
Fuzzy Array Dataow AnalysisDenis Barthou , Jean-Fran�cois Collard , Paul Feautrier�PRiSM Laboratory Universit�e de Versailles45 Avenue des Etats-Unis F-78035 Versailles CedexAbstractDataow analyses track the de�nitions and uses of variable values, and are useful to optimizingand parallelizing compilers. Such analyses compute, for every (array cell) value read in a right-hand-side expression, the very operation which produced it. These analyses, however, make quite stringenthypotheses on the input programs: the control ow should be known at compile-time (i.e., static), andarray subscripts must be a�ne functions of surrounding counters and possibly of symbolic constants.On the contrary, the analysis presented in this report handles general if's and while loops, and generalnon-a�ne array subscripts.Keywords: Dataow, non-a�ne subscripts, while-loop, if-then-else, dynamic control1 IntroductionWhereas processor and interconnection network technologies make giant leaps nearly every couple of years,the corresponding software technology lags far behind. In particular, comparatively few parallelizing com-pilers are used in production environments. This is partly due to the di�culty for the compiler to �nd inthe source program the information it needs to exhibit parallelism and optimize code generation.Vectorization and parallelization methods are mainly based on the parallelism generated by independentreferences to distinct parts of arrays. Various dependence tests have been proposed [1]. However, most ofthese tests are not exact, and, even when they are, cannot distinguish between true dependences, whichdescribe a real information ow, and spurious dependences, in which the value purported to be transmittedis destroyed before being used. To obviate this di�culty, methods have been designed to compute, for everyarray cell value read in a right-hand-side expression (the \sink"), the very operation which produced it (the\source"). These methods are called Array Dataow Analyses (ADA) [10, 14], or Value-Based DependenceAnalyses [15]. These ADAs, however, make quite stringent hypotheses on the input programs. The onlytractable control structures are the do loop and the sequence; loop counters' bounds and array subscriptsmust be a�ne functions of surrounding counters and possibly of symbolic constants, the structure parameters.Programs following this model have been called \static control programs" in [10]. The same paper has shownthat an exact ADA can be mechanically performed on static control programs.Obviously, there is a continuum of analyses between the detection of simple dependences and full-edgedADA. These analyses are often designed for a special purpose (e.g., array privatization) and may need lessprecise information than ADA. The consequence is that they can be applied to less constrained programs.The present paper deals with general control structures, such as ifs and while loops, and with unre-stricted array subscripts. Notice that we assume that unstructured programs are preprocessed, and thatfor instance \backward" gotos are �rst converted into whiles. However, with such unpredictable, dynamiccontrol structures, no exact information can be hoped for in general. Hence, the aim of this paper is three-fold. First, we aim at showing that even partial information can be automatically gathered by Fuzzy ArrayDataow Analysis (FADA). This paper extends our previous work [6] on FADA to general, non-a�ne arraysubscripts. The second purpose of this paper is to formalize and generalize these previous proposals and toprove general results. Third, we will show that the precise, classical ADA is a special case of FADA.�[Denis.Barthou,Jean-Francois.Collard,Paul.Feautrier]@prism.uvsq.fr1

1.1 Program modelIn this paper, our aim is to extend the scope of array dataow analysis to programs respecting the followingconstraints:1. The only data structures are of base types (integers, reals, etc.) and arrays thereof.2. The only control structures are the sequence, the do loop, the while loop1, and the if..then..elseconstruct. gotos and procedure calls are forbidden.3. Basic statements are assignments to scalars or array elements.4. No pointer, EQUIVALENCE or aliasing is allowed.Non-linear constraints are equations or inequalities which depend on variables other than loop countersand structure parameters, and/or are non-linearly dependent on loop counters and structure parameters.For example, non-linear constraints may come from predicates of if or while constructs or from arraysubscripts. Obviously, some non-linear constraints can be removed by replacing some variables by theirexpression in terms of loop counters and structure parameters (induction variable detection and forwardsubstitution). Similarly, some while loops can be transformed into do loops. We will suppose here thatthese simpli�cations have been performed, when possible, by a previous phase of the compiler.1.2 NotationsThe k-th entry of vector ~x is denoted by ~x[k] or ~xk. The dimension of a given vector ~x is denoted by j~xj.The sub-vector built from components k to l is written as: ~x[k::l]. If k > l, then this vector is by conventionthe vector of dimension 0, which is written []. For a set of vectors A of dimension m, the set Ajn denotesthe set f~x[1::n]j~x 2 Ag if n � m, and f~x j~x 2 ZZn; ~x[1::m] 2 Ag otherwise. By convention, the j operatorhas priority on all other operators on sets.Furthermore, � denotes the strict lexicographic order on integral vectors. When clear from the context,\max" denotes max�, i.e. the maximum operator according to the � order. An instance of Statement S isdenoted by hS; ~xi, where ~x, the iteration vector of S, is the vector built from the counters of loops surroundingS { including while loops { from outside inward.By convention, program statements are labeled by capital letters in typewriter style. Sets of vectors aredenoted by capital letters in bold style, properties by letters in calligraphic style, and operations (instancesof statements) by the last letters of the Greek alphabet (&; �; �; �, etc.)2 A Motivating ExampleThe following example, even though already used in a previous work [6], illustrates the kind and the precisionof dataow information we want to obtain. (The reader is referred to [6] for the formal derivation of theresult.) program Mdo i = 1, nS0 a(i) = :::if ::: thendo j = i , n+2S1 a(j) = a(j-2)enddoendifenddoAssume that n = 4, and let us study the case of the instance of Statement S1 when i = 3 and j = 4,i.e. hS1; 3; 4i. Note that we don't even know at compile-time if this instance actually executes. If it does,1Similarly to do loops, an iteration of a while loop is denoted by giving its ordinal number w in the iteration sequence.2

however, then the problem is to know where and when the right-hand-side value a(2) was produced. Thissource may be an instance of S1, but not if i > 3, since this instance would execute after hS1; 3; 4i. Since thesource must write into a(2), the value of j is �xed to 2. This source cannot be an instance of S1 for i = 3either, since one can deduce from the bounds of the j loop that j � i. Thus, possible sources are instanceshS1; 1; 2i and hS1; 2; 2i. Another potential source is hS0; 2i. Note moreover that hS0; 2i overwrites the valuethat hS1; 1; 2i may have written. Thus, the set of potential sources is fhS0; 2i; hS1; 2; 2ig:Actually, the iteration points of S1 fall into three groups (see Fig. 1 (b)):� A member (i; j) of the �rst group is such that j � i+ 2. It has one and only one possible source fromS1 (namely, hS1; i; j � 2i) since, if point (i; j) executes, then (i; j � 2) did execute too.� On the contrary, a member of the second group has an unpredictable source. However, all the membersof this group have at least one source, since all the array cells they read (a(1) through a(n-1)) arewritten into by S0. Dotted edges symbolize this.� Finally, members of the third group do not have sources in the given program.
i

j

1 2 3 4

1

2

3

4

5

6

i

j

1 2 3 4

1

2

3

4

5

6

(a) (b)

First group

Second group

Third groupFigure 1: Dataow graph of Program M.3 An Overview of Array Dataow AnalysisWe �rst present the framework and the techniques used for exact array dataow analysis and then give theidea of what will lead to fuzzy array dataow analysis.3.1 Exact Array Dataow AnalysisIn synthetic terms, Array Dataow Analysis (ADA) is a very simple process. Let us �rst introduce somenotations. A static control program is de�ned by its set of operations E and by a total order � on it. If�; � 2 E, then � � � (read \� before �") means that operation � does not begin executing until � hasterminated. The precise de�nition of � will be given later (section 3.2).To each operation � are associated two sets of memory cells: R(�), the set of read cells, and M (�), theset of modi�ed cells. For static control programs, these sets can be constructed by a simple examination ofthe program text.The basic problem of array dataow analysis is, given an operation � (the \sink") and a memory cell cwhich is read by � (c 2 R(�)), to �nd the \source"of c in � . The source is an operation �(c; �) which 1)3

