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Abstract. According to projection based on hardware evolution, the
video bitrate for full HD video encoded in real time with MPEG-4 AVC
is expected to reach the 1 Mbps threshold in 2009.

This paper show that it is possible to outperform this goal using a global
approach combining algorithmic and code optimization. The MPEG-4
AVC encoder provides lower video bitrate than previous MPEG-2 and
MPEG-4 v2 encoders for the same video quality. This is at the expense
of a higher computational complexity (10 times more than previous en-
coders).

The proposed global approach combines algorithmic improvements and
original code optimization techniques. The algorithmic parts consists in
a fast mode decision algorithm for intra and inter prediction based on
spatial correlation information. Intuitively, the mode of prediction is se-
lected via the exhaustive full search manner. When the modes of the
neighbors are already decided, the one of the current block can be inher-
ited from the best matched neighbors. A threshold for matching criteria
is defined to ensure the rollback to the exhaustive search in the case of
high deviation.

The code optimization part consists in dynamic code generation using
SIMD instructions and handling data alignment issues. From a generic
description of the essential functions of the encoder, many versions are
dynamically generated and automatically optimized according to the
alignment of the different blocks of data, outperforming usual imple-
mentation resorting to a limited number of hand-coded versions.

With the algorithmic optimization, the experimental results show that
it is possible to save the analyzing time and therefore the speed of the
encoder up to 16% with a slight increment (less than 1%) in bitrate
of the compressed contents. With the code optimization, up to 20% of
speed-up is achieved for the encoder, compared to hand-tuned vectorized
implementations.

1 Introduction

The new H.264 (or MPEG-4 AVC)[4] video coding standard has gained more
and more attention recently, mainly thanks to its high coding efficiency. The



encoder complexity, however, is largely augmented. Among all modules in the
encoder; the prediction mode decision (including motion estimation ME in the
inter mode) contributes most of the complexity, especially when Rate-Distortion
Optimization (RDO)[16] is used. The flexibilities of prediction mode - the main
factor that exposes a heavy load on H.264 encoder - can be summarized as
followings:

— H.264 encoder deploys a tree-structured hierarchical macroblock (MB) par-
titions with various sizes as encoded entities. The inter-coded 16x16 pixel
MBs can be broken into macroblock partitions of sizes 16x8, 8x16, or 8x8.
The latter are also known as sub-macroblocks. Sub-macroblock, in turn, can
be further divided into partitions of size 8x4, 4x8 and 4x4. Hereafter, we will
refer to these seven block types as 16x16, 16x8, 8x16, 8x8, 8x4, 4x8 and 4x4
respectively. They can be encoded with either inter or intra (Intra mode can
be performed on three block types only: 4x4, 8x8 and 16x16). Therefore, we
add a prefix inter or intra respectively to block types to clarify the prediction
mode in the future reference.

— If a block is inter-coded, multi reference frame (up to 32) is used to search
the most matching block. In addition, quarter pel motion vector precision is
used.

— If a block is intra-coded, we can make use of several options: Intradx4 and
intra8x8 support 9 modes of intra prediction while intral6x16 support 4
ones.

Choosing the optimal prediction mode among all of the possibilities above
is a complex question. The best result can be obtained by the deployment of
the RDO framework. That is, each MB must traverse through all possible inter
/ intra encoding modes. For each mode, the full encoding process is performed
to calculate the resulting bits for encoding that MB. The full decoding process
is then involved to reconstruct the MB and to derive the resulting distortion.
The prediction mode producing the minimum Global Cost (GC) will be selected
as the final mode for the actual encoding process of the MB in question. The
mathematic formula of GC is the following:

GC pode (5.7, MODE|. ) = SSD(s,r, MODE)
+ 1 -R(s,r, MODE)

In the above equation, SSD denotes the Sum of Square Difference between
the original source block s and reconstructed one r. MODE indicates a mode
out of a set of potential MB modes: SKIP, Inter16x16, Inter16x8, Inter8x16,
Inter8x8, Inter8x4, Interdx8, Interdx4, Intradx4, Intra8x8, Intral6x16 and is the
number of bits associated with the chosen MODE, including the bits for the MB
header, the motion vectors (in the case of inter mode) and all DCT coefficients
(except the SKIP mode, where no DCT coefficients are transmitted). X is the
Lagrange multiplier. Note that in the case of inter mode, the RDO model can
be deployed one more time in ME to determine the appropriate reference frame



and motion vector (MV). The cost function in this case can be formulated as
following:

