Maximal Static Expansion

Denis Barthou, Albert Cohen and Jean-Francois Collard
PRiSM, Université de Versailles
45 Avenue des Etats-Unis
78035 Versailles, France
{bad,acohen, jfc}@prism.uvsq.fr

Keywords Expansion of data structures, privatization, sin-
gle assignment.

Abstract

Memory expansions are classical means to extract paral-
lelism from imperative programs. However, for dynamic
control programs with general memory accesses, such trans-
formations either fail or require some run-time mechanism
to restore the data flow. This paper presents an expansion
framework for any type of data structure in any imperative
program, without the need for dynamic data flow restora-
tion. The key idea is to group together the write operations
that participate in the flow of the same datum. We show
that such an expansion boils down to mapping each group
to a single memory cell. We give a practical algorithm for
code transformation. This algorithm, however, is valid for
(possibly non-affine) loops over arrays only.

1 Introduction

Data dependences are known to hamper automatic paral-
lelization of imperative programs and their efficient com-
pilation on modern superscalar or VLIW processors. A
general method to tackle this problem is to disambiguate
memory accesses and to assign distinct memory cells to non-
conflicting writes, i.e. to expand data structures. In parallel
processing, expanding a datum also allows to place one copy
of the datum on each processor, enhancing parallelism. This
technique is known as array privatization [15, 12, 5] and is
extremely important to parallelizing and vectorizing com-
pilers [11, 13]. A similar technique is register or variable
renaming.

In the extreme case, each memory cell is written at most
once, and the program is said to be in single assignment
(SA) form. Unfortunately, when the control flow cannot
be predicted at compile-time, some run-time computation
is needed to preserve the original data flow: In the static
single-assignment framework, ¢-functions may be needed to
“merge” multiple reaching definitions, 1.e. possible data def-
initions due to several incoming control paths [6, 7]. Such

To be published in the proceedings of PoP1.’98: The twenty-
fifth annual ACM SIGACT-SIGPLAN symposium on Prin-
ciples of Programming Languages, January 19-21 1998, San
Diego, CA.

¢-functions may be an overhead at run-time, especially for
non-scalar data structures or when replicated data are dis-
tributed across processors. We are thus looking for a static
expansion, i.e. an expansion of data structures that does
not need a ¢-function. (Notice that according to our defini-
tion, an expansion in the static single assignment framework
may not be static.) The goal of this paper is to automati-
cally find the static expansion which expands all data struc-
tures as much as possible, i.e. the maximal static expansion.
Maximal static expansion may be considered as a trade-off
between parallelism and memory usage.

We present an algebraic framework to derive the max-
imal static expansion. The input of this framework is the
(perhaps inaccurate) output of a data-flow analysis, so our
method is “optimal” with respect to the precision of this
analysis. Our framework is valid for any imperative pro-
gram, without restriction—the only restrictions being those
of your favorite data-flow analysis. We then present an al-
gorithm to construct the maximal static expansion for pro-
grams with arrays only, but where subscripts and control
structures are unrestricted.

The paper is organized as follows: Section 2 studies mo-
tivating examples showing what we want to achieve. Sec-
tion 3 formally states what (maximal) static expansion is,
and Section 4 presents a general framework to solve this
problem. This framework is applied in Section 5 to derive
an algorithm for maximal static expansion. Section 6 ap-
plies this algorithm to the motivating examples, before our
conclusion.

2 Motivating Examples

The general framework presented in this paper is valid for
any imperative programs. However, the three examples we
study in this section are basically loop nests over arrays
(mainly because our own analysis [2] is restricted to such
programs).

2.1 Definitions

For any statement, the iteration vector is the vector built
from surrounding loop counters. The iteration domain is the
set of values the iteration vector takes during program exe-
cution. For instance, the iteration domain of 7" in Figure 1
is Dom(T) = {: 1 < ¢ < N}. Each iteration of a loop
spawns instances, called operations, of statements included
in the loop body. In the example program, the for loop
on i yields N instances of T, denoted by (1,T),... ,(N,T).

Moreover, we introduce artificial integer counters for while

loops. For instance, operations of S in Figure 1 are labeled
(i, w,S), with 1 <7< N and w € N.
The execution order on operations is denoted by <.

2.2 First Example: Dynamic Control Flow

We first study the pseudo-code shown in Figure 1; This ker-
nel appears in several convolution codes!. Parts denoted by
. are supposed to have no side-effect.

real x
for i =1 to N do
T x= ...
while ... do
S X= ... %X ...
end while
R ...=...x ...
end for

Figure 1: First example.

