thread pairs

are partitioned and placed on the different sockets ac-

cording to their affinity.

5. GPLP strategy. It is a hierarchical top-down strategy.

It starts by an initial graph k-partitioning to fix threads

on sockets, then perform an optimal polynomial algo-

rithm to compute thread pairs sharing L2 or L3 cache

levels.

4. EXPERIMENTAL RESULTS AND ANAL-

YSIS

Every SPEC OMP application has been executed 35 times

on every machine, with different number of threads and on

two different data sets (train and ref), according to nine

thread pinning strategies. The amount of performance data

and figures to analyse is huge. Three synthetic tables reflect

the speedups obtained through the thread pinning strategies

with respect to the default “no affinity” strategy of the OS

scheduler. Tab. I shows the overall sample speedup of every

thread pinning strategy on the desktop machines (Core2

and Nehalem machines, having 8 cores each). We show

the speedups of the average and the median execution times

of all SPEC OMP applications executed with 4, 6 and 8

threads. Tab. II and Tab. III illustrate the same performance

metrics on the HPC ccNUMA machine where the bench-

marks have been executed with 16 and 96 threads. When

only 16 threads are used (Tab. II), the LPGP and GPLP

strategies may have some variants which are the number

of sockets used for executing 16 threads (described Tab. II).

In all the tables, we also report the minimal and maximal

observed variances of the program execution times in or-

der to study the performance stability. Below we give our

experimental conclusions and analyses:

1. On the Core2 and Nehalem machines (8 cores),

we can observe that fixing a thread affinity leads to

marginal speedups and slowdowns. This means that in

terms of average or median execution times, letting the

OS decide about thread placement is not a poor strat-

egy. However, the performance variation is high (up to

82.24 for the Core2 machine). Consequently, if per-

formance stability is an additional quality criteria, it is

better to fix a thread affinity (check the maximal ob-

served variances in Tab. I except for the random affin-

ity strategy).

2. On the ccNUMA machine (Tab.. II and Tab. III), we

observe speedups for all thread affinity strategies (no

slowdown). This means that using Linux thread sched-

uler is not a good choice in terms of performance.

3. When 96 threads are used on the ccNUMA machine

(Tab. III), the speedups are more significant. The rea-

son is that the OS thread scheduler gives higher prior-

ity to work balancing compared to NUMA latencies:

while the Linux kernel is able to distinguish between

the latencies of distinct NUMA nodes, it still prefers

to schedule threads to free available cores (to optimise

work balancing by keeping all cores busy) even if such

work balancing increases the cost of memory accesses

(remote access to NUMA nodes). Consequently, a

poor overall performance is observed if no affinity is

fixed because some cores access data to remote mem-

ory nodes.

4. We do not observe any important difference, in terms

of speedups, between application independent and ap-

plication dependent strategies. This means that the

price of profile guided methods is not easy to justify

compared to cheap and easy-to-use icc scatter or com-

pact strategies. One of the explanations is that fixing

an affinity does not allow any thread migration dur-

ing the execution of the application. Since any parallel

application code may have different phases, it would

be only by luck that the same thread placement gives

the optimum for all phases. This favours to investigate

other affinity solution based on thread migrations.

5. RELATED WORK AND DISCUSSION

Most of the thread affinity studies on multi-core architec-

tures focus on data locality and cache sharing in parallel

applications. Zhang et al. [7] have conducted a mea-

surement analysis to study the influence of CMP cache

sharing on multi-threaded performance applications using

the PARSEC [8] benchmark suite. Through measurement

they suggest that cache sharing has very limited influence

on the performance of the PARSEC applications. However,

they do not conclude that cache sharing has no potential

to be explored for multi-threaded programs. Tam et al.

[9] proposed threads clustering to schedule threads based

on data sharing patterns detected on-line using hardware

performance monitoring units. The mechanism was imple-

mented inside a Linux operating system. Iteratively, they

attempt to group threads with high degree of data sharing

in the same socket. The mechanism is based on cross-ship

communication performance impact.