writes into c (c 2M (�(c; �))), 2) which is executed before � , and 3) such that no operation which executesbetween �(c; �) and � also writes into c.Let us consider the following set: Q(c; �) = f�j c 2 M (�); � � �g. It is easy to see that the abovede�nition of � is exactly the de�nition of the maximum of Q(c; �) according to �: �(c; �) = max�Q(c; �).In this section, all maxima are computed according to �. Hence this su�x will be omitted without ambiguity.The computation of �(c; �) is discussed in depth in [10]. Let us just say here that the set Q(c; �) can bewritten explicitly as a union of subsets, each of which is associated to a statement which modi�es c and adependence depth. Let us enumerate these subsets as:Q(c; �) = n[i=1Qi(c; �):In this paper, we will repeatedly use the following general property:Property 1 If F = Si2I Fi, then maxF = maxi2I maxFi.Applying this result to the present case gives:maxQ(c; �) = nmaxi=1 &i(c; �); (1)where &i(c; �) = maxQi(c; �): (2)The dependence from &i(c; �) to � is known as a direct dependence [2]. The evaluation of (1) when the directdependences are known is a simple exercise in formal computation.3.2 Notations and basic conceptsThe depth of a construct is the number of surrounding loops. The counter of a loop at depth k is the(k + 1)-th component of the iteration vector.Let hR; ~yi be the sink operation reading an element a(~g(~y)) of array a and hS; ~xi be an operation writingit with subscripts a(~f (~x)). Let NSR be the number of loops surrounding both S and R. Since the quantityNSS occurs very often in the following sections, it will be abbreviated as NS. Let / be the textual order ofthe program. S / T i� S occurs before T in the source text. The sequential execution order, �, is:hS; ~xi � hR; ~yi � NSR_p=0 hS; ~xi �p hR; ~yi; (3)where 0 � p < NSR : hS; ~xi �p hR; ~yi , (~x[1::p] = ~y[1::p])^ (~x[p+ 1] < ~y[p+ 1]); (4)hS; ~xi �NSR hR; ~yi , ~x[1::NSR] = ~y[1::NSR] ^ S / R: (5)For a given loop at depth k, ~x[k+ 1] has a minimum and a maximum which are given by the loop bounds.In the static control case, these bounds are a�ne functions of outer loop counters and structure parameters:lk(~x[1::k])� ~x[k+ 1] � uk(~x[1::k]): (6)The iteration domain of a statement S is denoted by I(S) and is given by the conjunction of all inequalities(6) for the surrounding loops and of the predicates of all surrounding while and if constructs.Let us suppose that operation � above is an iteration of Statement R : hR; ~yi and that cell c is elementa(~g(~y)) of an array a. Let us suppose that we are investigating candidate sources from a Statement S atdepth p : hS; ~xi. If the source program handles its arrays correctly, S necessarily writes into array a. Let~f (~x) be the relevant subscripts.The candidate source hS; ~xi has to satisfy several constraints: hS; ~xi is a valid operation (existence predi-cate), hS; ~xi and hR; ~yi access the same array cell (subscript equation), hS; ~xi is executed before hR; ~yi at depth4

p (sequencing predicate) and the sources have to be computed under the hypothesis that hR; ~yi is a validoperation (environment). To sum up, let us list these predicates:~x 2 I(S) (existence predicate) (7)~f (~x) = ~g(~y); ~f and ~g are a�ne functions of ~x and ~y, respectively (subscript equation) (8)hS; ~xi �p hR; ~yi (sequencing predicate) (9)~y 2 I(R) (environment)We conclude �rst that the Qi in (2) are indexed in fact by S and p. Each QpS(~y) is associated to the set:QpS(~y) = f~x j ~x 2 I(S); ~f (~x) = ~g(~y); hS; ~xi �p hR; ~yig; (10)by the rule: hS; ~xi 2 QpS � ~x 2 QpS(~y). Furthermore,� in QpS corresponds to the lexicographic order � inQpS(~y).Since each predicate �p is a�ne, QpS(~y) is a Z-polytope. The direct dependence from S to R at depth pis given by the maximal element: ~KpS(~y) =max� QpS(~y): (11)The maximal value is computed for each depth by integer linear programming [9]. The correspondingoperation is denoted by: &pS(~y) = hS; ~KpS(~y)i: (12)The result is a quast, i.e. a many-level conditional in which:� Predicates are tests for the positiveness of quasi-a�ne forms2 in the loop counters and structureparameters.� Leaves are either operation names whose iteration vector components are again quasi-a�ne, or ?. Thespecial name ? indicates that the array cell under study is not modi�ed by S. A coherent way ofthinking about ? is to consider it as the name of an operation which is executed once before all otheroperations of the program: 8S; ~x : ? � hS; ~xi. In the following, ? will be used to denote, also, anunde�ned vector.3.3 Combining direct dependencesIn the following, we will consider m statements, Sk for 1 � k � m, writing into array a. Beside, we willsuppose that the read statement, R, and the read cell, c, stay �xed. We may thus write �(~y) instead of�(c; hR; ~yi). With this convention, the equivalent of (1) is:�(~y) = max� 1�k�m max� 0�p�NSkR hSk; ~KpSk(~y)i! : (13)When the direct dependences have been found, one must construct the real source by computing theirmaximum. Let q be the number of candidate sources &pSk (~y). To simplify the notations, we assign an indexnumber n; 1 � n � q; to each &pSk(~y), and rename the latter into n. Then, the basic algorithm computesthe recurrence: 1 � n � q; �n =max� (�n�1; n); with �0 = ?. maximum of two quasts. This is donewith the help of some simple rewriting rules (see [10] for details).2Quasi-a�ne forms may include integer division. 5

3.4 From ADA to FADAAs soon as we extend our program model to include conditionals, while loops, do loops with non-linearbounds or subscripts, the algorithm above breaks down. The reason is that conditions (7) and (8) maycontain intractable terms. One possibility is to ignore them. In this way, (7) is replaced by ~x 2 bI(S), wherebI(S) is a superset of I(S) which is obtained by ignoring non-linear constraints. Supposing for the momentthat the subscript condition is still linear, we may obtain an approximate set of candidate sources:bQpS(~y) = f~x j ~x 2 bI(S); ~f (~x) = ~g(~y); hS; ~xi �p hR; ~yig: (14)However, we can no longer say that the direct dependence is given by the lexicographic maximum ofthis set, since the result may precisely be one of the candidates which is excluded by the non-linear part ofI(S). One solution is to take all of bQpS(~y) as an approximation to the direct dependence. If we do that, andwith the exception of very special cases, computing the maximum of approximate direct dependences has nomeaning, and the best we can do is to use their union as an approximation. Can we do better than that?Let us consider some examples.program E1 program E2do x = 1 while ... do x = 1, nS1: s = ... if ... thenend do S1: s = ...S2: s = ... elseR : ... = ... s ... S2: s = ...end end ifend doR : ... = ... s ...endHere and in the following examples, we will always stipulate that all relevant accesses to the memorycell we are interested in { here s { have been exhibited. What is the source of s in Statement R in E1?There are two possibilities, Statements S1 and S2. In the case of S2, the direct dependence is exactly hS2; []i.Things are more complicated for S1, since we have no idea of the iteration count of the while loop. We may,however, give a name to this count, say N , and write the set of candidates as:Q0S1([]) = fhS1; xij 1 � x � Ng:We may then compute the maximum of this set, which is simply&0S1([]) = if N > 0 then hS1; N i else ?:The last step is to take the maximum of this result and hS2; []i, which is hS2; []i. We have thus formallyderived the expected precise result. The trick here has been to give a name to an unknown quantity, N , andto solve the problem with N as a parameter. It so happens that N disappears in the solution, giving anexact result.The other example E2 is slightly more complicated: we assume that n � 1. What is the source of s inStatement R? We may build an approximate candidate set from S1 and another one from S2. Since both areapproximate, we cannot do anything beside taking their union, and the result is highly inaccurate.Another possibility is to partition the set of candidates according to the value x of the loop counter. Letus introduce a new boolean function b(x) which represents the outcome of the test at iteration x. The x-thcandidate may be written � (x) = if b(x) then hS1; xi else hS2; xi:We then have to compute the maximum of all these candidates (this is an application of Property 1). It isan easy matter to prove that x < x0) � (x) � � (x0), so the source is � (n). Since we have no idea of thevalue of b(n), the best we can do is to say that we have a source set, or a fuzzy source, which is obtained bytaking the union of the two arms of the conditional:�([]) = fhS1; ni; hS2; nig: (15)6