Crgz (M, REF |2 5) = SAD(s, c«(REF , i)
+ Ay - (R(m = p) + R(REF))

where 7 = (mg,my)7 is the current MV being considered, REF denotes
the reference picture, 7 = (pz, py)T is the MV used for the prediction during
MYV coding, Ay is the Lagrange multiplier for ME, R(7 — ') represents the
necessary bits used for coding MV and R(REF) is the bits for coding REF. The
SAD (Sum of Absolute Differences) is computed as:

By.B,

SAD(s,c(REF,m)) = x:Ev:l ‘s[x,y] —-dx-m,,y- my]‘

where s is the original video source and c¢ is the motion compensated one
based on REF and 7i; B; and By are the vertical and horizontal dimensions of
the block size, which can be 16, 8 or 4.

Application of RDO framework (even two times) to the selection of predic-
tion mode means performing the fully encoding-decoding chain for each possible
mode, each reference frame and MV, which all have a standardized wide range of
values to ensure the existence of the optimal candidate. Therefore RDO frame-
work is highly time-consuming.

The profiling of the X264 application yeilds that the SAD and the SATD
function families are the most costly. Both consume an average of 20% each,
of the application time for different benchmark videos [1]. These two families
of functions have the potentiel of exploiting the powerful SIMD instruction sets
available on various modern architectures (SSE on pentium, Altivec on Pow-
erPC). In case, the compiler fails to use these SIMD instructions, due to certain
issues (memory alignment, data dependencies, etc), one is obliged to use these
instructions through assembly language coding or by the use of compiler intrin-
sics (same is the case of the previous implementations of these functions). The
problem is that with each architectural upgrade (e.g. SSE2 to SSE3), these as-
sembly versions have to be re-written to extract the maximum power out of the
architecture. Moreover, for an efficient utilization of the SIMD instructions, the
memory alignment of data has to be taken into account [9].

We have overcome these issues by making use of a generic runtime code
generation scheme that has the capablity to generate various versions of the
code at runtime taking into account the memory alignment of data. The code
generators (compilettes), being generic in nature, can be redefined according to
the different upgrades of an architecture, with great ease. Being at runtime, these
compilettes, can make use of high level language constructs (loops, switches) to
generate different variants of code that adapt themselves to the runtime data.
This data-based runtime code adaptation, helps simplify code thus reducing the
code complexity and increasing the performance.

Targeting this problem, we propose two approaches to alleviate the encoding
complexity caused by the mode decision mentioned above, while maintaining



the coding efficiency: one is related to software implementation and consists in a
specialized dynamic run-time compiler able to handle data alignment problems
and the second is algorithmic related and consists in selecting a subset of MB
for performing the operations.

In the following sections, we will see the algorithmic approach including the
previous work and the algorithmic transformations. Then, we take a look at
data-based code adaptation, its implementation with the help of compilettes,
their application to SAD and SATD and finally we consider the performed ex-
perimentation and the results.

2 Algorithmic approach

Our main key-techniques can be summarized as the followings: 1. The gener-
ated bits number for arbitrary block encoded with given intra / inter mode is
estimated to avoid complete encoding process in evaluation; 2. We process the
exhaustive search throughout all block types and reference frames for only a
small number of MBs; for the others, the suboptimal reference frame as well as
the appropriate mode selection can be safely derived from those of their neigh-
bor blocks. Experiments show that we can drastically save the time for encoding
with a small deviation of bitrates and negligible degradation in quality.

2.1 Review of previous works

In the RDO framework, for each possible combination of prediction mode (block
size and reference frame for inter-, block size and prediction type for intra mode),
not only the real encoding process of the MB (including transformation, quan-
tization and entropy encoding) but also its decoding counterpart (the inverse of
all operators in encoding process) must be carried out to evaluate its GC. There-
fore the prediction mode with minimum GC can be considered as an optimal
selection. The exhaustive evaluation should be applied to all MBs, thus exposes
a computational burden far more demanding than any existing video coding
algorithm. To reduce this complexity, a number of efforts have been made to
reduce the number of candidates to be evaluated with RDO. In the case of in-
tra coding, edge detection with Sobel operator [20] and DCT transform [20] are
involved as a pre-process giving hints for selection. A subset of intra modes to
be verified with RDO can be also defined from the intra mode of the correspon-
dent MB in the reference frame [10] as well as the neighbor / parent ones in
the current frame[14]. In the case of inter mode, flexible threshold is defined for
detecting skipped MB [15]. Wavelet transform(8], Sobel operator / SAD[17] are
exploited to skip the RDO verification for the small block sizes. Reference frame
of the smaller blocks can be hinted from the larger one[18]. New strategies for
MYV search on a given reference frames are also discussed in[18]. An integrated
scheme intra / inter mode selection is discussed on [18], [19],[17].