Klug et al. [10] proposed a framework to automatically

determine at runtime the thread pinning best suited for

an application based on hardware performance counters

information. The work is achieved by evaluating the

performance of a set of different scheduling affinities and

select the best one. The tool named autopin requires that

the user provides an initial set of good thread placements.

Kazempour et al. [11] examined the performance effect

of exploiting cache affinity on multi-core multiprocessors

and uniprocessors. They demonstrated that performance

improvement from exploiting cache affinity on multi-core

multiprocessors is significant. Terboven et al. [12] exam-

ined the programming possibilities to improve memory

pages and thread affinity in OpenMP applications running

on ccNUMA architectures. They provided a performance

analysis of some HPC codes which may suffer from

ccNUMA architectures effects.

Song et al. [13] proposed an affinity approach similar

to the ones studied in this article. It relies upon binary

instrumentation and memory trace analysis to find memory

sharing relationships between user-level threads. Like

us, they build an affinity graph to model the data locality

relationship. Then, they use hierarchical graph partitioning

to compute optimised thread placements. They also intro-

duce an analytical model to estimate the cost of running an

affinity-based thread schedule. While their affinity graph is

based on the number of addresses shared among threads,

our affinity graph is built upon the number of accesses to

common cache lines. This reflects the real cache activity.

Some studies have addressed the data cache sharing at the

compiler level. They focused on improving the data locality

in multi-cores based on the architecture topology. Chu et

al. [14] proposed a profile guided method for partitioning

memory accesses across distributed data caches. The

difference with our work is that they focused on fine grain

parallelism in single-threaded applications. Lee et al. [15]

proposed a framework to automatically adjust the number

of threads in an application to optimise system efficiency.

The work assumes a uniform distribution of the data

between threads. Kandemir et al. [16] discussed a compiler

directed code restructuring scheme for enhancing locality

of shared data in multi-cores. The scheme distributes the

iterations of a loop to be executed in parallel across the

cores of an on-chip cache hierarchy target.

Our current article is not intended to propose a yet another

thread pinning strategy based on data locality and sharing

information. We oriented our work to an empirical exhaus-

tive study to test multiple thread placements methodolo-

gies that are various and precise enough to cover the large

spectrum of the existing ones. Three main points charac-

Table 1. Overall Sample Speedups of the Tested Thread Affinities with SPEC OMP2001 Benchmarks Running on the Core2

and the Nehalem SMP Machines. The baseline thread placement strategy is the OS free affinity. Each benchmark is executed

repeatedly 35 times, using each run the train input dataset and with 4, 6, and 8 threads. The minimal and maximal observed

performance variances of the OS free affinity are [0.01 ; 82.24] on Core2 machine and [0.00; 0.52] on Nehalem machine.

Overall speedup (mean) Overall speedup (median) Min and max observed perfor-

mance variances

Thread pinning strategy Core2 SMP Nehalem SMP Core2 SMP Nehalem SMP Core2 SMP Nehalem SMP

Application independent

Random 0.995 0.995 0.992 1.001 [0.00 ; 82.24] [0.00 ; 12.25]

icc compact 0.952 0.995 0.944 0.996 [0.00 ; 0.22] [0.00 ; 0.05]

icc scatter 1.013 0.998 1.004 0.999 [0.00 ; 0.25] [0.00 ; 0.31]

Application dependent

LP compact 0.952 0.995 0.945 0.996 [0.00 ; 0.11] [0.00 ; 0.32]

LP scatter 1.019 1.007 1.011 1.008 [0.00 ; 0.11] [0.00 ; 0.27]

LPGP 1.022 1.032 1.014 1.032 [0.00 ; 0.06] [0.00 ; 0.04]

GP - 1.012 - 1.013 - [0.00 ; 0.03]

Table 2. Overall Sample Speedups of the Tested Thread Affinities with SPEC OMP2001 Benchmarks Running on the ccNUMA

Machine. The baseline thread placement strategy is the OS free affinity. Each benchmark is executed repeatedly 35 times, using

for each run the ref input dataset and 16 threads. The minimal and maximal observed performance variances of the OS free

affinity are [0.02 ; 12015.19]

