
Iterative Compilation with Kernel Exploration

D.Barthou2, S.Donadio12, A.Duchateau2, W.Jalby2, and E. Courtois3

1 Bull SA Company, France
2 Université de Versailles, France

3 CAPS Entreprise, France

Abstract. The increasing complexity of hardware mechanisms for recent processors makes high
performance code generation very challenging. One of the main issue for high performance is the
optimization of memory accesses. General purpose compilers, with no knowledge of the application
context and approximate memory model, seem inappropriate for this task. Combining application-
dependent optimizations on the source code and exploration of optimization parameters as it is
achieved with ATLAS, has been shown as one way to improve performance. Yet, hand-tuned codes
such as in the MKL library still outperform ATLAS with an important speed-up and some effort
has to be done in order to bridge the gap between performance obtained by automatic and manual
optimizations.
In this paper, a new iterative compilation approach for the generation of high performance codes
is proposed. This approach is not application-dependent, compared to ATLAS. The idea is to
separate the memory optimization phase from the computation optimization phase. The first step
automatically finds all possible decompositions of the code into kernels. With datasets that fit into
the cache and simplified memory accesses, these kernels are simpler to optimize, either with the
compiler, at source level, or with a dedicated code generator. The best decomposition is then found
by a model-guided approach, performing on the source code the required memory optimizations.
Exploration of optimization sequences and their parameters is achieved with a meta-compilation
language, X language. The first results on linear algebra codes for Itanium show that the perfor-
mance obtained reduce the gap with those of highly optimized hand-tuned codes.

1 Introduction

The increasing complexity of hardware mechanisms incorporated in modern processors makes high per-
formance code generation very challenging. One of the key difficulty in the code optimization process is
that several issues have to be simultaneously addressed/optimized: for example maximizing instruction
level parallelism (ILP) and optimizing data reuse across multilevel memory hierarchies. Moreover, very
often, a code transformation will be beneficial to one aspect while it will be detrimental for the other one.
The whole problem worsens because the issues are tackled by different levels of the compiler chain: most
of the ILP is optimized by the backend while data locality optimization is performed at a higher level.

A good example for highlighting all of these problems is the simple matrix multiply operation. Al-
though the code is fairly simple, none of the recent compilers is really able to generate performance close
to hand coded routines. For dealing with this problem, Dongarra et. al.[18] have developed a specialized
code generator (ATLAS) combining iterative techniques and experimentation. ATLAS is a very good
progress in the right direction (it outperforms most of the compilers) but very often it still lags behind
hand coded routines. Recently, ATLAS has been improved by replacing the iterative search by an adapted
cost model enable to generate code with nearly the same performance [21]. But even with these recent
improvements, vendor [8,16] or hand-tuned BLAS3 [11] still outperforms ATLAS compiled codes and,

up to now, such libraries are the only ones capable of reaching near-peak performance on linear algebra
kernels. So what is ATLAS and more generally compilers still missing in order to reach this level of
performance ?

In this paper we propose an automated process (i.e. no hand coding) which allows to close this gap.
The starting point is to decouple the two issues (ILP and data locality optimizations) and then to solve
them separately. For the matrix multiply operation, blocking is performed to produce a primitive which
will operate on subarrays fitting in cache. This blocking does not provide us with a single solution but
rather with constraints on block sizes. Then for optimizing the primitive which is still a matrix multiply,
we use a bottom up approach combined with systematic exploration. In general, the triply nested loop will
be too complex to be correctly optimized by a compiler even if the operands are in cache (i.e. no blocking
for cache has to be performed). Therefore, from the triply nested loop, several kernels (using interchange,
strip mine, partial unroll) are generated. These kernels are one up to three dimensional loops, loop bodies
containing several statements resulting from the unrolling. Additionally, to simplify compiler’s task, loop
trip count is set to a constant. The rationale for such kernels is to be simple enough so that a decent
compiler can generate optimal code. Then all of these kernels are systematically tested to determine
their performance. As a result of this process, a set of kernels reaching close to peak performance is
produced. From these kernels, the primitives can be easily rebuilt. And finally, taking into account block
size constraints, a primitive is selected and the whole code is produced.