The common point in the current work is to limit the range of candidates
before verifying them with either RDO or its estimation. Only in a special case:



evaluating the SKIP mode or selecting between 2 main intra / inter modes, the
early termination is introduced to skip all other possibilities. We show that the
early termination can perform well for every prediction mode, provided that the
Measure of Conformance (MC) lies within a safe interval. Therefore we can go
further than just eliminating the less probable candidates. In many case, we can
even point out directly the suboptimal prediction mode.

2.2 Fast mode decision with low computational cost

It makes sense to say that there is a close correlation between the best candidate
verified by RDO (probably optimal) and the one providing the minimum Sum of
Absolute Transformed Differences SATD (suboptimal). Recent researches , em-
phasize that relation via experimental results. Also note that the transformation
in SATD is the 4x4 Hadamard transform, which is a very fast projection onto
the frequency domain . They are the motivations for us to use a cost function C
based on SATD to evaluate the encoding method of a MB instead of the RDO
itself. Mathematically, the function C' can be represented as followings:

C(MODE) = SATD(s.c) + R(iii — p)
+29/672 (R(MODE) + R(REF))

where Q is the current quantizer applied to the MB, R(x) presents the number
of bits necessary to encode the information x (MV, prediction mode and reference
frame). For the intra MB, the R( — 7’) and R(REF) take zero values, the
block ¢ then represents the estimation deduced from the current intra mode.
The evaluation of function C does not require the reconstructed picture, which
necessitates the real encoding and decoding process. It is the key parameter in
our proposed technique. For clarification, we use the term Prediction Mode PM
applied to a block to imply all together the block size and the intra prediction
mode (intra mode) / the position of reference frame (inter mode), which are
used to encode that block. We do not deal with MV, therefore MV is detected
separately after knowing the reference frame. Hereafter, we call PM suboptimal,
if applying that PM to predict the current block, we obtain the minimum cost C.
We first describe our technique in the manner of full search via the two following
meta functions:

Analyze Intra()

1. Search for the suboptimal intra mode within 4 possible ones, which are ap-
plicable to MB. Call its call Cost_intral6x16.

2. For each partition i of size 8x8 (1 < i < 4) in the given MB, search for the
suboptimal intra mode out of 9 possible modes of block 8x8. Accumulate
this cost to a global cost for mode Intra8x8, called Cost_intra8x8.

3. For each partition j of size 4x4 (1 < j < 16) in the given MB, search for the
suboptimal intra mode out of 9 possible modes of block 4x4. Accumulate
this cost to a global cost for mode Intradx4, called Cost_intradx4.



4. The smallest one within Cost_intral6x16, Cost_intra8x8 and Cost_intradx4
decides the final intra mode for the given MB.

Analyze Inter()

1. If MB can be skipped then stop.

2. With block size 16x16, search for the suboptimal reference frame in all of
possible reference ones. Call its cost Cost_inter16x16.

3. Repeat Step 2 with block size of 16x8, 8x16, 8x8. The resulting costs are accu-
mulated in the global cost for that MB, called Cost_inter16x8, Cost_inter8x16
and Cost_inter8x8 respectively. Note that each sub-macroblock can be fur-
ther divided into 8x4, 4x8 and 4x4. Hence, the accumulative Cost_inter8x8
implies the minimum cost (and thus the prediction mode) of the 4 possible
partitions 8x8, 8x4, 4x8 and 4x4 applied to the current sub-macroblock.

4. Call Analyse Intra().

5. The smallest cost in Cost_intral6x16, Cost_intra8x8, Cost_intradx4, Cost_inter16x16,
Cost_inter16x8, Cost_inter8x16 and Cost_inter8x8 decides the encoding mode
for the current MB.