Thread pinning strategy Overall speedup (mean) Overall speedup (median) Min and max observed perfor-

mance variances

Application independent

Random 1.053 1.046 [0.05 ; 3329.47]

icc compact 1.025 1.018 [0.06 ;12.62]

icc scatter 1.159 1.153 [0.08 ; 44.61]

Application dependent

LP compact 1.024 1.016 [0.08 ; 5.7]

LP scatter 1.165 1.155 [0.10 ; 60.45]

LPGP(4 sockets) 1.086 1.078 [0.03 ; 6.29]

LPGP(8 sockets) 1.211 1.203 [0.01 ; 14.57]

LPGP(16 sockets) 1.165 1.157 [0.02 ; 53.33]

GPLP(4 sockets) 1.083 1.075 [0.05 ; 10.63]

terise our contribution: 1) We take into account the per-

formance variability (repeat the run of each application 35

times), analysed through a rigorous statistical protocol [3];

2) We use real complex applications (SPEC OMP) not syn-

thetic benchmarks or small kernels; Finally 3) Our work

is not limited to find the best thread placement against the

default one of the application, instead, we investigate how

the overall performances of a given multi-threaded appli-

cations behave under a set of predominant thread affinity

schedules. The last point is important because we showed

that simple application independent thread pinning strate-

gies such as compact or scatter perform very well for

many OpenMP applications.

6. CONCLUSION AND FUTURE WORK

This article investigates various cache-aware thread pin-

ning strategies for SPEC OpenMP applications. We demon-

strate that fixing an affinity provides statistically significant

performance improvements compared the Linux OS strat-

egy. However, the performance improvement is marginal

in UMA Core2 and Nehalem machines, but the per-

formance stability is better. On the tested ccNUMA ma-

chine, the speedups of all thread pinnings are significant be-

cause the OS thread scheduler gives higher priority to work

balancing among cores against NUMA sensitive schedul-

ing. Interestingly enough, we demonstrated that application

independent strategies (icc scatter and compact) provide

equivalent performance gains compared to profile guided

(application dependent) methods. However, we think that

profile guided methods should be better if they consider pro-

gram phases to decide about variable thread pinnings (mi-

gration). In the future, we will investigate thread pinning

and migration strategies per parallel region.

ACKNOWLEDGEMENTS

We would like to thank the following colleagues for

their hint on the algorithm of Edmonds: Sandrine VIAL,

Bertrand LECUN, Thierry MAUTOR and Franck QUES-

SETTE.

Table 3. Overall Sample Speedups of the Tested Thread Affinities with SPEC OMP2001 Benchmarks Running on the ccNUMA

Machine. The baseline thread placement strategy is the OS free affinity. Each benchmark is executed repeatedly 35 times, using

for each run the ref input dataset and 96 threads. The minimal and maximal observed performance variances of the OS free

affinity are [28.13 ; 3364.08]

Thread pinning strategy Overall speedup (mean) Overall speedup (median) Min and max observed perfor-

mance variances

Application independent
icc compact 1.557 1.562 [0.11 ; 2.18]

icc scatter 1.426 1.428 [0.20 ; 1.89]

Application dependent

LP compact 1.556 1.559 [0.17 ; 2.17]

LP scatter 1.42 1.422 [0.10 ; 2.33]

LPGP 1.565 1.568 [0.10 ; 3.85]

GPLP 1.566 1.569 [0.14 ; 3.99]

REFERENCES

[1] A. Mazouz, S.-A.-A. Touati, and D. Barthou, “Analysing

the Variability of OpenMP Programs Performances on Mul-

ticore Architectures,” in Proc. of Programmability Issues for

Heterogeneous Multicores, in conjunction with the HIPEAC

conference, Heraklion, Greece, Jan. 2011.

[2] Raj Jain, The Art of Computer Systems Performance Anal-

ysis : Techniques for Experimental Design, Measurement,

Simulation, and Modelling. John Wiley and Sons, 1991.