Notice here the precision we have been able to achieve. However, the technique we have used here is not easilygeneralized. Another way of obtaining the same result is the following. Let L = fxj 1 � x � ng. Observethat the candidate set from S1 (resp. S2) can be written fhS1; xijx 2DS1 \Lg (resp. fhS2; xijx 2DS2g\L)where DS1 = fxj b(x) = trueg and DS2 = fxj b(x) = falseg. Obviously,DS1 \DS2 = ;; (16)and DS1 [DS2 = ZZ: (17)We have to compute � = max(maxDS1 \ L;maxDS2 \ L). It is a general property that (17) implies that:� = maxL = n: (18)By (16) we know that � belongs either to DS1 or DS2 which gives again the result (15).To summarize these observations, our method will be to give new names (or parameters) to the result ofmaxima calculations in the presence of non-linear terms. These parameters are not arbitrary. The sets theybelong to { the parameter domains { are in relations to each others, as for instance (16-17). These relationscan be found simply by examination of the syntactic structure of the program, or by more sophisticatedtechniques. From these relations between the parameter domains follow relations on the parameters, like(18), which can then be used to simplify the resulting fuzzy sources. In some cases, these relations may beso precise as to reduce the fuzzy source to a singleton, thus giving an exact result.4 Basic Techniques for FADAWe present in this section a formal de�nition of fuzzy analysis. First of all, we de�ne a representation for non-linear constraints. Thanks to this representation, the expression of the source boils down to a computableexpression with linear constraints and unknown parameters. When these parameters take all the values ofa set de�ned by linear constraints, we get a set of possible sources, called the fuzzy source. How this set ofvalues is built will be the subject of the next sections.4.1 Non-linear constraintsLet us �rst have a close look at the non-linear constraints. Notice that they come either from the predicateof a while or if, from a non-linear loop bound appearing in the existence predicate (7), or from a non-lineararray subscript appearing in the conicting access predicate (8). Each constraint can be numbered accordingto its apparition order in the text of the program. Let C denote the set of integers that index non-linearconstraints. Given a constraint ch, h 2 C, we note Th the statement in which it appears. This statement iseither the then or else branch of a conditional, or a loop with non-a�ne bounds, or an assignment statementin which a non-linear subscript is used in an array access.If ch appears in the set of candidate sources QpSk(~y), the write operation hSk; ~xi depends on the value ofch at the operation hTh; ~x[1::Nh]i, where Nh equals NTh if Th is a conditional or an assignment, and NTh +1if Th is a do or a while.In QpSk(~y), the expression of the non-linear constraint ch is ch(~z; ~y); ~z = ~x[1::Nh], where ~z 2 I(Th) isNh-dimensional. ch depends on ~y in the case it comes from Equation (8). However, since the only termdepending on p is the sequencing predicate which is linear, non-linear constraints cannot depend on p.De�nition 1 (parameter set) Let Ph(~y) be the set of iteration vectors for which the constraint ch is true.It is called the parameter set and is de�ned by:Ph(~y) = n~z ���~z 2 ZZNh ; ch(~z; ~y)o :7

De�nition 2 (parameter domain) Let CSk � C denote the set of the indices of the constraints involvedin the computation of QpSk(~y) and MSk = maxh2CSk Nh. The set:DSk(~y) = 8><>:~z �������~z 2 ZZMSk ; ^h2CSk (~z[1::Nh] 2 Ph(~y))9>=>; ;is the set of iteration vectors for which all of the constraints indexed by CSk are true. This set is called theparameter domain of Sk.Note that MSk does not depend on ~y and that MSk � NSk . By convention, when all constraints in QpSk(~y)are linear, DSk(~y) = ZZNSk .The following piece of code illustrates these de�nitions:program E3T1: do x=1 while f(x)>0S1: a(x)=xif p(x)T2: thenS2: a(x)=2*xT3: elseS3: a(x)=3*xend ifend dodo y=1,nR : r=a(y)end doendThe non-linear constraints are: c1(x; y) = (f(x) > 0) from T1, c2(x; y) = p(x) from T2, c3(x; y) =:p(x) from T3. The parameter sets are: P1(y) = fxjf(x) > 0g, P2(y) = fxjp(x)g and P3(y) =fxj:p(x)g = P2(y).The domains are DS1(y) = P1(y), DS2(y) = P1(y) \P2(y) and DS3 (y) = P1(y) \P2(y).4.2 ParameterizationLet us recall the de�nition (13) of the source:�(~y) =max� 1�k�m max� 0�p�NSkR hSk; ~KpSk(~y)i! :The purpose of parameterization is to code (13) as a linear problem, so as to enable the computation of thesource �(~y) (or perhaps an approximation of this source) using linear programming methods and tools, evenin the presence of non-linear constraints. We give thereafter the steps to transform (13) in a parametriclinear problem. Let us also recall the de�nition (11) of the direct dependence:~KpSk(~y) = max� QpSk(~y): (19)We �rst partition each set QpSk(~y) into subsets de�ned by parametric linear constraints. Let LpSk denote theset of vectors of dimension NSk de�ned by the linear constraints appearing in QpSk(~y). The set of candidatesources is: QpSk (~y) = LpSk(~y)\DSk(~y)jNSk :8

Partitioning QpSk(~y) is obtained by partitioning DSk(~y) as the union of its elements:DSk (~y) = [~�2DSk (~y)f~�g:Let Q�pSk(~y; ~�) = LpSk (~y) \ f~�gjNSk denote a subset of the partition of QpSk(~y). Then:QpSk (~y) = [~�2DSk (~y)Q�pSk(~y; ~�): (20)From Equations (19) and (20), we have:~KpSk(~y) = max� 0B@ [~�2DSk (~y)Q�pSk(~y; ~�)1CA : (21)From Equation (21) and Property 1, we obtain:~KpSk (~y) = max� ~�2DSk (~y) �max� Q�pSk(~y; ~�)� : (22)An elementary direct dependence ~K�pSk(~y; ~�) can then be evaluated for each subset Q�pSk(~y; ~�) as a functionof its parameters: ~K�pSk(~y; ~�) =max� Q�pSk (~y; ~�); (23)which is computable by parametric integer programming. From Equations (22) and (23), we have:~KpSk(~y) = max� ~�2DSk (~y) ~K�pSk(~y; ~�): (24)If the maximum as de�ned by (24) exists, then it is reached in at least one vector of DSk(~y) since there is a�nite number of candidate sources. Such a vector is called a parameter of the maximum:De�nition 3 (parameter of the maximum) All the vectors in DSk(~y) for which (24) is de�ned arecalled parameters of the maximum of DSk for Statement Sk at depth p. Let ~�pSk(~y) be one such vector.(If the maximum does not exist, we set ~�pSk(~y) to an unde�ned value.) The following equality always holds:~KpSk(~y) = ~K�pSk(~y; ~�pSk(~y)): (25)In other words: ~�pSk(~y) =max� 8<:~� ������~� 2DSk(~y); ~� = �max� QpSk(~y)�jMSk9=; : (26)Thus, (13) implies that the source can be written as:�(~y) = max� 1�k�m max� 0�p�NSkR hSk; ~K�pSk(~y; ~�pSk (~y))i! : (27)We can extend (12) into: &�pSk(~y; ~�pSk(~y)) = hS; ~K�pSk(~y; ~�pSk(~y))i: (28)9

4.3 FuzzinessTo sum things up, we enumerated each set DSk (~y) of non-linear constraints by parameters �. Amongthese parameters, we distinguished one element for each p, the parameter of the maximum ~�pSk(~y). Thebene�t is that Expression (27) is computable exactly by parametric integer programming as a function ofthe parameters of the maximum.However, parameters of the maximum cannot themselves be computed, because the sets DSk(~y) of non-linear constraints cannot be handled.A very simple method is to compute a set of possible sources { or a fuzzy source { by giving all possiblevalues to the parameters. This would mean that we would not even try to take non-linear constraintsinto account. Obviously, this is a safety net for a FADA analyzer and is similar to the \panic mode" inWonnacott's work [15]. A variant of this solution is to keep the non-linear expressions in the solution, withouttrying to interpret them. In this case, the analyzer just hopes that a later phase of the compiler will be ableto handle this expression.A better approach is to reduce the size of �(~y). The �rst idea is to try to �nd properties on ~�pSk(~y). Thiswas the method used in our initial work [6] and by Wonnacott.The second idea, proposed in this paper, is to handle separately the non-linear constraints. To do that,we will try to �nd properties (call them P) on the parameter domains DSk(~y). From these properties Pon DSk(~y), we will deduce linear properties (call them P�) on the parameters ~�pSk(~y). The bene�t of thisapproach is that we can then prove, for some P, that the properties found on parameters of the maximumare the most precise that can be derived. That is, there is no loss of information when deriving P� from P.Therefore, the method to be presented in the next sections will proceed in �ve steps:1. Properties P will be derived from the parameter domains (Section 5.2).2. We will consider all sets, call them Gk, satisfying properties P. Note that for all DSk(~y), there is atleast one set which satis�es P, namely DSk(~y).3. For each set Gk, we consider a parameter of the maximum ~pk for Statement Sk at depth p. Notethat when Gk = DSk(~y) then ~pk = ~�pSk(~y). We must use as many ~pk as there are depths, since eachparameter of the maximum is used to describe the set LpSk(~y)TDSk(~y)jNSk which depends on p.4. We derive properties P� de�ning exactly the set of parameters ~pk (Section 6).5. We build the set of sources corresponding to each ~pk :�(~y) = (max� 1�k�m max� 0�p�NSkR &�pSk(~y;~pk)!���~pk 2 ZZMSk ;P� �~01 ; : : : ; ~NSmRm �) : (29)which can be computed exactly if P� is a conjunction or disjunction of linear constraints.The fuzziness of the source depends on the precision with which P� abstracts the relations existing amongthe parameters of the maximum ~�pSk(~y), k = 1::m.4.4 Removing ParametersThe term max�1�k�m �max�0�p�NSkR &�pSk(~y;~pk)� in (29) is a quast which is computed as in Section 3.3.Consider a leaf in which some parameters appear. This leaf represents the set of sources obtained by givingall possible values to these parameters. The set of possible values is obtained by \anding" all predicates inthe unique path from the root of the quast to the leaf in question.Rule 1 Let A(~) be a leaf governed by l predicates P1; : : : ; Pl in the unique path from the root to the leaf.Then A(~) is transformed into fA(~)j Vli=1 Pig. 10