The function Analyse Intra() is exclusively applied to MBs of slice I, while
Analyze Inter() can process on the MBs of slice P and B. If the output of Analyze
Inter() is an inter mode, the type of that MB can be either B or P, depending
on the fact that the complete list of reference frames is built up from the passed
and the future or only from the passed queue. The outlined two functions are
the core implementation of [3], demonstrating one way of avoiding the real RDO
framework to select the suboptimal encoding mode for a MB.

Our main goal is to further improve this technique by the introduction of
the early terminations (ET) in most of its exhaustive searches. That means ET
can happen while examining any PMs in step 1, 2 and 3 of Analyze Intra()
as well as in step 2 and 3 of Analyze Inter()). The common point of these
steps is to traverse through all possible partition-sizes of a MB; at each possible
value of block-size, the minimum PM will be exhaustively detected. Note that
at any time, if the current block has top and left neighbors, their suboptimal
PM are already decided. We consider the following situation: we are checking
the current block with a certain PM, which was used as a suboptimal PM to
encode its neighbors. In this case, all such PMs (we may have more than one
depending on the number of neighbor blocks) will be treated separately as they
can potentially trigger ET. The quantity MC is then calculated for each of them,
that is the difference between the costs Cs is derived by applying that PM to
both neighbor and current block. Note that the cost C of the neighbor block
is already known in the process of selecting its suboptimal prediction mode.
In fact, the quantity MC means the similarity in prediction-performance of the
given mode for 2 neighbor blocks, which are supposed to have a high spatial
correlation (the nature of video). In other words, if we have MC small enough,
we can safely confirm the correlation between the two blocks. Then the PM,
which was chosen as a suboptimal one for the neighbor block, can be also used



for the current one. We then terminate the searching process and skip the rest
of the candidates. In the case of high deviation in MC - the consistence between
two blocks is invalid - the searching process for minimum cost C is continued
for other candidates in the normal manner. If the ET happens in the Step 1 of
Analyze Intra or Step 2 of Analyze Inter (found the PM for full MB), we can
stop the function immediately. Otherwise, the ET contributes to a rapid cost
calculation of the partial block in MB. We define a threshold T for the goodness
of MC, which decides whether the ET is applicable. The threshold T ensures the
fallback point to avoid the accumulation of error in our algorithm. In the next
section, we will discuss the selection of the threshold as well as the performance
of the proposed technique.

2.3 Simulation results

The threshold T plays an important role in our technique. With small T, we have
a strict matching condition of MC thus less gain in speed. On the contrary, we
avoid more exhaustive loops of searching, but the possibility of fake suboptimal
PM is also high. In order to determine the appropriate threshold, we define a
gain indicator G for each of the threshold T applied to any test video s; [?] as
following:

Max(Time(s;, T)) — Time(s;, T)
G(s, T) = z

+
Max(Time(s,;, T)) — Min(Time(s,, T))
T T
Max(Size(s;, T)) — Size(s;, T)
T

* Mf;r.r{ﬁ'i:e{sl, - Ml'rin{Si:e(sl-,T)}

Actually G is the combined performance of T on saving time (the first compo-
nent) and loss in size / compression efficiency (the second component). Both fac-
tors are all normalized over a wide range of T from 0 up to 2000 for every source
video si. The resulting gains are then averaged for various video sequences si in .
Fig. 1 denotes the evolution of the averaged values for intra and inter threshold
T. The trend curves for each of mode represent well the compromise between
the gaining in time and the loss in compression efficiency. We can consider the
first maximum point of the two averaged curves as the optimal T. Therefore we
choose T;pi-q = 480 and Tinter = 352 for the evaluation of our technique.
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Fig. 1: Evolution of gain indicator in intra and inter mode.
The implementation of our algorithm was integrated into the x264 encoder|[?],

which

is considered as one of best H.264 coders concerning its performance on

speed and quality[?]. Fig. 2 outlines the performance of this coder enhanced with
the introduction of our algorithm. In the test process, we deployed the optimal
value of T that was determined above.
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Fig. 2: Overall performance of the proposed technique.

It can be seen that, we can fasten up the encoder on average 23 percent at
almost the same quality of video (the lost in PSNR is about 0.08 percent). A loss
in compression can be experienced at 5.8 percent on average. In the worst case
of the test sequence (highway video), the gain in time is still dominant (over 1.5

times)

against the lost in compression.