As we will demonstrate in this paper, such an approach offers several key advantages: first it generates
very high performance codes competitive with existing libraries and hand tuned codes, second it relies on
existing compilers, and third it is extremely flexible i.e. capable of accommodating arbitrary rectangular
matrices (not only the classical square matrix operation).

The approach proposed is demonstrated on BLAS kernels but it does not depend upon any specifics
of the matrix multiply and it can be applied to other codes. In contrast to ATLAS, we did not a priori
select a given primitive which is further tuned. On the contrary, a large number of primitives which are
automatically produced, is considered and analyzed. Each of these primitives correspond to the appli-
cation of a given set of transformations/optimization. Generation and exploration of these optimization
sequences and their parameters is achieved with a meta-compilation language, X language.

The approach described in this paper applies to regular linear algebra codes. More specifically, the
codes considered are static control programs[9]: loop bounds can only depend linearly on other loop
iteration counters or on variables that are readonly in the code. Array indices depend linearly on loop
indices.

The paper is organized as follows: Section 2 describes the iterative kernel decomposition and their
optimization, Section 3 briefly gives the main features of the X Language, Section 4 gives experimental
results performed on various matrix shapes comparing our approach with ATLAS and MKL, Section 5
describes related work and Section 5 gives some future directions.

Motivating Example

Consider the standard code for matrix vector product given in Figure 1. We will assume that the matrix
sizes M, N are such that both matrix and vector fit in cache.

The same code is transformed into the code of Figure 2 by unrolling two times the outer loop (tail
code is not presented). The inner loop is no longer a simple daxpy but a variant called daxpy2. The
transformation process can be applied with different unrolling degree values 3, 4,. . . resulting in similar
inner loops called daxpy3, daxpy4,. . . Therefore, for the same original matrix vector routine, different
decompositions can be obtained using different kernels daxpy2, daxpy3,. . .

for (i = 0; i < M; i++)

ML = &M[i][0]; b = B[i];

// DAXPY code

for(j = 0 ; j < N ; j++)

A[j] += b * ML[j];

Fig. 1. Dgemv with daxpy

for (i = 0; i < M; i+=2)

ML1 = &M[i][0] ; b1 = B[i];

ML2 = &M[i+1][0]; b2 = B[i+1];

// DAXPY2 code

for(j = 0 ; j < N ; j++)

A[j] += b1 * ML1[j];

A[j] += b2 * ML2[j];

Fig. 2. Dgemv with daxpy2

Fig. 3. Performance of daxpy with different sizes and unrolling degrees.

For this experiment, as for all others presented in this paper, the platform used is a Novascale Bull
server featuring two 1.6Ghz Itanium 2 processors, with a 256KB level 2 cache and a 9MB level 3 cache.
All codes are compiled using the Intel C compiler (icc) version 9.0 with -03 -fno-aliases flags. For
each of the unrolling factor of the outer loop resulting in the different kernels daxpy2, daxpy3, . . . , the j

loop was also unrolled 1, 2, 3 and 4 times (resp. U1, U2, U3 and U4). Performance of the resulting kernels
(i.e. the j loop only) for N = 100, 200, 400, 800 is displayed in Figure 3. Results below 2000MFlops do not
appear in the figures. Due to lack of space, performance numbers of the whole matrix vector primitive

are not shown but they have been generated and they are strictly equivalent to the performance number
of the primitive they are using.

This shows several points:

– The compiler is able to generate near peak performance with a daxpy12 unrolled 2 times, of size
400 (peak performance for this machine is 6300MFlops). Even if this is obtained through a vendor
compiler, this shows that compiler technology is able to produce high performance codes, without
the help of hand-tuned assembly code;

– There is a speed-up of 3.13 between the slowest version (daxpy 1, unroll factor of 3) and the fastest
one, among the versions that are displayed. This speedup is worth the effort but the optimization
parameters to use in order to obtain the fastest version are far from obvious. This advocates for an
iterative method relying on search;

– Selecting the right vector length is essential to reach peak performance. Vector length 100 is too short,
while vector length 400 is optimal. Vector length 800 examplifies a typical performance problem of
Itanium L2 cache banking system: since 800 = 25x32 all of the vectors ML1, ML2, etc ... start in the
same L2 bank.