Each operation (i,T) assigns a new value to variable x.
In turn, statement S assigns x an undefined number of times
(possibly zero). The value read in x by statement R is thus
defined either by T, or by some instance of S, in the same
iteration of the for loop (the same ¢). Therefore, if the
expansion assigns distinct memory cells to (z, T and to in-
stances of (1, w, S), how could operation (i, R) “know” which
memory cell to read from?

To formalize this problem, we use a data-flow analysis to
describe where values are defined and where they are used.
The intuitive picture is that a datum flows from its source
to the sink. We assume that the data-flow analysis works at
operation level. Moreover the analysis may be more or less
accurate: When the exact source of a read operation cannot
be predicted at compile time, we suppose that it returns a
set of possible sources for this read. This set is a conservative
approximation of the source.

We may thus call o the function mapping a read opera-
tion to its set of sources. Applied to the example in Figure 1,
it tells us that the set of sources o({i, w, S)) of an operation

(i, w, S) is:
ifw>0
o({(i,w,S)) = | then {{1,w—1,5)} (1)
else {(i,T)}
And the set of sources o({i, R)) of an operation (i, R) is:

ol R) = (LT} U {Gw.S) w20, (2)
where w is the (arbitrary) counter of the while-loop.

Let us try to expand scalar x. One way is to convert
the program into SA, making T write into x’[:] and S
into x’’[#,w]: Then, each memory cell is assigned to at
most once, complying with the definition of SA. However,
what should right-hand sides look like now? A brute-force
application of (2) yields the program in Figure 2. While
the right-hand side of S only depends on w, the right-hand
side of R depends on the control flow, thus needing a func-
tion similar to a ¢-function in the SSA framework (even if,
on this introductory example, the ¢-function would be very
simple) [9].

!For instance, Horn and Schunck’s algorithm to perform 3D Gaus-
sian smoothing by separable convolution.

for i =1 to N do
T x°[i]1 = ...
while ... do
S x’[1,w] = ...
if w > 0 then x’’[i,w-1] else x’[i]
end while
R ...= ... o((5,T), {{{,w,S):w>0}) ...

end for
Figure 2: First example, continued.

The aim of this paper is to expand x as much as possible
in this program but without having to insert ¢-functions.

A possible static expansion is to uniformly expand x into
x[i] and avoid output dependencies between distinct itera-
tions of the for loop. The resulting mazimal static expan-
ston of this example is given by Figure 3. It has the same
degree of parallelism and is simpler than the program in
single-assignment.

real x[1..N]
for i =1 to N do
T x[i]l = ...
while ... do
S x[i]l = ... x[i]
end while
R ...= ... xI[i]
end for

Figure 3: Expanded version of the first example.

Notice that it should be easy to adapt the array privatiza-
tion techniques by Maydan et al. [12] to handle the program
in Figure 1; This would tell us that x can be privatized
along 1. However, we want to do more than privatization
along loops, as illustrated in the following examples.

2.3 Second Example: Array Expansion

Let us give a more complex example; We would like to ex-
pand array A in the program in Figure 4.

Since T' always executes when 7 equals N, a value read
by (i,7,5), 5 > N is never defined by an instance {i',5’,5)
of S with 3/ < N. Figure 4 describes the data-flow relations
between S instances: An arrow from (i',7') to (1, 7) means
that instance (i, ;') defines a value that may reach (i,).

Formally, the source of one instance of statement S is:

ifj <N
{¢,5,S): 1 <i' <2N

then AN1<j<jAi—j=i—j}

o((i,1,5)) = {(i",7,8): 1 <i' <2N (3)
. . -t s
olse NN<jy <IN =3 =2 J}

U{(,NTy: 1< <
ANi=i—-j+N}

Because sources are non-singleton sets, converting this pro-
gram to SA form would require run-time computation of the
memory location read by S.

However, we notice that the iteration domain of S may
be sphit into disjoint subsets by grouping together opera-

real A[1..4xN-1]
for i = 1 to 2*N do
for j = 1 to 2%N do

if ... then
S ALi-j+2*N] = ... A[i-j+2*N]
end if
T if j = N then A[i+N] = ... end if
end for
end for

Figure 4: Second example.

tions involved in the same data flow. These subsets build
a partition of the iteration domain. Each subset may have
its own memory cell, a cell that will not be written nor read
by operations outside the subset. The partition is given in
Figure 5.a.