After a systematic application of this rule, any leaf in which parameters occur is transformed into a setin which the parameters are bound by the predicates governing the leaf. Leaves which do not depend onparameters become singletons.Now consider the quast: if C(~) then A else B. Thanks to Rule 1, A and B are sets of sources. Since theexact value of ~ is unknown, we cannot predict the outcome of the test. The best we can do is to take theunion A [B as an approximation :Rule 2 A quast if C(~) then A else B is transformed into A [B.These observations are enough for solving example E1. There is one non-linear constraint, which isassociated to the while loop at depth one. This gives rise to one parameter domain DS1(~y) and oneparameter of the maximum, ~01 , with no special properties. The equivalent of (23):~K0S1([]; ~01) = maxfwj 1 � w;w = ~01g;gives the solution &0S1([]; ~01) = if ~01 � 1 then hS1; ~01 i else ?. The computation of the direct dependencefrom S2 to S3 is exact, since all constraints are linear. Their combination gives the �nal results:�([]) = max(hS1; if ~01 � 1 then ~01i else ?; hS2; []i) = hS2; []i:Example E2 is more complicated and needs more sophisticated techniques.5 Finding Properties on Parameter DomainsOur aim now is to �nd all interesting properties of the parameter domains. Several techniques have beenproposed that �nd mostly properties of each parameter domain, independently of each other. The twoalgorithms presented in Sections 5.2 and 7 �nd relations between the parameter domains. We will �rst de�nethe general type of property we want to handle. Step 4 of the previous approach will thus be independentof the analysis technique.5.1 General propertiesThe �rst kind of properties gives constraints on the elements of a parameter domain, independently of anyother parameter domain. For instance, a polyhedron may be included in the parameter domain under study.This is the case when ~y is in a parameter domain and we will show that in this case there is no fuzziness atall in the computation of some direct dependences. Another example is when the vectors of the parameterdomain satisfy a system of linear constraints. This system is provided by a detailed analysis of the non-linearconstraints. Most of the properties found by Dumay [8] are of this kind and Maslov [13] has proved thatfor some speci�c non-linear constraints, the parameter domain is equal to a polyhedron. Given a knownpolyhedron A(~y), this kind of properties can be written as: A(~y) � DSk(~y) or DSk(~y) � A(~y):Another kind of properties involves two or more parameter domains. Such a property can be an inclusionusing the union or intersection of parameter domains. For instance, in Program E3, we have DS2 (~y) [DS3 (~y) = DS1(~y) and DS2(~y) \DS3(~y) = ;, which entails that the source can only come from Statement 2or 3 and cannot come from both at the same time (no kill between 2 and 3).Finally, the relations can involve parameter domains or their image by a simple a�ne function, so as toexpress the fact that a parameter domain is built from another parameter domain by translation, for instance.Such considerations are taken into account by Dumay and suggested by Wonnacott as an improvement ofhis methods. A simple a�ne function will be de�ned as a monotone increasing a�ne function, according tothe lexicographic order. 11

In order to take into account the existing methods for �nding properties of parameter domains, we willconsider properties that can be written as conjunction of relations of inclusion between two sets. Thesesets are generated by union and intersection from the parameter domains and arbitrary polyhedra. To dothis, we provide an algorithm that �nds properties on the parameter domains that can be deduced from thestructure of the program itself. The advantage of this method is that no case-by-case detailed analysis ofthe non-linear constraints is needed.5.2 Structural Analysis AlgorithmIn this section, we take bene�t of the structure of the source program. Even though we only considerstructured Fortran, we nevertheless have a problem: Fortran has no independent notation for compoundstatements. We have already tacitly extended Fortran by using non-numerical labels and the PL/I-like dowhile loop. In the same vein, we will use C-like braces fg to indicate statement grouping.The starting point of the algorithm is a pruned version of the abstract syntax tree (A.S.T.), in whichthe only statements are the candidate sources Sk; 1 � k � m, the read Statement R and all the controlstatements which surround them. We will extend the concept of a parameter domain to all statements inthis simpli�ed A.S.T. Consider for instance a compound statement T0 : fT1; : : : ; Tng: the parameter domainof T0, DT0(~y) is associated to the non-linear part of the conditions under which T0 is executed. (Again, ~y isthe iteration vector of the read Statement R.) Depending on the nature of Statement Tj, 1 � j � n, we maysay that DT0(~y) = DTj (~y), or at least that DT0 (~y) � DTj (~y)jMT0 .The algorithm is a recursive descent in the A.S.T that yields one or several relations from each visitednodes. A special symbol, E(~y), will be used to denote the non-linear part of the environment (the conditionsunder which the read statement is executed). Note that the parameter domain associated to the compoundstatement representing the whole program is the set f[]g. At the end of the algorithm, a post-processingphase, which will be speci�ed later, will eliminate unwanted information from the original result.Structural analysis algorithm1. T0 : fT1; : : : ; Tng : For i = 1; : : : ; n do:(a) If Ti is another control statement, emit DT0(~y) = DTi(~y); then visit Ti.(b) If Ti is one of the source statements, Sk : a(~f(~x)) = ... and if ~f is linear, then emit: DT0(~y) =DTi(~y); else emit: DT0(~y) � DTi(~y)jMT0 :(c) If Ti is the read statement: R : ... = ... a(~g(~y)) ..., then emit DT0 (~y) = E(~y):2. T0 : do w = 1 while p T1 end do : If p is linear3 then emit: DT0 (~y) = DT1(~y) else emit: DT0(~y) �DT1(~y)jMT0 : Visit T1.3. T0 : if p then T1 else T2 endif: If p is non-linear then emit DT1 (~y) \DT2(~y) = ; and DT1(~y) [DT2(~y) = DT0 (~y), else emit: DT1(~y) = DT2(~y) = DT0(~y): Visit T1 and T2.4. T0 : if p then T1 endif : If p is non-linear then emit DT0(~y) � DT1(~y) else emit: DT0(~y) = DT1(~y):Visit T1.5. T0 : do i = lb; ub T1 end do : If both lb and ub are linear, then emit: DT0(~y) = DT1(~y); else emitDT0(~y) � DT1 (~y)jMT0 : Visit T1.As the algorithm needs to go through the reduced A.S.T once, the complexity is O(m:s), with s themaximumnumber of nested control structures and m the number of write statements. m also gives a boundon the number of leaves visited in the abstract tree: O(m).3This indicates that the while loop may be transformed into a for loop and should not occur in restructured programs.12

Post-processing phase The idea is to eliminate all domains except Environment E and the domainsassociated to potential sources. Emitted equations of the form D = D0 can be used to eliminate either Dor D0. Let us rank all domains in an arbitrary order, except that the domains of the source statements andE (the protected domains) are ranked last. Select an equation in which the highest ranking domain occurs,use it for eliminating this domain from all other relations, discard the equation and start again. The processstops as soon as the highest ranking domain is protected. At this point, discard all relations which containunprotected domains. This phase may take as much as O(m2) time.Exact analysis Among the results may occur relations of the form: E(~y) =DSk(~y) orDSk(~y) � E(~y)jMSk .Since we are computing sources under the hypothesis that the read statement is executed, we know that ~ybelongs to E(~y). Suppose then that the pre�x ~y[1::MSk] of ~y is in LpSk(~y)jMSk . Thus, as the parameters ofthe maximum are lexicographically lower than ~y due the sequencing predicate, this entails that ~y[1::MSk] isa parameter of the maximum and the analysis is exact.An example of such an exact case is when the only while loop in the source program is the outermoststatement. This result was proved by other, less general means in [5, 6] and justi�es a conjecture in [4].6 Constructing Properties on ParametersIn the previous section, the purpose was to extract properties P on the parameter domains. The purposeof this section is to derive properties P� on parameters of the maximum from properties P on parameterdomains, without forgetting sources (correctness) and without adding fuzziness (precision). For each rela-tion on domains that is of the form given in Section 5.1, we will �nd a relation on the parameters thatpreserves both correctness and precision. Moreover, we prove that P� is a conjunction or disjunction oflinear inequalities thus enabling the exact computation of (29).Notice that from (19) and (26), we immediately deduce the following result: the parameter of themaximum is equal to theMSk �rst components of ~KpSk(~y) when the latter is de�ned. This can be generalizedto the following property:Property 2 Let ~pk be a parameter of the maximum of any set Gk for Statement Sk at depth p. The valueof ~pk is given by: ~pk = maxGk \ LpSk(~y)jMSk :This gives a characterization of the parameters of the maximum. We will use repeatedly this property inthe following.In the sequel, we will consider properties P that are inclusions between union of and intersection ofsets. These sets are either parameter domains, or arbitrary sets de�ned by linear constraints. Moreover, theinclusion properties we consider are such that:� The left-hand-side of � only consists of intersections.� The right-hand-side of � only consists of unions.To simplify the study of such relations, notice that:[i Fi � [jFj () 8i; Fi � [jFj; (30)\i Fi � \jFj () 8j;\iFi � Fj : (31)Notice also that, until Theorem 1, we do not take into account the application of linear functions toparameter domains.We �rst present some relations deduced from Property 2 that must be veri�ed by any parameter of themaximum. We then give some simple results for the case where P is a relation of inclusion involving atmost one parameter domain on each side of the inclusion. Then we introduce the use of the union, of theintersection and �nally present the general case, in Theorem 1.13