This illustrates the fact that micro-optimization of loop can bring substantial performance improvement,
even when resorting only to compilers. The rest of the paper shows how to use this idea in order to
generate automatically high-performance linear algebra codes.

2 Iterative Kernel Decomposition

The principle of the approach described in this paper is the following: the code is first tiled for memory
reuse. Then each tile is tiled again to create computational kernels. The performance of these kernels is
evaluated, for different tile sizes and for different memory alignments, independently of the application
context. The most efficient kernels are then put back into the memory reuse tile, according to the different
possible sizes of the tile and the performance of the tile is evaluated. The data layout transformations
(copies, transpositions) required by the computational kernels are also evaluated by microbenchmarking.
From there, a decision tree builds up, for all loop sizes, the best decomposition into memory reuse
tiles and computational tiles, according to the cost previously evaluated. All the steps concerning kernel
optimization are new contributions for high performance compilation approach and are illustrated in
Figure 4.

Each step is presented in details in the following sections. Figure 5 represents a matrix multiplication
that will illustrate each step of the approach.

2.1 Loop Tiling

The goal of loop tiling[19,4,14,13] is to reduce memory traffic by enhancing data reuse. Tiling also enables
memory layout optimizations, such as copies or scalar promotions to exhibit locality for instance. Given
the cache size, the tile sizes must be such that the working set used in the tile fits into the cache.
Moreover, we impose that tiles are rectangular. Indeed, even for a non rectangular initial iteration domain,
it is always possible to tile most of the computation with rectangular bounds. The remaining iterations
represent then a negligible amount of computation. Then, rectangular tiles are easier to optimize (possible
to unroll with no remainder loop, more regular address streams for prefetching,. . .). Due to the fact that

Tiled
code

Optimized

Generation
TileGenerator

Kernel Execute &
Measure

Kernel

Engine
Search

Tiled
code

Kernel
Micro

Optimization

+
CODE

pragma

X−Language

reuse
memory
Tiling for

Kernel optimization generation

Alignment
Memory

Factor
Unrolling

MFlops

Size

Kernels Kernel

Optimized

Tile
Size

Fig. 4. Steps of iterative kernel decomposition

for (i = 0; i < N ; i++)

for (j = 0; j < N ; j++)

for (k = 0; k < N ; k++)

c[i][j] += a[i][k] * b[k][j];

Fig. 5. Naive DGEMM.

// copy B into b by blocks of width NJ

for (i = 0; i < N ; i += NI)

// copy A into a by block of width NK

for (j = 0; j < N ; j += NJ)

// copy C into c

for (k = 0; k < N ; k += NK)

// Tile for memory reuse

for (ii = 0; ii < NI; ii++)

for (jj = 0; jj < NJ; jj++)

for (kk = 0; kk < NK; kk++)

c[ii][jj] += a[ii][kk] * b[kk][jj];

Fig. 6. Tiled DGEMM.

the global iteration space may not permit all tile sizes, a set of tile sizes that enable the partition of any
outer iteration domain is considered.

The tiling is obtained through strip mine of all loops, followed by a search using loop permutation,
skewing, reversal and loop distribution. Tile sizes are parametric and will be determined later in the
method. The exact evaluation of the working set may lead in general to complex results, difficult to
handle[3]. We choose to use for each array the min, max interval index value used in the tile as an over-
approximation of the array elements accessed. Other methods, more sophisticated, can later be used.

The tiling applyied on DGEMM is presented Figure 6. The tiled code corresponds to a mini-MMM
according to ATLAS terminology. The copy-out of c is not included.

2.2 Tiling for Computation Kernels

The code of the previously obtained tiles is then micro-optimized. It is important to stress the fact
that a part of the overall code performance can only be obtained at this level. Further optimizations
with scheduling among tiles or with higher level in memory hierarchy optimization may only degrade
performance obtained in this level. The optimization of the tile code is in two steps: (i) we create inside
the tile a simpler computation tile. Note that usually, this level of tiling corresponds to a level of blocking

for register file. Here we create instead a new tile containing one loop (1D tile) up to the dimension of
the surrounding tile loops. (ii) the computation tile is optimized and evaluated in an iterative process.