Using this property, we can duplicate only those elements
of A that are used twice. These are all the array elements
Alc]l, 14+ N <c¢ <3N —1. They are accessed by operations
in the large central set in Figure 5.b. Let us label with 1
the subsets in the lower half of this area, and with 2 the
subsets in the top half. We add one dimension to array A,
subscripted with 1 and 2 in statements S and S3 in Fig-
ure 6, respectively. Elements A[c¢],1 < ¢ < N are accessed
by operations in the upper left triangle in Figure 5.b and
have only one subset each (one subset in the corresponding
diagonal in Figure 5.a), which we label with 1. The same
labeling holds for sets corresponding to operations in the
lower right triangle.

The maximal static expansion is shown in Figure 6. No-
tice that this program has the same degree of parallelism as
the corresponding single-assignment program, without the
run-time overhead.

2.4 Third Example: Non-Affine Array Subscripts

Consider the program in Figure 7.a, where foo and bar
are arbitrary subscripting functions?. Since all array ele-
ments are assigned by 7', the value read by R at the ith
iteration must have been produced by S or T' at the same
iteration. The data-flow graph is similar to the first exam-
ple:

o((i, R) = {(i,)} u{(i,5,T) : 1< <Np o (4)

The maximal static expansion adds a new dimension to A

2alfoo (1)1 stands for an array subscript between 1 and N, “too
complex” to be analyzed at compile-time.

Figure 5.5.

Figure 5: Partition of the iteration domain (N = 4).

subscripted by ¢. It is sufficient to make the first loop par-
allel.

These examples show the need for an automatic static
expansion technique. We present in the following section
a formal definition of expansion and a general framework
for maximal static expansion. We then describe an expan-
sion algorithm for arrays that yields the expanded programs
shown above. Notice that it is easy to recognize the orig-
inal programs in their expanded counterparts, which is a
practical property of our algorithm.

2.5 Related work

If the input program is built of nested for loops with affine
bounds and accesses arrays with affine subscripts, one can
find a static expansion which is also in single-assignment
form. Feautrier [8] coined the term static control programs
for this class of programs.

In the case of programs with general control and unre-
stricted arrays subscripts, array data-flow analyses are ap-
proximate [3, 2, 16, 17]: Several writes may be the unique
definition of a given value, but the analysis cannot tell. [9]
describes how to obtain a single-assignment program to the
price of dynamic restoration of data flow.

real A[1..4#N-1,1..2]
for i = 1 to 2%N do
for j = 1 to 2%N do
{expansion of statement S}
if -2%N+1 <= i-j <= -N then
if ... then
S1 Ali-j+2*N,1] = ...
end if
elsif -N+1 <= i-j <= N-1 then
if j <= N then

Ali-j+2#N,1]

if ... then
Sz Ali-j+2*N,1] = ... A[i-j+2*N,1]
end if
else
if ... then
Sa Ali-j+2*N,2] = ... A[i-j+2*N,2]
end if
end if
else
if ... then
Sa Ali-j+2+N,1] = ... A[i-j+2*N,1]
end if
end if

{expansion of statement T'}
T if j = N then A[i+N,2] = ...
end for
end for

end if

Figure 6: Maximal static expansion for the second example.

Many studies are related to array privatization. As hint-
ed above, Maydan et al. [12] proposed an algorithm to pri-
vatize arrays. However, their method only applies to static
control programs. Tu and Padua [15] proposed a privati-
zation technique for a very large class of programs. But it
resorts to dynamic restoration of data flow. Another ac-
curate approach using array regions has been described by
Creusillet [5]. Her method avoids the cost of a dynamic
restoration and copies back the privatized elements into the
original arrays.

However, privatization only detects parallelism along the
enclosing loops; It is thus less powerful than general array
expansion techniques. Indeed, the example in Section 2.3
shows that our method not only may expand along diagonals
in the iteration space but may also do some “blocking” along
these diagonals.

3 Static Expansion

Let © be the set of all operations in the program, f the func-
tion mapping operations to memory cells they write into,
and W C € be the set of all writes. We still use o to denote
the function mapping a read operation to its set of possible
sources. Notice that o may also be seen as a relation between
read and write operations. Let f’ be the expansion, that is
the new function, after program transformation, mapping
operations to the memory cells they write into.