6.1 Characterization of parameters of the maximumGiven a set Gk, for all 0 � p � NSkR, the parameter of the maximum ~pk of Gk for Statement Sk at depthp must verify Property 2. We will �nd now Property P� that must be veri�ed by any parameter of themaximum of any set Gk, for all 1 � k � m.Construction of P� According to Property 2, for 0 � p � NSkR, ~pk is an element of LpSk(~y)jMSk or is ?:�~pk 2 LpSk(~y)jMSk� _ (~pk = ?) : (32)In particular, when MSk � p � NSkR, (4) and (5) imply that LpSk(~y)jMk is equal to f~y[1::MSk]g or ;.Therefore, when ~y[1::MSk] 62 Gk, ~pk = ? for MSk � p � NSkR. To sum up this relation, for all MSk � p �NSkR: if LpSk(~y)jMSk = f~y[1::MSk]g then 0B@ ^MSk�p�NSkR ~pk = ?1CA_ �~pk = ~y[1::MSk]� : (33)Property P� is then de�ned by Equations (32) and (33), for 1 � k � m.How much fuzziness is added? Consider a set of vectors ~pk , for 1 � k � m, 0 � p �MSk , verifying P�de�ned by Equations (32) and (33). In order to prove that P� is an exact characterization of the parametersof the maximum, we want to exhibit G1; : : : ;Gm such that ~pk is a parameter of the maximum of Gk forStatement Sk at depth p, for 1 � k � m; 0 � p � NSkR. (Intuitively, we want to prove that any ~pk satisfyingP� may yield the actual exact source.) We de�ne these sets by: Gk = �~pk j 0 � p � NSkR	 ; for 1 � k � m.We try to show that, according to Property 2:~pk = maxGk \ LpSk(~y)jMSk : (34)For p < min(MSk ; NSkR), notice that LqSk(~y)jMSk \ LpSk(~y)jMSk = ; if q 6= p thanks to the sequencingcondition (9). Equation (32) then shows that Gk \ LpSk(~y)jMSk = f~pkg, thus (34) is veri�ed. For p �MSk ,(33) and the above remark imply (34).Hence P� as de�ned by (32) and (33) describes exactly the set of the parameters of the maximum of allpossible sets, for Statement Sk at depth p, for 1 � k � m; 0 � p � NSkR.6.2 Inclusion between two parameter domainsSuppose now that Property P on the parameter domains isDSi(~y)jmin(MSi ;MSj) \Ai(~y) � DSj (~y)jmin(MSi ;MSj) [Aj(~y);where Ai(~y) and Aj(~y) are two polyhedra, of dimension M = min(MSi ;MSj). Let us consider all setsGi;Gj verifying P and such that the dimension of the vectors of Gi (resp. Gj) is MSi (resp. MSj). Let~pi and ~pj be the respective parameters of the maximum for Statements Si and Sj at depth p. The generalexpression of P is: P(Gi;Gj) = (GijM \Ai(~y)) � (Gj jM \Aj(~y)):Construction of P� Let us try to �nd a necessary condition for ~pi and ~qj to be parameters of themaximumofGi at depth p and ofGj at depth q, respectively, for all 0 � p � NSiR; 0 � q � NSjR. According14

to 6.1, Equations (32) and (33) are veri�ed by ~pi and ~qj . Besides, for 0 � p � NSiR; 0 � q � NSjR, if~pi [1::M] 2 LqSj (~y)jM \LpSi(~y)jM \Ai(~y), then either ~pi [1::M] 2 Aj(~y) or, thanks to Property 2:~pi [1::M] = maxGijM \Ai(~y) \ LqSj (~y)jM \ LpSi(~y)jM+ Property P on Gi and Gj, and ~pi [1::M] 62 Aj(~y)� max�Gj \LqSj (~y)jMSj�jM+ Property 2� ~qj [1::M]:When MSi > MSj , this is equivalent to ~pi [1::MSj]�~qj ; otherwise: ~pi�~qj [1::MSi]:Thus, if P is de�ned by P(Gi;Gj) = GijM \Ai(~y) � Gj jM \ Aj(~y)) then P� can be de�ned by theconjunction of (32), (33) and, for all 0 � p � NSiR; 0 � q � NSjR:if ~pi [1::M] 2 LpSi(~y)jM \LqSj (~y)jM \Ai(~y) then ~pi [1::M] 2 Aj(~y) _ ~pi [1::M]�~qj [1::M]: (35)Notice that thanks to the sequencing predicate (9), when p or q is lower than min(M;NSiR; NSjR) andp 6= q, then LpSi(~y)jM \ LqSj (~y)jM = ;.How much fuzziness is added? Let us now pick a set of parameters ~pk , k = 1::m; p = 0::NSkR veri-fying P� de�ned by (32),(33) and (35). In order to prove that no fuzziness is added, we want to exhibit(G1; : : : ;Gm) such that P(Gi;Gj) is true and ~pk is the parameter of the maximum of Gk for Statement Skat depth p, for all 1 � k � m; 0 � p � NSkR.Let us de�ne some new vectors ~pij of dimensionMSj , for all 0 � p � NSiR:(~pij [1::M] = ~pi [1::M]~pij [M + 1::MSj] = minq20::NSjR ~qj [M + 1::MSj]If ~pi = ? then ~pij = ?.Let us de�ne the sets Gk by:� Gk = f~pkj 0 � p � NSkRg for k 6= j;Gj = f~qj j 0 � q � NSjRg [f~qijj 0 � q � NSiR; ~qij[1::M] 2 Ai(~y); ~qij[1::M] 62 Aj(~y)g:These sets verify the two conditions:� GijM \Ai(~y) �Gj jM [Aj(~y)� ~pk is a parameter of the maximum of GkThe proof follows the guidelines of the proof given in 6.1.Therefore the conjunction of (32),(33) and (35) de�nes exactly the set of the parameters of the maximumof all sets G1; : : : ;Gm verifying GijM \Ai(~y) � Gj jM [Aj(~y). No fuzziness is added when deriving P�from P.Particular cases The properties on the parameters of the maximum corresponding to relations on theparameter domains de�ned by:A0k(~y) �DSk(~y) [Ak(~y) or DSk(~y) \A0k(~y) � Ak(~y);where Ak(~y) and A0k(~y) are sets of vector size MSk de�ned by a�ne constraints, can be derived in the sameway as above. 15