3 Data-based runtime code adaptation

Program performance is generally effected by its input dataset [5]. Static compi-
lation techniques [6] can address only a limited number of input dataset proper-
ties to avoid code explosion. These techniques usually create multiple versions of
code for certain dataset properties, on the expense of increased memory usage.
They also incur the overhead for the testing of these properties and then for the
selection of the correct version at runtime.

Code runtime is the best place for performing a complete analysis of these
dataset properties. We can use this information to adapt code according to the
dataset. This data-based code adaptation can range from memory locality and
memory alignment based adaptations to embedding of dataset values into code
as immediate values.

This technique results in a low memory usage and a low version selection
overhead, but it usually results in a high code generation overhead. We can
reduce significantly this overhead by using compilette-based code generation
[section 3.1]. We have used this technique to generate SIMD code for the SAD
and the SATD function families for the X264 application.

3.1 Compilette-based generic code generation

Compilettes [7] are generic runtime code generation functions, capable of gener-
ating code as simple as one single assembly instruction to a complex sequence
of hundreds of instructions.The compilettes can be thought of as a generic layer
above the machine code level. They are further divided into two sub-layers. The
first represents operations on the algorithmic level, whereas the second represents
machine level operations. Once executed, the machine level compilettes generate
binary instruction opcodes and store them in a memory buffer. The algorithmic
level compilettes mainly control the sequence of execution of the machine level
compilettes to generate efficient domain-specific runtime code, at a very small
runtime cost. Both these sub-layers can be extended according to the algorith-
mic domain or the underlying architecture.Moreover, being at runtime, these
compilettes can be called from within loops or other control structures. This
fact can be used to generate various different versions of the code, based on the
runtime values.

Compilettes are supported by a clean and powerful runtime register allo-
cation mechanism. This mechanism helps us organize registers as register sets.
The register sets can be regarded as compound SIMD variables at the algorith-
mic level. Whereas at the machine level, one may index into a register set to
address a certain specific register within the set. This register representation,
being symbolic and compound is more easily manageable as compared to the
numeric register representation. The physical register numbers are only assigned
at the runtime and are seldom needed at the algorithmic level representation of
the program.

Hence, compilette-based code generation can be divided into the two steps:
i) expressing the domain specific algorithmic steps in a parametrized way, in



term of machine-level compilettes and ii) using the compilettes thus created,
to express the algorithms. One can always experiment very rapidly, with the
parameters to extract the best performance out of the underlying architecture.

3.2 Application of data-based code adaptation to X264

As mentioned above [section 1], the SAD and the SATD families of functions are
the most time consuming functions in the applications. So, we have focused only
on the data adaptation of these functions. Analysis of data shows that these two
function families have certain input data characteristics that can be exploited by
the compilettes to vectorize the loads and calculations and hence to improve the
code ILP. We discuss these characteristics for SAD and SATD separately and
also summarize the optimizations that have been performed by the compilettes.

Application to SAD The SAD family of functions computes the sum of ab-
solute difference of two blocks of pixels. The code of these functions consists of
two regular nested for-loops with known bounds (16, 8 and 4 in this case), and
a sum of absolute difference as the only statement in the inner most loop. The
functionality can be more precisely expressed as follows.

N M
sad = E : E :abs (Pa(i+j*stride1) - Pb(i+j*strid62))

i=0 j=0

The compilers, both GCC and ICC, fail to exploit the powerful SIMD instruc-
tions of the IA64 architecture due to the lack of memory alignment information
about the two blocks of pixels [ P,, P, |. They, therefore, resort only to scalar
optimizations. As a result the computing power available on this architecture is
not well exploited.

Non aligned o
Comparison = T
Blocks %
]
............ o e Stride ‘\ v . Stride v

Ref Block

Fig. 1. Memory alignment problem in SAD and SATD

Algorithmic analysis reveals that the first pixel block [P,] is always aligned
at the frontiers of 16, whereas the second block [P;] has an unknown memory
alignment [figure 1]. The compilette-based code generators take into account this



information to vectorize loads. These loads have been complemented with data
re-ordering instruction available on the IA64 architecture [12]. The calculations
have then been vectorized with the help of the powerful psadl instruction. This
instruction is capable of calculating the sum of absolute difference of eight pixels
from each block, at a time. The knowledge of the loop bounds have been used
to completely unroll the two loops. This helps us better exploit ILP on the IA64
architecture.