The goal is to partition data reuse tiles into tiles that are simpler for a code generator (basically the
compiler) to optimize. Compiler technology has a long history on low-level, low-complexity optimizations.
Even if affine schedules and complex array data dependence analysis have existed since a long time, few
are really implemented in vendor compilers and a large part of performance, when all the dataset is in
cache, comes from the backend optimizations anyway. Simplifying source code by giving simple kernels
once at a time is a method to take advantage of a code generator high quality backend (constant loop
bounds enable accurate prefetching distances, opportunities for better unrolling or software pipelining).

The search for computation kernels relies on application of stripmine and loop permutations. The
resulting kernels come from a selection of this inner tile. After these simple transformations, partial
unroll is applied to the loops not in the kernel, generating many variations of the same family of kernel.
In order to bound the search, range of unrolling factor is defined by the user with a pragma annotation in
the source code. The data structures are then simplified, such that all iteration counters not in the kernel
are considered as constants and projected out. A memory copy, transposition or another data layout
transformation may be necessary to simplify the data layout.

The search is exhaustive, therefore a bound of the search space has to be given: for perfect loop

nests, of depth n, there are

(

p

n

)

possible kernels with p loops (considering any loop order, less if some

dependences prevent some permutations). For each kernel with p loops, there are at most n − p loops to
unroll, therefore an upper bound of the number of kernels, including all versions obtained by unrolling,
is O(n.2n) where n is the depth of the initial loop nest. This not an issue since the maximum loop depth
is usually lower than 4.

Concerning the mini-MMM code for DGEMM, searching for kernels leads to 5 different kernels, 4 of
them are presented in Figures 7, 8, 9, 10. The remaining 3D kernel is the DGEMM itself. The values n,
m correspond to the unrolling factor of the surrounding loops.

for(i = 0 ; i < ni ; i++)

c11 += V1[i] * W1[i];

...

c1n += V1[i] * Wn[i];

c21 += V2[i] * W1[i];

...

cmn += Vm[i] * Wn[i];

Fig. 7. 1D Kernel: dot product nm

for(i = 0 ; i < ni ; i++){

V1[i] += a11 * W1[i];

...

V1[i] += a1n * Wn[i];

V2[i] += a2n * W1[i];

...

Vm[i] += amn * Wn[i];

Fig. 8. 1D Kernel: daxpy mn
for (i = 0; i < ni ; i++)

for (j = 0; j < nj ; j++)

c1[j] += a1[j] * b[i][j];

...

cn[j] += an[j] * b[i][j];

Fig. 9. 2D Kernel: dgemv

for (i = 0; i < ni ; i++)

for (j = 0; j < nj ; j++)

c[i][j] += a1[i] * b1[j];

...

c[i][j] += an[i] * bn[j];

Fig. 10. 2D Kernel: outer product n

2.3 Kernel Micro-Optimization

Once kernels have been selected, their optimization is achieved. As stated before, this step mainly relies
on the optimization capacity of some code generator. However, some optimizations and optimization
parameters are still searched for:

– Loop bound sampling: different values of loop bounds are tested. The reason is that the loop bound
impact directly the working set, using other levels of cache that the outer data-reuse tile. More-
over, mechanisms such as prefetching may be influenced by the actual value of the bound and loop
overheads, pipelines with large MAKESPAN or large unrolling factors can take advantage of larger
iteration counts. The span of the sampling can be user-defined through X language pragmas.

– Array alignments: the code generated may be unstable w.r.t. the alignment of the arrays starting
addresses. Important performance gains can be obtained by finding the best alignment[12]. Testing
the different possible alignments reveals performance stability. If stability is an issue, it is then possible
to copy part of the arrays necessary for the tile with the specific alignments that enable the best
performance.

– Loop transformations: interchange for kernels that have more than one loop, and unrolling (some-
times taken care of by the compiler) generate new versions of the kernel and increase parallelism.
Optimizations such as software pipeline are performed by some compilers.