Let us consider two operations u and v belonging to the
same set of possible sources of some read r. If they both
write in the same memory cell (f(u) = f(v)) and if we assign
two distinct memory cells to u and v (f'(u) # f'(v)), then
a ¢-function 1s needed to restore the data flow since we do
not know which of the two cells has the value needed by r.

real A[1..N]
for i =1 to N do
for j =1 to N do

T Alj]1 = ...
end for
S Alfoo(i)] = ...
R ...= ... Albar(i)]
end for

Figure 7.a: Source program.

real A[1..N,1..N]
for i =1 to N do
for j =1 to N do

T Alj,i1 = ...
end for
S Alfoo(i),il = ...
R ...= ... Albar(i),il
end for

Figure 7.b: Expanded version.

Figure 7: Third Example.

Static expansion enforces f'(u) = f'(v).

Definition 1 (Static expansion) A static expansion is a
mapping f' from operations to memory cells such that

Yu,o @ (3r,u €o(r)Av €a(r)A f(u) = f(v))
= f'(u) = f'(v).

Because the sources of a read are mapped to the same mem-
ory cell by f’, static expansion preserves the original data-
flow graph.

Notice also that, according to this definition, even a con-
stant function on W is a static expansion. Because we are
interested in maximizing the memory expansion, the range
of a “good” static expansion should be as large as possible.
In other words, such an expansion should be constant on
sets as small as possible:

Definition 2 (Maximal static expansion) A static ez-
pansion ' is maximal on the set of operations W if, for any
static expansion [,

fllu)=f'(v) = () =f"(v).

Intuitively, if f' is maximal, then f cannot do better: it
maps two writes to the same memory cell when f' does.

We need to characterize the sets of operations on which a
maximal static expansion f'is constant, i.e. the equivalence
classes of the relation {u,v € W f(w) = f'(v)}. The
set of theses classes is denoted by W/f/. The number of
memory cells after maximal static expansion is thus equal
to the cardinal of W/f/.

Yu,v € W

However, this hardly gives us an expansion scheme, be-
cause this result does not tell us how much each individual
memory cell should be expanded. The purpose of Section 4
is to give a similar result for each memory cell ¢ used in the
original program. This result appears in Theorem 1. This
theorem is then used to give a practical expansion scheme.

4 Expansion Scheme
Let us define the relation:
uRv < 3r, u € a(r) Av € a(r). (5)

o is itself a relation on © x € and the reciprocal relation
is denoted by o7'. Therefore, uRv <= u € oo™ (v)),
ie, R = ooo~'. Relation R is obviously symmet-
ric. Definition 1 requires that a static expansion f’ veri-
fies f'(u) = f'(v) when f(u) = f(v) and uRv. Given u, v
and win W, if f(u) = f(v) = f(w), uRv and vRw then
F(w) = f'(v) = f'(w). Therefore, given u € W, f' is con-
stant on the set of all v € W such that f(u) = f(v) and
uR*v, R* being the transitive closure of R. We may give
an equivalent definition of a static expansion:

Definition 3 A static expansion is a mapping ' from op-
erations to memory cells such that

Yu,v @ uR A fu) = f(v) = f'(u) = f'(v).

We now characterize any maximal static expansion in
terms of R* and f:

Lemma 1 f' is a maximal static expansion if and only if

uR* v A f(u) = f(v) <= f'(u) = f(v).
(6)

Yu,v € W

Sufficient condition—the “if” part

Let f' be a mapping s.t. Yu,v € W : f'(u) =
f'(v) <= uR*v A f(u) = f(v). By definition,

P . .
f' 1s a static expansion.

Let us show that f’is maximal. Suppose that for
u,v € W f'(u) = f'(v). (6) implies uR*v and
f(u) = f(v). Thus, from Definition 3, any static
expansion f satisfies f”(u) = f”(v). Therefore,
F(w) = f'(v) = f"(u) = f"(v), so f' complies
with Definition 2.

Necessary condition—the “only if” part

Let f' be a maximal static expansion. Because f'
is a static expansion, we only have to prove that
Vu,v € W @ fl(u) = f'(v) = uR*v A f(u) =
flv).

On the one hand, f'(u) = f'(v) = f(u) = f(v)
because f is a static expansion. On the other
hand, assume f'(u) = f'(v) and =uR*v. We
show that it contradicts the maximality of f':
Let f"(w) = f'(w) when ~uR*w, and f"(w) =c
when uR*w, with ¢ # f'(u). f" is a static ex-
pansion: By construction, f"(u') = f"(v') for
any u’ and v’ such that u'R*v’. The contradic-
tion comes from the fact that f"(u) # f"(v).