Application to SATD The SATD family of functions compute the Hadamard
transform of two blocks of pixels. The code of this family, is more complex as
compared to that of SAD. The functionality of these functions has been given
below,

N M 3 3 T T
Zi:O Zj:O Zk:o leo abs H (H (Psub (Pa(i*stridel+4*j) ’ Pb(i*strid62+4*j)>))
kl

td =
sa 9
where
PSU‘bi_] (Pav Pb) = Pa('H»j*strideI) - Pb(i+j*st'r'id62)
fori,5=0,1,...,3 and
11 1 1
11 -1-1
H= 1-1-11
1-11 -1

The input data [P,, P,] has the same properties as that of SAD. Hence, some
of the optimizations applied for SAD are similar to those of SATD. So, we do
not reconsider what we have already discussed in the above subsection. Here we
discuss only the code structure of SATD and the optimizations specific to this
family of functions.

Algorithmically, we have four nested loops, with the two inner most loops
fixed at 4 iterations each. The expressions also show two transposition opera-
tions, that indicate a data-reorganization at the code level. The multiplications
with the H matrix, indicate a reduction to add/subtract operations as the matrix
contains only 1s and —1s.

In our implementation we have unrolled all the loops in the code. The two ma-
trix transpositions have been optimized by exploiting IA64 special SIMD data-
manipulation instructions. The multiplications with the H matrix have been
decomposed into SIMD add/subtract operations as mentioned above. Moreover
similar operations throughout the code have been merged, where possible, to
improve the ILP.

4 Experimentation

We have tested the data-adaptive compilette-based code implementation against
all-source-code implementations. Tests have been performed on the kernels and



also on the overall application. We have performed the tests using both GCC and
ICC compilers with optimization level -O3. We have obtained upto 7x speedup
for the kernels and 20% for the overall application. The details of the experi-
mentation have been presented as follows.

x speed up

Sad_ax4 Sad_ax8 Sad_8x4 Sad_8x8  Sad_8x16  Sad_16x8  Sad_16x16
function

Fig. 2. Performance of different implementations (GCC 4.3 -03, ICC 9.1 -O3, Com-
pilette) of SAD kernals wrt the C-code version compiled by GCC 4.3 option -O0

4.1 Experimental setup

We have used the X264 application [3] as the test platform. X264 is a free
library for encoding H264/AVC [16] video streams. This library is being used
by many MPEG-4 applications. Throughout the experimentation we have used
either GCC 4.3 or ICC 9.1 to compile the application code. The optimization
level has been set to -O3. The performance of the kernels has been shown as
the speed up of the respective kernel implementation wrt the all-source-code
implementation, compiled by GCC -O0. Whereas, for the overall application
performance the application has been compiled once with GCC 4.3 and once
with ICC 9.1, with option -O3 and tested against different compilette-powered
versions for different benchmark videos. The following hardware experimental
setup has been used to perform the experimentation.

Processor: IA64 Itanium?2 double core

Frequency: 1.6 GHz

Memory hierarchy as follows:

Memory Size |Characteristics

L1 (Data) 16 KB [line 64 bytes, load_lat 1 cycle, store_lat 3 cycles
L1 (Instruction)| 16 KB [line 64 bytes, load_ lat 1 cycle, store_lat 0 cycle

L2 256 KBjlline 128 bytes, load_lat 5 cycles, store_lat 7 cycles
L3 3 MB [line 128 bytes, load_lat 14 cycles, store_lat 7 cycles
Main memory 2 GB




4.2 Comments on experimental results

Before observing the experimental results we must keep in mind that perfor-
mance of the all-source-code is affected by the compiler used [i.e. GCC or ICC]
and on the used optimization level [-O3 in this case]. Whereas the code gener-
ated by the compilettes-based code generators does not pass through a compiler
and its performance is independent of the compiler. We present our comments
on the kernel performances and that of the overall application separately in the
following two subsections.

4.3 Kernel Performance

In the performance results, the compilette versions of the kernels outperform
the compiler version by far. Secondly the performance of the compilette versions
have an increasing trend (wrt the size of the block under treatment) for both
SAD and SATD kernels, this is a clear indication of a better ILP exploitation
for larger block sizes. This is not the case for the compiler versions of the SAD
kernels, where they show no specific trend [figure 2]. This exposes the lack of a
good optimization selection strategy on the part of the compilers.