All experimental results are presented in Section 4. Note that as the data structures have been simplified
and do no longer depend on the surrounding loops, it is quite possible to optimize the kernels in-vitro:
out of the application context. The advantage of such approach is that kernel optimizations and micro-
benchmarkings can be easily reused from one code to the other. The idea of using a database of highly
optimized kernels is already used by CAPS with codes generated by XLG [20].

This suggests another method for kernel micro-optimization: with high performance libraries or ker-
nels, matching the source kernel with an existing library function (source interface) would avoid completely
the iterative optimization step. The kernel can then be replaced by the assembly version of the library
function. Pattern-matching based techniques have been applied for instance by Bodin[2] for vectorized
kernels. In general, recognizing codes even after data structure and loop transformations boils down to
algorithm recognition techniques[1,15].

Finally, exploration space can be limited by static evaluation and comparison of the assembly codes.
Tools such as MAQAO[6] potentially detects inefficient codes from the assembly and compare different
versions. Indeed, the compiler sometimes generates the same assembly code from two different source
codes.

2.4 Putting Kernels to Work

The final step consists of reassembling the code from the available kernels. This bottom-up phase first
builds the data reuse tiles with kernels, according to the tile size. For a sampling of tile sizes, each
decomposition in kernels is evaluated. In particular very thin tiles are studied because they necessitate
special computation kernels to tile them. Then copies and other data layout transformations necessary
for the kernels to work are added.

For the matrix multiplication, tiles considered are denoted by formula such as (k×N)X(N × k): this
denotes the multiplication of a matrix of size k×N where k << N , by a matrix N × k. In these formula,
k denotes an integer much smaller than N . The tile size studied are: (k×N)X(N ×N),(N ×k)X(k×N),
(k × N)X(N × k) and (N × N)X(N × N).

Figures 11 and 12 present two mini-MMM tiled with a kernel of daxpy 10,1 unrolled 2 times (this
unrolling factor concerns the loop inside the daxpy) and a kernel of dot product 1,1 unrolled 10 times.
The later requires that the block b is transposed. The code of Figure 11 would be a good kernel for a
matrix product of the form (k×N)X(N ×N) but is not adequate for a matrix product (N ×k)X(k×N)
with k < 10 for instance. Another kernel decomposition is then needed.

for (ii = 0; ii < NI; ii++)

for (jj = 0; jj < NJ; jj+=nj)

for (kk = 0; kk < NK; kk+=10)

daxpy_10_u2(nj,c[ii],

a[ii][kk],..,a[ii][kk+9],

b[kk],..,b[kk+9]);

Fig. 11. Tile using daxpy 10,1 unrolled 2 times.

// transpose b into bt

for(ii = 0 ; ii < NI; ii++)

for(jj = 0 ; jj < NJ; jj++)

for (kk = 0; kk < NK; kk+=nk)

dotproduct_u10(nk,c[ii][jj],a[ii],bt[jj]);

Fig. 12. Tile using dotproduct 1,1 unrolled 10
times.

Finally, according to the external loop sizes, the best performing combination of tile and memory
copies is selected. Evaluation of the fastest combination requires that the memory operations are also
evaluated. As a matter of fact, they are considered as kernels and are micro-optimized as well. A decision
tree selects the right version.

3 X Language

X Language[7] is a language of pragmas used for meta-compilation: with the help of pragmas, a user can:

– Specify fragments of codes for which X Language transformations apply, using #pragma xlang begin

and #pragma xlang end directives around selected code;
– Trigger some source to source transformations on the specified code using specific pragma directives,

such as

#pragma xlang transform tile(i,II,STRIDE)

#pragma xlang transform unroll(i,UNROLL)

to first tile the loop i with a stride STRIDE into a new loop II and then unroll this new loop by
a factor of UNROLL. Available transformations include unrolling, tiling, fission, fusion, interchange,
scalar promote,. . . The transformation engine is in Prolog and transformations can easily be added
to the language.

– Generate multiple versions by defining search intervals, such as

#pragma xlang parameter STRIDE [16:128:32]

#pragma xlang parameter UNROLL [1:8:1]

These directives define that STRIDE can take any value multiple of 32 between 16 and 128. X Language
then generates automatically all versions of the code fragment with these optimization parameters.