[}

Let us define M = f(W) the set of all memory cells
accessed by write operations, and for ¢ € M, W(c) = {u €
W @ f(u) = c} the set of operations writing into ¢. Given
¢ € M, the previous lemma entails that a static expansion
f' is maximal iff

Yu,vo € W(e) @ fl(u) = f(v) <= uR"v.
Therefore, classes of R* in W(c) are exactly the sets we are
looking for:

Theorem 1 The sets on which a mazimal static expansion
f' is constant are described by:

=1 Y e (7)

ceEM

The equivalence classes defined in this theorem gives the
partition intuitively found in Section 2, and the expansion
factor of each individual memory cell ¢ is Card(w(c)/R*).
Consider for instance A[0] in Figure 5.a. The instances of
S that belong to W(A[0]) are on the main diagonal {(¢,j) :
1<14,7<2N A 1=j7=0} R partitions these operations
in exactly the two subsets depicted in the figure.

To generate the transformed code, one has to remember
which equivalent class an operation belongs to: Let ¢ be the
function mapping an operation u to a representative of its
equivalence class. One may label each element of w(e) /R* , or
equivalently, label each element of ¢(W(c)). Such a labeling
scheme is obviously arbitrary, but all programs transformed
using our method are equivalent up to a permutation of
these labels. We denote by v(u) the label we choose for the
elements of (W(f(u))). Then, f' = (f,v).

Our expansion scheme depends on the transitive closure
calculator and on the part calculating W(c). We would like
to stress the fact that the expansion produced is static and
maximal with respect to the results yielded by these parts,
whatever their accuracy:

e The exact transitive closure may be too complicated
and may therefore be over-approximated. The ex-
pansion factor of a memory cell ¢ is then lower than
Card(w(c)/n*). However, the expansion remains static
and is maximal with respect to the transitive closure
given to the algorithm.

o The sets W(c) may not be known precisely at compile-
time. (For instance, when data structures are arrays
with non-affine subscripts.) One may use some ap-

—

proximation W(c) instead, such that W(c) C W(c),

and expand ¢ into as many cells as elements in W(c)/R* .
However, an operation u may then belong to two dis-

tinct classes of W(c)/n* and W(cl)/n*7 c # ¢, that is,
have several representatives and be associated to dif-
ferent class labels. To avoid this pitfall, we enforce the
same labels for all classes including u: We first label
all classes of W/R*7 which in turn gives labels to the

classes of all W(c)/n*. The drawback of this method
is that some memory cells not used during program
execution may be allocated. The reasons are that we
cannot know statically which cells will be referred to,
and that the set of numbers labeling the classes of a

given W(c)/n* may not be dense.

The maximal static expansion scheme given above works
for any imperative programs. More precisely, you may ex-
pand any imperative program using maximal static expan-
sion, provided that a data-flow analysis technique can han-
dle it (at operation level) and that transitive closure com-
putation, relation composition, intersection, and so on, are
feasible in your framework.

Expanding scalars and arrays is done by renaming the
variables and adding new dimensions to arrays; However,
no straightforward expansion exists for trees, graphs, dy-
namic data structures with pointers ... In the general case,

appropriate expansion ‘“rules” must be defined—depending
on both the data and control structures.

We give below an algorithm to construct expanded codes
for loops nests and arrays only .

Before giving the algorithm, we would like to focus on
two important points:

o The algebraic view given in this section considered
each memory cell ¢ in turn. Obviously, since the num-
ber of memory cells brought into play in a program is
often unknown or parameterized, a naive application
of this view would not practical. Our method gives a
solution parameterized by the identity of the cell ¢, so
its complexity does not grow with Card(M).

e The definitions given in Section 3 and the expansion
scheme are valid for any class of imperative programs.
The only restrictions and limitations are those of the
data-flow analysis and of the algorithm to compute
transitive closures.

In the sequel, since we apply our own array data-flow
analysis framework to maximal static expansion, we
inherit its syntactical restrictions: Data structures are
scalars and arrays; Pointers are not allowed. Loops,
conditionals and array subscripts are unrestricted.

5 An Algorithm for Loop Nests

Using a data-flow analysis such as FADA [2], the data-flow
graph 1s described by systems of affine inequalities over it-
eration variables and structure parameters. Our algorithm
then reduces to well known transformations on affine integer
polyhedra, most of them being implemented in Omega [14].
We present below the expansion algorithm for all accesses
to a given array A.

Input: The data-flow graph as an affine relation o between
reads and their reaching definitions (the sources).
Output: The target expanded code.