[3] S.-A.-A. Touati, J. Worms, and S. Briais, “The Speedup-

Test,” University of Versailles Saint-Quentin en Yvelines,

Tech. Rep., Jan. 2010, http://hal.archives-ouvertes.fr/inria-

00443839.

[4] Todd Mytkowicz and Amer Diwan and Peter F. Sweeney

and Mathias Hauswirth, “Producing wrong data without do-

ing anything obviously wrong!” in Architectural Support for

Programming Languages and Operating Systems (ASPLOS),

2009.

[5] G. Karypis and V. Kumar, “Multilevel k-way partitioning

scheme for irregular graphs,” Journal of Parallel and Dis-

tributed Computing, vol. 48, pp. 96–129, January 1998. [On-

line]. Available: http://dx.doi.org/10.1006/jpdc.1997.1404

[6] J. Edmonds, “Maximum matching and a polyhedron with 0-

1 vertices,” Journal Res. Nat., vol. 69-B, no. 1-22, pp. 125–

130, 1965.

[7] E. Z. Zhang, Y. Jiang, and X. Shen, “Does cache sharing

on modern CMP matter to the performance of contemporary

multithreaded programs?” in PPoPP ’10: Proc. of the ACM

SIGPLAN Symposium on Principles and practice of parallel

programming. New York, NY, USA: ACM, 2010, pp. 203–

212.

[8] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC

Benchmark Suite: Characterization and Architectural Impli-

cations,” in Proc. of the International Conference on Parallel

Architectures and Compilation Techniques, October 2008.

[9] D. Tam, R. Azimi, and M. Stumm, “Thread cluster-

ing: sharing-aware scheduling on SMP-CMP-SMT mul-

tiprocessors, booktitle = EuroSys ’07: Proc. of theACM

SIGOPS/EuroSys European Conference on Computer Sys-

tems 2007.” New York, NY, USA: ACM, 2007, pp. 47–58.

[10] T. Klug, M. Ott, J. Weidendorfer, and C. Trinitis, “autopin —

Automated Optimization of Thread-to-Core Pinning on Mul-

ticore Systems,” Transactions on High-Performance Embed-

ded Architectures and Compilers, 2008.

[11] V. Kazempour, A. Fedorova, and P. Alagheband, “Perfor-

mance implications of cache affinity on multicore proces-

sors,” in Euro-Par ’08: the international Euro-Par confer-

ence on Parallel Processing. Berlin, Heidelberg: Springer-

Verlag, 2008, pp. 151–161.

[12] C. Terboven, D. an Mey, D. Schmidl, H. Jin, and T. Reich-

stein, “Data and thread affinity in OpenMP programs,” in

MAW ’08: Proc. of the workshop on Memory access on fu-

ture processors. New York, NY, USA: ACM, 2008, pp.

377–384.

[13] F. Song, S. Moore, and J. Dongarra, “Analytical modeling

and optimization for affinity based thread scheduling on mul-

ticore systems,” in Proc. of the IEEE International Confer-

ence on Cluster Computing, August 31 - September 4, 2009,

New Orleans, Louisiana, USA. IEEE, 2009.

[14] M. Chu, R. Ravindran, and S. Mahlke, “Data Access Par-

titioning for Fine-grain Parallelism on Multicore Architec-

tures,” in MICRO 40: Proc. of the Annual IEEE/ACM In-

ternational Symposium on Microarchitecture. Washington,

DC, USA: IEEE Computer Society, 2007, pp. 369–380.

[15] J. Lee, H. Wu, M. Ravichandran, and N. Clark, “Thread

tailor: dynamically weaving threads together for efficient,

adaptive parallel applications,” in ISCA ’10: Proc. of the

annual international symposium on Computer architecture.

New York, NY, USA: ACM, 2010, pp. 270–279.

[16] M. Kandemir, T. Yemliha, S. Muralidhara, S. Srikantaiah,

M. J. Irwin, and Y. Zhnag, “Cache topology aware computa-

tion mapping for multicores,” SIGPLAN Not., vol. 45, no. 6,

pp. 74–85, 2010.