– Trigger a search for the decomposition of a code fragment into kernels:

#pragma xlang decompose i

This directive decomposes loop i into kernels. This step corresponds to the tiling into computation
kernels. X Language generates as many files as different kernels found.

Compared to the version presented in [7], this version of X Language is based on a C99 front-end parser
(tiny C compiler), relies on a Prolog engine for the source to source transformations and finds kernels
that compose a code fragment. Micro optimization of these kernels still requires now another compilation
step using X Language. Testing stability w.r.t. array alignment is achieved by another tool, Kerbe, which
is not yet linked to X language. Further automation of the method presented in this paper is planned for
future work.

4 Experimental Results

We study in this section different kernels to do a matrix-matrix multiplication (DGEMM) and a convo-
lution function. We compare these results with those of the functions of library like Atlas and the Intel
library MKL. As for all experiments, after the kernel decomposition, each kernel is evaluated separately
and then inside the data reuse tile.

4.1 Micro-Optimization of DGEMM Kernels

All kernels are presented in previous sections.
For 1D kernels, daxpy n, 1 kernels (m = 1) have been evaluated and the results of the experiments are

presented in Figure 3. All experiments have measured the impact of array alignment. Only the best results
are presented. For 2D kernels, performance of matrix-vector product are presented in the following table:
The Figure 13 sums up performances of the outer product kernel. The 3D kernel represents a complete

N cycles cycles/fma MFlops

96 50166,7 0,544 5863,970
128 88332,9 0,539 5918,367
160 137900,5 0,538 5929,368
192 226383,5 0,614 5195,439
Table 1. Matrix-Vector multiply

matrix matrix multiplication. Its performance are shown in Figure 18 and prove that this is not an
adequate kernel.

4.2 Results on DGEMM Operation

We present the best results of dgemm according to the size of the tile or of the matrices. The decomposition
is automatically performed by our tool, given the detected kernels. The limit sizes (values of k << N)
are determined by the user in X language. Here, we choose k = 1, 2, 4, 8 and N ranges from 100 to 1500.
Results for Atlas, MKL and our method are presented for the same tile sizes.

Fig. 13. Outer product performance for different versions and sizes.

Type (k × N)X(N × N): This type of tile corresponds to a 2D kernel, performing k vector-matrix
products (named Dgemv). For this type of tile, the fastest dgemm uses a kernel of dotproduct 1,1 unrolled
10 times, requiring a matrix transposition of b. Performance results are displayed in Figure 14 and
following. A 50% speedup is obtained w.r.t. ATLAS and performance follows those of the MKL library.
Performance drops around N = 800 because the tile size exceeds the cache size. At this point the outer
tiling or the use of another kernel of our library can correct this degradation.

Type (N × k)X(k × N): This type of tile corresponds to a 1D kernel, performing k outer products.
For this type of tile where the common dimension if much lower than the others, the fastest dgemm uses
the kernels of daxpy k, 1. Therefore each value of k requires a different kernel. Performance results are
displayed in Figure 15 and following. The results outperform those of ATLAS by more than a factor of
2 and MKL is better by 50%. For N > 900, performance drops since the tile size exceeds the cache size,
which is out of bounds for the kernel execution.

Fig. 14. DGEMM (kxN) X (NxN) with k=1,2,4,8.

Type (k × N)X(N × k): This type of tile corresponds to a 1D kernel, performing k independent dot
products. For this type of tile, the fastest dgemm uses the kernel of dot product 6, 6. Performance results
are displayed in Figure 16 and following. The results outperforms those of ATLAS by a factor of at least
3 and of MKL by a factor of at least 2. The dataset still fits into the cache for large values of N , since
the resulting matrix is very small. Note that the performance of our product is very unstable w.r.t. the
array alignment. Array copies when entering inside the tile prevents such unpredictability.

Type (N × N)X(N × N): Finally, we build the code of a complete matrix product. As this step is
not yet automated (construction of the decision tree), we consider only square matrices. Taking only into
consideration the previous experimental results for various tile sizes, we choose to tile the matrices with
rectangular matrices of the type (k×N)X(N × k) with k = 6 (best performance) resorting to a kernel of
daxpy 10, 1 unrolled twice. Performance surprisingly enough matches those of the MKL, using only the
compiler and source to source transformations. The performance of the naive code are shown in Figure
18 for comparison.