1. Compute R = goo™'. (This boils down to eliminating
rin (5).)

2. If R is not transitive, compute R* with Omega’s tran-
sitive closure operator. Because the transitive closure
of an affine relation is not necessary affine, the result
may be an upper-approximation. See [10] for details.
This approximation is a conservative one, but may
hide an interesting possible static expansion. Using
Omega, R* is described as a mapping from u to @
(u being the class of u for relation R*: @ = {v €

W : uR*v}).

3. In each class @, pick a single, arbitrary element. This
chosen element is now considered as the representative
¢(u). How do we pick this element? As long as the
element we pick is unique, any method is fine. Let
us choose the minimum according to lexicographical
order (which is a case of overkill).

4. Are all subscript functions affine?

3This is mainly due to the fact that our implementation of the
expansion scheme is based on our own data-flow analysis, which is
restricted to such programs.

Yes Let us consider ¢ = A[z]. W(AL[z]) is the
union of {({z, S) i € Dom(S) A f({1,5)) = =}
over all statements S writing into A.

Compute ¢(W(A [«])), which is a set of repre-
sentatives of W(A[m])/n*. Give a number to each
element in the set of representatives.

No Compute ¢(W). Give a number to each element
in the set of representatives.

If an element in the set of representatives is itself a
parameterized affine set of operations, labeling boils
down to scanning exactly once all the integer points in
the set, which can be done using classical techniques [1,
4].

In both cases, u has a single representative and is
therefore mapped to a unique label v(u).

5. Code generation is then straightforward: any refer-
ence A[f(u)] in the left hand side is transformed into
AL f(u),v(u)]. For any reference in the right hand
side, one has to find the label of the source of the
read. That is, any read A[g(u)] is transformed into
Alg(u),v(o(u))]. (Recall that o(u) is a set, mapped
by construction of v to a single label v(o(u)).)

When v is a conditional whose predicate is affine w.r.t.
loop counters, then the conditional can be taken out
of A’s subscript.

6. The size declaration A[...] of A is transformed into
A[...,maxsmax,epom(s) ¥(u)] 4

Computing the Lexicographical Minimum Let us call @
the equivalence class of u for relation R*. The lexicograph-
ical minimum of @ is:

min(%) = v s.t. uR*v A (Aw :

uR*w A w <K v)
<

This definition may be simplified in writing < as a relation
between operations:

<<={(u,v) : u<<v}.
Thus,

min(@) = (R*\ (< oR ")) (u) (%)

Complexity For each array in the source program, the al-
gorithm proceeds as follows:

e Compute the reciprocal relation ¢~! of ¢. This is dif-
ferent from computing the inverse of a function and
barely consists in a swap of the two arguments of o.

o Composing two relations ¢ and ¢’ boils down to elim-
inating y in voy A yo'z.

4 Arrays usually have to be rectangular; Therefore 4, () [f(u)l
may be a better renaming. Consider for instance the expanded ver-
sion of example 2: Expanding 4 into A1 and 42 would require 6N — 2
array elements instead of 8N — 2 in Figure 6.

o Computing the exact transitive closure of R is quite
expensive. Kelly et al. [10] do not give a formal bound
on the complexity of their algorithm, but their imple-
mentation in the Omega toolkit proved to be efficient
if not concise. Notice again that the exact transitive
closure is not necessary for our expansion scheme to
be correct.

Moreover, R happens to be often transitive in prac-
tice. In our implementation, this is first checked be-
fore triggering the computation of the closure by test-
ing whether the difference (RoR)\ R is empty. In all
three examples, the relation is already transitive.

e In the algorithm above, ¢ is a lexicographical mini-
mum. This clearly is a bad idea, because the expan-
sion scheme just needs a way to pick one element per
equivalence class. Computing the lexicographical min-
imum is expensive a priori, but was easy to implement
in our first prototype.

e HFinally, numbering classes is costly only when we have
to scan a polyhedral set of representatives in dimension
greater than 1. In practice, we only had intervals on
the examples we tried.

Implementation The maximal static expansion is imple-
mented in C4++ on top of the Omega library. Figure 8 sum-
maries the computation times for the three examples (on
a Sun SPARCstation 5). These results do not include the
computation times for data-flow analysis and code genera-
tion.

‘ ‘ 15% example ‘ 2nd example | 3™ example

transitive
closure 100 100 110

(check)

picking the
representatives 110 160 110

(function)
other 130 150 70
‘ total ‘ 340 410 290

Figure 8: Computation times, in milliseconds.