Compilette mmmm

x speed up

Satd_4xd  Satd_4x8  Satd_8x4  Satd_8x8  Sad 8x16  Said 16x8  Satd_16x16
function

Fig. 3. Performance of different implementations (GCC 4.3 -03, ICC 9.1 -O3, Com-
pilette) of SATD kernals wrt the C-code version compiled by GCC 4.3 option -O0

On the other hand, the performances for the compiler versions of the SATD
kernels show an increasing trend for the ICC compiler and an almost stable
trend for the GCC compiler [figure 3]. Moreover the ICC versions achieve a
performance very close to that achieved by the compilettes. The ICC compiler
implements a single software pipelined version for all the functions. Hence, we
observe a good performance when the pipeline is filled. Whereas the GCC com-
piler optimizes for the smallest size as is evident from the figure 3.It then makes
different versions for all other functions using this kernel inside a loop with con-
stant limits. GCC does not make any effort to further unroll this loop or to



optimize separately for each size. As a consequence, the performance is good for
the smallest block size but near-constant for the others.

35

video
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Fig. 4. Overall application performance in frames per second against the C-code version
compiled by GCC 4.3 option -O3

4.4 OQOverall Application Performance

We have integrated the compilette based optimized versions of SAD and SATD in
the X264 application. The results have been presented as the frames per second
for the different benchmark videos. We have obtained an average speedup of
30% on the overall application wrt to both the GCC [figure 4]and ICC versions
[figure 5]. We have also tested the application using one version at a time.

We have observed that the speedup against the GCC versions is due to both
the SAD and the SATD kernels. The compilette based versions of both these
kernels contribute 50-50 for the overall speedup. Whereas in the case of the ICC
compiler, the speedup is mainly due to the contribution of the SAD kernels. This
is due to the fact that the ICC version and the compilette version of the SATD
kernels resulted in a similar performance for the large block sizes.

5 Conclusions

Targeting the optimization of H.264 encoder, we chose one of the best encoders
on the current market as reference system. A cost function is defined to estimate
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Fig. 5. Overall application performance in frames per second against the C-code version
compiled by ICC 9.1 option -O3

as close as possible the RDO framework whenever ME and/or mode decision
occurs. To exploit the spatial correlation in the natural video, we introduce a
measure of conformance based on the performance of the neighbor prediction
mode applied to the currently examined block. If this measurement is less than
a safe threshold T, we can reuse the prediction mode for the current block with-
out processing any further checks. We then efficiently avoid a time-consuming
exhaustive search. We focus on the determination of the essential threshold T,
the key of acceleration as well as the compression efficiency. A common optimal
threshold is derived from statistical test on the performance of different T over
various types of video.

As the threshold plays a great impact on the performance of our technique,
an adaptive and more robust determination of the threshold is among our future
researches. The spatial correlation of top left and top right block will be involved
in the early termination. We also address the simplification of the CABAC al-
gorithm, the other time consuming factor of the H.264.

We have shown that, unlike hand-written assembly code/compiler intrinsics,
the compilettes facilitate the utilization of multimedia/SIMD instructions in a
generic way. Being at the runtime they can be utilized in conjunction with high
level language constructs (loops/switches) to generate various customized code
versions, which is cumbersome when using asm/intrinsics. Moreover, compilettes
possess the ability to make use of the real dataset values/properties to further
simplify and optimize code. As the compilettes divide the code generation into
two logical steps (algorithmic-expression and machine level expression), they can
be efficiently and systematically upgraded to future algorithmic/architectural
modifications, which is not the case with asm/intrinsics.

In the optimization part we have seen that the data alignment has a major
impact on performance and that compiler can not handle it correctly for all
cases by static compilation. A dynamic specialized code generator benefits from
both run-time knowledge of the data position and the expression power of the
run-time computation which allow to easily generate complex code.



In this article we have shown that a two level approach, an algorithmic trans-
formation and a data driven binary code generation, is a realistic approach for
the optimization of a real world program (x264). We are able to compress all
the MPEG group dataset.

We have shown that both approaches give excellent results. Our future work
is to merge both optimizations in the same code source trunc. Our current as-
sumption is that the two optimizations will give an even better speedup, the
adaptative algorithmic high level will even reduce the pressure on the low level
computing kernels.

Most importantly, this project helps us understand that with small but com-
plex codes (x264 comprise 34K lines of C source code) and treating huge dataset
(around 800 Mbytes of video) on a complex architecture like itanium, necessarily
needs a global approach to achieve good speedup and good understanding of the
performance problems on the high and low level.
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