Fig. 15. DGEMM (Nxk) X (kxN) with k=1,2,4,8.

4.3 1D Convolution

This code presented in Figure 19 is an example of how to reuse kernel micro-optimization for other codes.
Indeed, this code can be decomposed, after tiling, into daxpy and dot product kernels again. Using one
of the previously optimized kernels leads to a 66% performance improvement.

5 Related Works

Among related works, many works have been dedicated to iteration exploration of optimization search:

Atlas[18] explores tile sizes and performs some simple micro-optimization (software pipeline, scalar
promotion,. . .), but it relies mainly on only one kernel. This kernel was chosen according to its good ratio
memory accesses/computations, not according to its performance on the target architecture. It is however
possible to introduce new high performance kernels into Atlas, since there is an add-on mechanism that
enable Atlas to use external, possibly hand-tuned assembly, codes. Compared with Atlas, the approach
described in the paper is not limited to specific application and performs quite extensive search for the
micro-optimizations, having the opportunity to find better kernels. This shows up on the performance
results of previous section, where our approach compares to vendor library performance and outperforms
Atlas. On the other hand, our method does not resort to exhaustive search and poor performance may
result from the selected parameters. For example the exploration of tile sizes might generate unexpected
results such as the poor performance numbers reported for vector length 800 in the motivating example.

Fig. 16. DGEMM (kxN) X (Nxk) with k=1,2,4,8.

Fig. 17. Optimized DGEMM. Fig. 18. Naive DGEMM

For model-based Atlas[21], the model targets essentially cache behavior. Our approach focuses more
on micro-mmm optimization, and resorts to simple model based tiling and then iterative search for finding
tile sizes, guided by the user. The use of more complex models ([10] for instance) is still possible.

Extensive search among optimizations[5] shows that it is difficult to understand the links between
optimization parameters, optimization sequence and performance. The exploration proposed by the au-
thors is very time consuming and yet does not include many optimizations. In comparison, our method

for(i=0;i<N-n;i++)

for(j=0;j<2*n;j++)

a[i] += b[j] * c[i-j+n];

Fig. 19. Code of 1D convolution.

Fig. 20. Results of 1D convolution with daxpy 5,1
unrolled twice.

resorts to a very small number of transformations and relies on existing compiler to perform adapted
optimizations.

The compiler optimization space exploration proposed by [17] changes the heuristic guiding optimiza-
tions by a search. This search is not exhaustive and is guided by some cost function. The goal is mostly
to improve the optimization step of the compiler but does not seem to be aggressive enough to apply to
library optimization.

Finally, [11] describes a methodology for hand-tuned optimization, applied to BLAS optimization.
The authors propose a decomposition of micro kernel similar to ours, according to different tile sizes.
The main focus of this work is to compact the data layout (making copies or transpositions of arrays) in
order to improve TLB hit ratio. All the fine-tuning of micro kernels is however performed by hand. In
comparison, our approach is automatic, at the expense of a small performance degradation, and is not
specific to matrix matrix multiplication.

6 Conclusions/Future Directions

In this paper, we introduced a new automated approach for generating highly optimized code addressing
simultaneously ILP issues as well as data locality issues. This approach relies on state of the art compiler
and does not require any hand coding. This approach has been successfully validated on Itanium and
BLAS3/BLAS2 routines, outperforming ATLAS and being very competitive with MKL highly tuned
routines.

To be successful, this approach requires a state of the art compiler capable of generating kernels with
performance close to peak. We performed experiments replacing icc with gcc; unfortunately gcc is far
from being able to generate good code even on simple DAXPY like kernels and the overall performance
results were pretty low. Now, when looking further at the exact requirements of our approach, what is
essential is the ability to compile simple code structure, i.e. one dimensionnal loops with a loop body
containing regular array access. Such capabilities are provided for example by XLG[20] code Tuner devel-
opped at CAPS Entreprise which is using specific code optimization techniques for well structured vector
loops. Experiments were also performed replacing icc by XLG code Tuner: the results in terms of overall
performance were similar at least for medium and large matrix sizes. However, XLG Caps Tuner was
much easier to drive than icc (requiring less tuning parameters) and for small matrix sizes, XLG Caps
Tuner also is capable of generating better code.