Moreover, computing the class representatives is rela-
tively fast; It validates our choice to compute function ¢
(mapping operations to their representatives) using a lexi-
cographical minimum. The intuition behind these results is
that the computation time mainly depends on the number
of affine constraints in the data-flow analysis relation.

Our only concern so far would be to find a way to ap-
proximate the expressions of transitive closures when they
become large.

6 Back to the examples

This section applies our algorithm to the motivating exam-
ples, using the Omega Calculator [14] as a tool to manipulate
affine relations.

6.1 First Example

Let us consider the source program at Figure 1. Using the
Omega Calculator text-based interface, we describe a step-
by-step execution of the expansion algorithm. We have to
code operations as integer-valued vectors. An operation
(,5¢) is denoted by vector [i,..,s], where [..] possi-
bly pads the vector with zeroes. We number T, S, R with 1,
2, 3 in this order, so {i,T), (1,7, 5) and (¢, R) are written
[i,0,11, [i,j,2] and[i,0,3], respectively.
From (1) and (2), we construct the source relation S:

S := {[i,0,2]1->[1,0,1] : 1<=i<=N}
union {[i,w,2]->[1,w-1,2]
union {[i,0,3]1->[i,0,1]
union {[1,0,3]->[1,w,2]

1<=i<=N && 1<=w}
1<=i<=N}
1<=i<=N && 0<=w};

= o = H

Step 1. Computing R is straightforward:

S’ := inverse S;
R :=8S(8’);
R

H

= H =

{[i,0,11->[i,0,1]
{[i,w,2]->[i,0,1]
{[i,0,11->[i,w’,2]
{[i,w,2]->[1i,w’,2]

1<=i<=N} union

1<=i<=N && 0<=w} union
1<=i<=N && 0<=w’} union
1<=i<=N && O0<=w’ && O0<=w}

Step 2. R is already transitive, no closure computation is
thus necessary.

Step 3. Let us choose ¢(u) as the first executed operation
in class u (the least operation according to the sequential
order): ¢(u) = ming ({u' : u'R*u}).

To compute the lexicographical minimum, let us rewrite
its definition using the Omega Calculator syntax. We thus
describe ¢ by a relation of the form:

e([i,w,s1) = [, w57 st.
[i,w,s], [, w' s'] € W(x)
Ald,w,sITR*[i', v, 5]
A(AL w" s"] € W(x)
[i,w,s1R*" [, w”, s"]
AL o' '] < [w", "])

Since [1,w,s] € W(x) is always verified in this example,
we may simplify this expression in using (8):

go([i,w,s]):(R*\(<< OR*))([i,w,s]). 9)
The result of this computation is:

Viow, 1<i<Nw>1 @ o(i,T)) =G,T),

e((t,w,8)) = (5, 7).

Step 4. Since we have only one memory cell, W(x) = W.

Computing ¢(W(x)) yields N operations of the form
(¢,T). Maximal static expansion of accesses to variable x
requires N memory cells. ¢ is an obvious label:

s v((hw,8)) =v({(i,T)) =1

Ve,w, 1 <i: < N,w>1 1.
(10)

Step 5. All left-hand side references to x are transformed
into x[i]; All references to x in the right hand side are
transformed into x[i] too since their sources are instances
of S or T for the same ¢. The expanded code is thus exactly
the one found intuitively in Figure 3.

Step 6. The size declaration of the new array is x[1..N].

6.2 Second Example

We now consider the source program in Figure 4. Operations
(,4,5) and (¢, N,T) are denoted by [i,j,1] and [i,N,2],

respectively. From (3), the source relation S is defined as:

#5 := {[i,§,11->[1’, §7,1] : 1<=i,i’<=2N

%% 1<=j><j<=N & i’-j’=i-j}

union {[i,j,1]->[i’,N,2] 1<=i,i’<=2N
&% N<j<=2N && i’=i-j+N}

union {[i,j,1]1->[i’,j’,1] 1<=i,i’<=2N
& N<j <j<=2N & i’-j’=i-j};

H H H HH

Step 1. As in the first example, we compute relation R
using Omega:

S’ := inverse S;
R :=8S(8’);
R

H

= H =

{[i,j,11->[i’,j-i+i’,1] 1<=i<=2N-1 && 1<=j<N
&% 1<=i’<=2N-1 && i<j+i’ && j+i’<N+i} union
{[i,j,11->[i’,j-i+i’,1] : N<j<=2N-1 && 1<=i<=2N-1
&% 1<=i’<=2N-1 && N+i<j+i’ && j+i’<2N+i} union
{[i,N,2]->[1’,N-1+1’,1] 1<=i<i’<=2N-1

&% i’<N+i} union
{[i,j,11->[N+i-j,N,2]
&% j<N+i} union
{[i,N,2]->[1,N,2]

: N<j<=2N-1 && i<=2N-1
1<=i<=2N-1}

Step 2. We compute R*. Figure 5.a shows the equivalence
classes of R™.