The property P� corresponding to A0k(~y) � DSk (~y) [Ak(~y) is de�ned by (32), (33) and:if LpSk(~y)jMSk \A0k(~y) 6= ; then maxLpSk(~y)jMSk \A0k(~y) 2 Ak(~y) _maxLpSk(~y)jMSk \A0k(~y)�~pk ;and the property P� corresponding to DSk(~y) \A0k(~y) � Ak(~y) is de�ned by (32), (33) and:if ~pk 2 LpSk(~y)jMSk \A0k(~y) then ~pk 2 Ak(~y):6.3 Union of parameter domainsWe now extend the previous results to properties using the union operator on both sides of the inclusion.As [iFi � [jFj is equivalent to Fi � [jFj; 8i, we will consider the following property P on the parameterdomains: DSi(~y)jM \Ai(~y) � [j2JDSj (~y)jM [A(~y);where M = min(MSi ;minj2J (MSj)), Ai(~y) and A(~y) are two sets de�ned by linear constraints of vectordimension M and J is a set of indices not including i. Let us consider all sets Gi and Gj ; j 2 J verifyingP and such that the dimension of the vectors of Gi (resp. Gj) is MSi (resp. MSj). Let ~pi and ~pj be therespective parameters of the maximum for Statements Si and Sj at depth p.Construction of P� As in 6.2 the parameters ~pk are constrained by (32) and (33). Moreover, it can beshown that, for all 0 � p � NSiR; 0 � qj � NSjR,if ~pi [1::M] 2 LpSi(~y)jM \j2J LqjSj (~y)jM \Ai(~y) then ~pi [1::M] 2 A(~y)_j2J ~pi [1::M]�~qjj [1::M]: (36)Thus if P is de�ned by P(Gi; (Gj)j2J) = GijM \ Ai � Sj2J Gj jM [A(~y) then P� is de�ned by theconjunction of the equations (32), (33) and (36).How much fuzziness is added? It can be shown in the same manner as in 6.2 that P� de�nes exactlythe set of the parameters of the maximum of all the sets Gi;Gj ; j 2 J verifying P.This property is exactly what is needed to express the fact that at least one branch of a conditional istaken each time the conditional is executed.Particular case When P is de�ned on the parameter domains by:A(~y) � [j2JDSj (~y)jminj2J MSj [A0(~y);then the corresponding property on the parameters of the maximum is de�ned by (32), (33) and:if \j2J LqjSj (~y)jminj2J MSj \A(~y) 6= ; then ~ 2 A0(~y) _j2J ~�~qjj [1::minj2J MSj];where ~ stands for maxTj2J LqjSj (~y)jminj2J MSj \A(~y).16

6.4 Intersection of parameter domainsLet us examine now relations involving intersections of parameter domains. This situation occurs whenwe want to express the fact that exactly one branch of a conditional is taken each time the conditional isexecuted.We �rst examine the particular property DSi(~y)jmin(MSi ;MSj) \ DSi2 (~y)jmin(MSi ;MSj) = ;. Let usconsider all the sets Gi and Gj respectively of vector size MSi and MSj verifying this property. Let Mdenote min(MSi ;MSj).Construction of P� Clearly, if ~pi and ~pj are the parameters of the maximum of Gi and Gj then~pi [1::M] 6= ~qj [1::M]. P� will then be de�ned by this equation and by (32) and (33).How much fuzziness is added? The above de�nition of P� de�nes exactly the parameters of themaximum of all the sets Gi and Gj such that GijM \ Gj jM = ;. Indeed, given ~pi and ~qj , for all0 � p � NSiR; 0 � q � NSjR, verifying P�, the sets f~qi j 0 � q � NSiRg and f~qj j 0 � q � NSjRg havean empty intersection and ~pi (resp. ~pj) is the parameter of the maximum of Gi (resp. Gj) for StatementSi (resp. Sj) at depth p (for the proof, see Section 6.1)For the general case, we de�ne three new sets:� Gi\j = GijMmax \Gj jMmax,� Gi�j = Gi �Gj jMSi and� Gj�i = Gj �GijMSj ,with Mmax = max(MSi ;MSj). We have Gi = Gi�j [Gi\j jMSi and Gj = Gj�i [Gi\j jMSj . Moreover,each of the three new sets is disjointed from the two others. Therefore, we can replace a property using Giand Gj by an equivalent property using Gi�j ,Gj�i and Gi\j. Doing repeatedly such transformations onProperty P, we will eventually get a property using only relations of inclusion between unions of sets andrelations of empty intersections of sets. Both relations can be transformed into relations on parameters ofthe maximumwithout adding fuzziness.6.5 General relationsThis theorem sums up the results obtained in this section and gives the steps for constructing Property P�from a Property P verifying the hypotheses stated in 5.1.Theorem 1 For every property P on parameter domains in the class of properties de�ned in 5.1, the cor-responding P� is de�ned by a union of polyhedra which can be built from P and therefore the set of sourcescan be exactly computed.Proof We �rst consider properties P with at most one relation, simpli�ed with (30) and (31).All the intersections between parameter sets are transformed into new sets thanks to Section 6.4.The new property gives a Property P� by using the results of Section 6.1 and 6.3. P� is de�nedas a conjunction or disjunction of linear terms on the parameters of the maximum.Concerning the application of a monotone increasing function t to parameter domains, themonotony preserves the parameters of the maximum: if ~pk is the parameter of the maximum ofGk for Sk at depth p then t(~pk) is the parameter of the maximum of t(Gk) for Sk at depth p.Therefore the previous results apply easily to parameter domains transformed by linear monotoneincreasing functions.Finally, it can be easily shown that when Property P is a conjunction of several relations ofinclusion, Property P� is the conjunction of the properties on the parameters of the maximumcorresponding to each relation. 17

6.6 ExampleWe present thereafter the formal computation of the source of Statement R of Program E2 (see Section 3.4).We recall the property P on the parameter domains:P(DS1 ;DS2) = (DS1 \DS2 = ;) ^ (DS1 [DS2 = ZZ):Note that in this case the parameter domains do not depend on y, they are sets of scalars and NS1R =NS2R = 0. From DS1 \DS2 = ; and Section 6.4, we deduce one conjunct of P�: 1 6= 2. From Section6.1, we have the relations: 1 2 L0S1(y) _ 1 = ?, 2 2 L0S2(y) _ 2 = ?. Relation (33) is obviously veri�edsince MS1 = MS2 = 1 > 0 = NS1R = NS2R. The relation DS1 [DS2 = ZZ can be written ZZ � DS1 [DS2 .Applying the result of the particular case of Section 6.3 with A(~y) = ZZ and A0(~y) = ;, we get the relation:if L0S1(y) \ L0S2(y) 6= ; then _1�q�2maxL0S1(y) \ L0S2(y)�q :Therefore, P� is de�ned by:P�(1; 2) = (1 6= 2) ^ (1 2 L0S1(y) _ 1 = ?) ^ (2 2 L0S2(y) _ 2 = ?)^ (if L0S1(y) \ L0S2 (y) 6= ; then _1�q�2maxL0S1 (y) \ L0S2 (y)�q):As L0S1(y) = L0S2 (y) = fxj 1 � x � ng and we assumed that 1 � n, L0S1(y) \ L0S2(y) is not empty and itsmaximum is n. We may rewrite P� as:P�(1; 2) = (1 6= 2) ^ (1 � 1 � n _ 1 = ?) ^ (1 � 2 � n _ 2 = ?) ^ (n � 1 _ n � 2):It can be shown easily that as a consequence (1 = n ^ 2 < n) _ (1 < n ^ 2 = n):For each clause of P� in which there is a conditional or disjunction, there will be two di�erent contextsfor the computation of the source. Hence the quast of the source begins with:��������� if 1 = n ^ 2 < nthen Plug in the result given by PIP in context 1 = n; 2 < nelse Plug in the result given by PIP in context 1 < n; 2 = n :The parametric sets of candidates are Q�0S1 (y; �) = Q�0S2 (y; �) = fxj 1 � x � n; x = �g: The parametricdirect dependences are: ~K�0S1(y; �) = ~K�0S2(y; �) = if 1 � � � n then � else ?:Hence the parametric source, after simpli�cation, is:if 1 = n ^ 2 < n then hS1; ni else hS2; ni;and the fuzzy source is: �(y) = fhS1; ni; hS2; nig. Therefore no previous value of s can reach Statement R.7 Iterative analysisThe key remark in this section is that two values of the same variable at two di�erent steps of the executionare equal if they have the same source. Thanks to this remark, we will show that we may go one step furtherin data-ow analyses. That is, that the result of a �rst application of the FADA analysis may in turn helpa second application in deriving a more precise result.18