Finally, two directions are the main focus for future works: (i) More codes and libraries need to be
tested with this approach, (ii) More architectures need to be tested besides Itanium. It includes not only
testing other uniprocessor but also tackling the multicore/multithread case.

References

1. C. Alias and D. Barthou. On Domain Specific Languages Re-Engineering. In ACM Int. Conf. on Genera-

tive Programming and Component Engineering, pages 63–77, Tallinn, Estonia, September 2005. LNCS 3676,
Springer-Verlag.

2. F. Bodin, Y. Mevel, and R. Quiniou. A user level program transformation tool. In ACM Int. Conf. on

Supercomputing, pages 180–187, New York, NY, USA, 1998. ACM Press.
3. P. Clauss. Counting solutions to linear and nonlinear constraints through Ehrhart polynomials: Applications

to analyze and transform scientific programs. In ACM Int. Conf. on Supercomputing, pages 278–295. ACM
Press, 1996.

4. S. Coleman and K. S. McKinley. Tile size selection using cache organization and data layout. In ACM Conf.

on Programming Language Design and Implementation, pages 279–290, New York, NY, USA, 1995. ACM
Press.

5. K. D. Cooper and T. Waterman. Investigating Adaptive Compilation using the MIPSPro Compiler. In Symp.

of the Los Alamos Computer Science Institute, October 2003.
6. L. Djoudi, D. Barthou, P. Carribault, C. Lemuet, J.-T. Acquaviva, and W.Jalby. Exploring application

performance: a new tool for a static/dynamic approach. In Symp. of the Los Alamos Computer Science

Institute, Santa Fe, NM, October 2005.
7. S. Donadio, J. Brodman, K.Yotov, T. Roeder, D. Barthou, A. Cohen, M. Garzaran, D. Padua, and K. Pingali.

A language for the Compact Representation of Multiple Program Versions. In Languages and Compilers for

Parallel Computing, Hawthorne, New York, October 2005.
8. Engineering and scientific subroutine library. Guide and Reference. IBM.
9. P. Feautrier. Dataflow analysis of scalar and array references. Int. J. of Parallel Programming, 20(1):23–53,

February 1991.
10. B. Fraguela, R. Doallo, and E. Zapata. Automatic analytical modeling for the estimation of cache misses.

In Int. Conf. on Parallel Architectures and Compilation Techniques, page 221, Washington, DC, USA, 1999.
IEEE Computer Society.

11. K. Goto and R. van de Geijn. On reducing tlb misses in matrix multiplication. Technical report, The
University of Texas at Austin, Department of Computer Sciences, 2002.

12. W. Jalby, C. Lemuet, and X. Le Pasteur. Wbtk: a new set of microbenchmarks to explore memory system
performance for scientific computing. Int. J. High Perform. Comput. Appl., 18(2):211–224, 2004.

13. I. Kodukula, N. Ahmed, and K. Pingali. Data-centric multi-level blocking. In ACM Conf. on Programming

Language Design and Implementation, pages 346–357, 1997.
14. I. Kodukula and K. Pingali. Transformations for imperfectly nested loops. In ACM Int. Conf. on Supercom-

puting, page 12, Washington, DC, USA, 1996. IEEE Computer Society.
15. R. Metzger and Z. Wen. Automatic Algorithm Recognition: A New Approach to Program Optimization. MIT

Press, 2000.
16. Intel math kernel library (intel mkl). Intel.
17. S. Triantafyllis, M. Vachharajani, and D. I. August. Compiler Optimization-Space Exploration. Journal of

Instruction-level Parallelism, 2005.
18. R. Whaley and J. Dongarra. Automatically tuned linear algebra software, 1997.
19. M. Wolfe. Iteration space tiling for memory hierarchies. In Conf. on Parallel Processing for Scientific

Computing, pages 357–361, Philadelphia, PA, USA, 1989. Society for Industrial and Applied Mathematics.
20. Caps entreprise. http://www.caps-entreprise.com.
21. K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingali, and P. Stodghill. Is search really necessary to

generate high-performance blas, 2005.