To see this, suppose that the same array occurs in the left hand side of two statements, with di�eringvariables as subscripts. These variables are supposed not to depend linearly on induction variables. Dataowanalyses do not make assumptions on the values of variables, and therefore are not able to give the exactsource. We may, however, try to prove that whatever the values of these variables, these values are equal. Ashinted above, we may apply a dataow analysis on the subscripting variables themselves, thus iterating theoverall process of the analysis. Similarly, two constraints that are the same function but appear at di�erentplaces in the program have the same value if the variables they use are the same and have the same values.Therefore, the purpose of iterative analysis is to �nd relational properties between the non-linear con-straints appearing in the existence predicates (7) and in the conicting access constraints (8) of di�erentwrite statements. This method may use the results of dataow analysis on the variables of the non-linearconstraints so as to �nd more accurate relations. As this dataow analysis can be fuzzy, the method canthen be applied once more and eventually the fuzziness will be reduced by successive analyses. This method�nds some relations between the parameter sets and then extends these relations to the real domains ofparameters.7.1 Variables in non-linear constraintsTo formalize the previous paragraph, let ch and ch0 be two non-linear constraints. Our purpose is to decidewhether the value of ch at operation � is the same as the value of ch0 at operation �:ch� = ch0': (37)So far, we have de�ned constraints as functions of ~y and of the iteration vector of the surrounding loops.As a matter of fact, a constraint ch depends on variables that are functions of the iteration vector. LetV(h) = (�h1 ; : : : ; �hlh) denote the list of the variables appearing in the expression of ch. At operation ', thevalue of these variables is denoted V(h)'.The following result is used in the sequel:Property 3 If ch and ch0 de�ne the same function (perhaps because they are syntactically equal), Equation(37) holds if V(h) = V(h0) and if the sources of V(h) at operation � and V(h0) at operation ' are the same.Indeed, if these variables have the same exact source, then they have the same value. In the case of fuzzysources, two variables have the same source if they have the same parameter of the maximum. This equalitybetween parameters of the maximum can be obtained by comparing the parameter domains for both readstatements, and this may need another FADA.7.2 Relations on parameter setsThe iterative analysis yields properties on parameter domains, as in 5.2. So as to produce more preciseresults, we are trying to �nd relations on the parameter sets and then extend them to parameter domains.We give thereafter the list of the relations that are detected between two parameter sets Ph and Ph0 and adescription of their detection.Notice that comparing two sets of parameters is useless if the corresponding parameter domains cannotthemselves be compared. This occurs when a parameter domain is de�ned w.r.t. a non-linear constraintwhich does not appear anywhere else, or w.r.t. a variable which does not appear in any set of parameters ofthe other domain.7.2.1 Partial equalityEquality Ph = Ph0 holds ifV(h) = V(h0) and if the value ofV(h) at operation hTh; ~x[1::Nh]i and the valueof V(h0) at operation hTh0 ; ~x[1::Nh0]i have the same source. Detecting this case consists in the computationand comparison of the sources of V(h) and V(h0). 19

Partial equality This is a more general case: only some quast leaves in the sources of V(h);V(h0) areequal. The context then takes into account the di�erent conditions from the branches of the quast for whichthese leaves are actually sources. Let F denote the set of iteration vectors verifying these conditions. Thenthe partial equality corresponds to the equality: Ph \F = Ph0 \F:7.2.2 Image of a parameter setWe now generalize the equality of parameter sets to the case where one parameter set is equal to the imageof the second set by a function.Our purpose is to detect cases in which the value of a non-linear constraint ch at a given step of theexecution is equal to the value of another constraint ch0 at a previous step. That is, we are looking for afunction ~e such that: chhTk;~x[1::Nh]i = ch0 hTk;~e(~x[1::Nh])iRelations between a set and the image of a set can thus be detected. So as to verify the hypotheses of 5.1 onthe relations between parameter domains, ~e has to be a monotone increasing a�ne function with respect toloop counters and structure parameters. Note also that we may have partial equality of a set of parametersand the image of another set by function ~e.Analyzing the following example brings into play partial equality and the image of a parameterset by a function.S0: z=0do x=1,nS1: a(z)=xS2: z=f(x)S3: a(z)=0end dodo y=1,nR : r=a(y)end doOur aim is to �nd the source of a(y) in operation hR; yi. For the two candidate sources S1 andS3, parameter domains are DS1(x; y) = fxjzhS1 ;xi = yg and DS3 (x; y) = fxjzhS3;xi = yg. Theconstraints are the same and the subscripting expressions are both equal to variable z. We willthus �rst apply a dataow analysis to z.First iterate As far as Statement S1 is concerned, the source of z isif x � 2 then hS2; x� 1i else hS0; []i:For Statement S3, the source is hS2; xi. Let f be the function: f(x) = x� 1. We then have:f(G1 \ fij2 � x � ng) = G3 \ fxj1 � x � n � 1g:We thus have the additional environment:if 2 � x � n then �3 = �1 � 1: (38)Second iterate The set of candidate sources for Statement R from Statement S1 is:Q�0S1 (y; �) = fxj1 � x � n; x = �; x = yg;20

whose maximum is: ~K�0S1(y; �1) = if �1 = y then �1 else ?. The direct dependence fromStatement S3 is similar. From (38) we can compute the source of a(y):�(y) = max� � if �1 = y then hS1; �1i else ?;if �3 = y then hS3; �3i else ? �= �������������� if 2 � �1 ^ �1 = ythenmax� (hS1; �1i; hS3; �1 � 1i)else ���������� if �1 = y = 1then hS1; �1ielse ������ if �3 = y = nthen hS3; nielse ?�(j) = f?; hS1; 1i; hS3; nig [fhS1; 1i j 2 � 1 � ng:7.2.3 Composition of a constraint with an a�ne functionLet us now examine a more general case where constraints ch and ch0 are di�erent but there exists somefunction e such that ch = ch0 � e. From a practical point of view, ch and ch0 have to be a�ne functions ofthe variables of the program. All possible a�ne functions e verifying this equality are found by Gaussianelimination.So as to reuse previous results, our aim is to �nd a function f such thate(V(h)hTh;~x[1::Nh]i) = V(h)hTh;f(~x[1::Nh])i:Since this expression is the formal de�nition of a recurrence as given by Redon [17], this problem boils downto the detection of a recurrence on V(h). Notice that detecting recurrences requires the computation of adataow graph, thus additional iterative analyses and recurrence detections may have to be applied.We now have the following equality:ch(V(h)hTh;~x[1::Nh]i) = ch0(e(V(h)hTh;~x[1::Nh]i)) = ch0 (V(h)hTh;f(~x[1::Nh])i):We then try to �nd a relation between V(h)hTh;f(~x[1::Nh])i and V(h0)hT 0h;~x[1::Nh0]i. Such a relation is a partialequality or a property on the image of a set of parameters. Finding such a relation would allow us to �nd arelation between ch(V(h)hTh;~x[1::Nh]i) and ch0 (V(h0)hT 0h;~x[1::Nh0]i).Obviously, we can generalize this result to relations between V(h)hTh;fn(~x[1::Nh])i and V(h0)hT 0h;~x[1::Nh0]i,where n is a positive integer, as illustrated below.The following example is an application of these ideas:S0: b(0)=...do x=1,nS1: b(x)=b(x)+2S2: if b(x)=x then a(16)=5*xS3: if b(x)=x+4 then a(16)=3*xend doR: z=a(16)The parameter domains for direct dependences from Statements S2 and S3, respectively, are:DS2([]) = fxjbhS2;xi = xg andDS3([]) = fxjbhS3;xi = x+4g. Non-linear constraints are di�erent:let c2(z; i) = z � i, c3(z; i) = z � i � 4 and ~g�;�(z; i) = (�z � 4 + �; �i + �). We have:c2(bhS3;xi; x) = c3(~g�;�(bhS3 ;xi; x)):Parameterized functions like ~g�;� are found by resolution of a system of linear equations, anddescribe the set of possible solutions. 21

We then seek a recurrence on z so as to eliminate ~g�;� and to reduce our problem to the case ofan image of a domain of parameters. Recurrence detection shows that:if x > 1 then bhS3;xi = bhS3;x�1i + 2 else bhS3;1i = bhS0;[]i:Let us consider functions ~e(z; x) = (z � 2; x � 1) and f(x) = x � 1. When x > 1, we get:~e(bhS3;xi) = (bhS3 ;f(x)i; f(x)). We notice that if n = 2 and � = 1 and � = �2, then:c2(~g�;�(bhS3;xi; x)) = c2(~e2(bhS3;xi; x)) = c2(bhS3;f2(x)i; f2(x));when x > 2. Moreover, a dataow analysis on b shows that bhS2;xi and bhS3;xi have the samesource. We thus come down to a partial image of a domain of parameters, such that:c3(bhS3;xi; x) = c2(bhS2;x�2i; x� 2);when x > 2.This eventually allows us to prove that the write in S2 covers the write which occurred in S3 twoiterations before. Thus, the sources are:f?g [fhS2; 2ij1 � 2 � ng [fhS3; 3ij1 � 3 � min(2; n)g:Finally, note that the process of �nding the source of a variable to reduce the fuzziness of the computationof another source may not terminate. Indeed, this may happen in programs using for instance a(a(x)). Sucha case can be detected by building a graph of the analyses. There is an edge from the analysis of a in statementS to the analysis of b in statement T i� S is a write into b where a is used in a non linear constraint. Analysesshould be carried according to a linearization of this graph. Cycles in this graph indicate potential nonterminating analyses. It remains to see if one can expect to �nd a �xpoint in such cases.8 Related WorkWork on non-linear constraints in dependence analysis can be divided in two classes. In the �rst one, thedependence analyzer uses a limited amount of mathematical knowledge to decide whether dependences exist.In the second class, to which this paper belongs, no such knowledge is needed, but the results are less precise.An example of the �rst approach is found in Dumay PhD thesis [8] where techniques borrowed from formalalgebra are used to prove or disprove memory based dependences. With some information on polynomialsand exponentials and the computation of derivatives, Dumay's system is able to parallelize familiar kernelslike bloc matrix product or the Fast Fourier Transform.Using a di�erent approach, Maslov noticed in [13] that the set of integer points in a convex body maysometime be de�ned by linear inequalities. For instance xy � 1; x � 0; y � 0 is equivalent to x � 1; y � 1.There are two di�culties with this method:� The number of necessary linear constraints may grow very fast or even becomes in�nite (consider e.g.xy � z).� If the non-linear relation de�nes a non-convex body, one has to introduce disjunction, which complicatesthe subsequent analysis.Still another example of this class of algorithms is the work of Masdupuy [12] in which modulo constraintsare handled exactly.In the other class of methods, one uses syntactical information only. This may include the structure ofthe original program, the shape of subscript expressions and the list of variables which occur in them.The work nearest to our own in that direction is the one by Pugh and Wonnacott [15, 16]. To comparethese two approaches, one must recall that the engine behind Pugh's Array Dataow Analysis is the Omegacalculator, a logical formula simpli�er. The formulae which are handled by this system are Number Theory22

formulae with multiplication and division omitted and constitute what is known as Presburger arithmetic.It is easy to see that this is enough as long as one considers static control programs only. To handle moregeneral situations, the authors introduce uninterpreted function symbols. For instance, the iteration domainof S in the following program:do i = 1,ndo w = 1 while ...S :is given by: 1 � i � n; 1 � w � f(i); where f is an uninterpreted function. Now, while Presburgerarithmetic is decidable, adding uninterpreted functions renders it equivalent to full Number Theory, whichis undecidable. The Omega calculator has been extended to handle particular cases in which a simpli�cationis still possible. The outcome may be:� a formula in which all uninterpreted functions have been eliminated. This is the equivalent of an exactFADA.� a formula in which the uninterpreted functions are used to describe a fuzzy relation. This is thecounterpart of our use of parameters of the maximum.� In some cases, the structure of the formula to be simpli�ed is such that it cannot be handled by theOmega calculator. The o�ending term is replaced by a special marker, unknown. This case does notseem to have a counterpart in FADA.Comparison of Pugh and Wonnacott technique with our own is di�cult, because it depends on detailedknowledge of the inner behavior of the Omega calculator. Some observations on example E2 may be ofinterest here. In Pugh and Wonnacott's terms, there is a (memory based) ow dependence relation betweenStatements S1 and T which is described by:f[x]! []j 1 � x � n; p(x)g;where p is an uninterpreted boolean function which represents the outcome of the test. To obtain the value-based dependence, one has to add the condition that no write to s intervenes between hS1; xi and hR; []i.The part of this condition relating to hS1; x0i is::9x0s:t:(1 � x0 � n; x < x0; p(x0)):None of the constraints in the above formula is strong enough to �x the value of x0. Hence, the applicationof a function to a quanti�ed variable cannot be avoided, and this is not handled by the Omega simpli�er([20], section 8.4.1).There are probably cases in which Pugh and Wonnacott's method may give more precise results thanFADA. This is especially true since Wonnacott ([20] Section 8.3.1) uses semantic knowledge to improve theselection of uninterpreted functions. This is an example of the mixed approach, in which an attempt is madeto use all available information, whether syntactical or semantical, to improve the dependence calculation.This is clearly the road toward a better understanding of dynamic control programs.From the results of ADA or FADA, one may deduce many useful abstractions, like reaching de�nitions,upward and downward exposed regions, and so on. In the case of scalars, this information can be obtainedmore directly by iterative dataow analysis. These methods can be extended to arrays: an example is thework of Peng Tu [19, 18]. Regions are approximated by coarser objects than polyhedra: for instance, regularsections [3]. When solving dataow equations, one has to compute unions and complements of regularsections, which are not regular sections in general. Hence, one introduces approximate operations. Theinformation obtained in this way is less precise than the one given by ADA or FADA, but the analysis isfaster and is precise enough for solving some problems like array privatization. Another case in point is thework of Duesterwald et al.[7]. In our minds, the main interest of FADA is that it gives an exhaustive analysisof the source program, and hence is more versatile than other, less precise techniques.23

9 ConclusionsThis paper gives a method to build a conservative approximation of the ow of values in programs whosecontrol ow and array accesses cannot be known at compile-time. Such programs include control-owconstructs such as whiles and if..then..else constructs, making both control and data ow unpredictableat compile-time. In this paper, we have shown that we can extend the notion of a unique source to that of asource set, and have designed a set of algorithms which give, in many cases, surprisingly precise results. Afuzzy array dataow analyzer is being implemented in Lisp within the PAF project at PRiSM Laboratory.Our method is generic in so far as it gives a framework for fuzzy analysis that may be adapted to mostexact analysis algorithms. More importantly, the net e�ect of our handling of while loops and tests is toadd equations to the de�nition of the candidate set, thus improving the probability of success of fast analysisschemes like [14, 11].Applications of FADA to automatic parallelization include static scheduling, array privatization andregister allocation [7]. As a concluding remark, note that a ? in a source set points to a possible programmingerror. Beyond automatic parallelization, a fuzzy array dataow analysis may therefore be a general tool fortranslators, compilers and program checkers, as array dataow analysis was.Acknowledgments We would like to thank Bill Pugh, Dave Wonnacott and the anonymous referees forhelping us improve the presentation of this paper.References[1] U. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic Publishers, Boston / Dor-drecht / London, 1988.[2] T. Brandes. The importance of direct dependences for automatic parallelization. In ACM Int. Conf.on Supercomputing, St Malo, France, July 1988.[3] D. Callahan and K. Kennedy. Compiling programs for distributed memorymultiprocessors. The Journalof Supercomputing, 2:151{169, 1988.[4] J.-F. Collard. Space-time transformation of while-loops using speculative execution. In Proc. of the1994 Scalable High Performance Computing Conf., pages 429{436, Knoxville, TN, May 1994. IEEE.[5] J.-F. Collard. Automatic parallelization of while-loops using speculative execution. Int. J. of ParallelProgramming, 23(2):191{219, April 1995.[6] J.-F. Collard, D. Barthou, and P. Feautrier. Fuzzy array dataow analysis. In Proc. of 5th ACMSIGPLAN Symp. on Principles and Practice of Parallel Programming, pages 92{101, Santa Barbara,CA, July 1995.[7] E. Duesterwald, R. Gupta, and M.-L. So�a. A practical data ow framework for array reference analysisand its use in optimization. In ACM SIGPLAN'93 Conf. on Prog. Lang. Design and Implementation,pages 68{77, June 1993.[8] A. Dumay. Traitement des Indexations non lin�eaires en parall�elisation automatique : une m�ethode delin�earisation contextuelle. PhD thesis, Universit�e P. et M. Curie, December 1992.[9] P. Feautrier. Parametric integer programming. RAIRO Recherche Op�erationnelle, 22:243{268, Septem-ber 1988.[10] P. Feautrier. Dataow analysis of scalar and array references. Int. J. of Parallel Programming, 20(1):23{53, February 1991.[11] C. Heckler and L. Thiele. Computing linear data dependencies in nested loop programs. ParallelProcessing Letters, 4(3):193{204, 1994. 24

[12] F. Masdupuy. Semantic analysis of interval congruences. In D. Borner, M. Broy, and I.V. Pottosin,editors, Int. Conf. on Formal Methods in Programming and their Applications, volume 735 of LNCS,pages 142{155, Academgorodok, Novosibirsk, Russia, June 1993. Springer Verlag.[13] V. Maslov and W. Pugh. Simplifying polynomial constraints over integers to make dependence analysismore precise. Technical Report CS-TR-3109.1, University of Maryland, February 1994.[14] D. E. Maydan, S. P. Amarasinghe, and M. S. Lam. Array dataow analysis and its use in arrayprivatization. In Proc. of ACM Conf. on Principles of Programming Languages, pages 2{15, January1993.[15] W. Pugh and D. Wonnacott. An exact method for analysis of value-based array data dependences.In Lecture Notes in Computer Science 768: Sixth Annual Workshop on Programming Languages andCompilers, Portland, OR, August 1993. Springer-Verlag.[16] W. Pugh and D. Wonnacott. Nonlinear array dependence analysis. In Third Workshop on Languages,Compilers, and Run-Time Systems for Scalable Computers, Troy, New York, May 1995.[17] X. Redon and P. Feautrier. Detection of reductions in sequentials programs with loops. In ArndtBode, Mike Reeve, and Gottfried Wolf, editors, Procs of the 5th International Parallel Architecturesand Languages Europe, LNCS 694, pages 132{145, June 1993.[18] P. Tu. Array Privatization and Demand Driven Symbolic Analysis. PhD thesis, University of Illinois atUrbana-Champlain, 1995.[19] P. Tu and D. Padua. Array privatization for shared and distributed memory machines. September 1992.[20] D. G. Wonnacott. Constraint-Based Array Dependence Analysis. PhD thesis, University of Maryland,1995.

25