Step 3. We compute ¢(u) as a relation similar to (9),
using Omega. The result follows:

e((i,7,8) =(1,j—1+1,5)
e((i,7,8) = (i—j+1,1,5)

Vi g, 1<i<2N,N4+1<j<2N,j—i> N
e((i,7,8) =(1,j—1+1,5)
©((1,5,5)) = (i —j+ N,N,T)

Vi, 5, 1 <1< 2N
(1, N,T)) = (i, N,T)

Step4. W(c) ={{1,4,5) : i—j+2N = c}U{{c—N,N,T)}.
Let us compute the representatives for W(c):
e(W(c)) =(1,1-¢,5)
eW(e) = {{c+1,1,9),
{(¢+ N, N, T)}
eW(c)) ={c+1,1,5)

1<c<N
N4+1<c<3N-1

3N <c<4N -1

This result shows three intervals of constant cardinality
of W(c)/n*; They are described in Figure 5.b. A labeling can

be found mechanically. If s — 542N < Nort—j3+2N > 3N,
there is only one representative in o(W(: — j + 2N)), thus
v({1,5,8) =1 UN+1<i—75+42N <3N — 1, there are
two representatives; Thus we define v({¢,7,5)) = 11if j < n,
v({1,4,8)) =21if j > N, and v({i, N,T)) = 2.

Step 5. The static expansion code appears in Figure 6.
As hinted in Section 5, conditionals in v have been taken
out of array subscripts.

Step 6. Array A is allocated as A[1..4#8-1,1..2].

6.3 Third Example: Non-Affine Array Subscripts

We come back to the program in Figure 7.a. Operations
(4,4, 1), (1,S) and (i, R) are written [i,j,1], [1,0,2] and
[i,0,3]. From (4), we build the source relation as follows:

#8 := {[1,0,3]1->[i,,1] : 1<=i,j<=N}

it union {[1,0,3]->[1,0,2] 1<=i<=N};
Step 1.

S’ := inverse S;

#t R :=S(8’);

R;

H

{[i,j,11->[i,j°,1]
&% 1<=j’<=N} union
{[i,0,2]1->[i,j’,1]
{[i,j,11->[i,0,2]
{[i,0,2]1->[1,0,2]

1<=i<=N && 1<=j<=N
1<=i<=N && 1<=j’<=N} union

1<=i<=N &% 1<=j<=N} union
1<=i<=N}

Step 2. R is already transitive: R = R*.

Step 3. We compute (u) as a relation similar to (9).

: @((iv S>) = <i7 17T>
go((i,j, T>) = <i7 17T>

Note that every (i,j,7) operation is in relation with

(i,1,T).

Vi, 1<i< N
Vi, 7, 1<t <N, 1I<j<N ¢

Step 4. Since some subscripts are not affine, we cannot
compute at compile-time the exact sets W(AL[x 1) of oper-
ations writing in some cell A[Lz]. Therefore, we compute

e(W):
e(W) = {(lv 17T>}'

We can use ¢ to label these representatives; Thus the
resulting v function is:

v((1,9)) = v({1,5, 1)) = &

Step 5. Using this labeling, all left hand side references
to A[...] become A[..., i] in the expanded code. Since
the source of (¢, R) is an instance of S or T at the same
iteration i, the right hand side of R is expanded the same
way. Expanding the code thus leads to the intuitive result
given at Figure 7.b.

Step 6. The size declaration of A is now A[1..N,1..N].

7 Conclusion

Expanding data structures is a classical optimization to cut
memory-based dependences. However, the generated code
has to ensure that all reads refer to the correct memory cell.
When control flow is dynamic, the main drawback of such
methods is therefore that some run-time computation has
to be done to decide the identity of the correct memory cell.

This paper presented a new and general expansion frame-
work: A cell can be expanded at most as many times as
there are classes of independent (as far as data-flow is con-
cerned) writes. A practical algorithm was given and applied
to real-life loop nests accessing arrays.

Interestingly enough, the framework does not require any
precision level of the data-flow analysis, nor does it require
the closure computation to be exact. Conservative approx-
imate results are fine as well, the only drawback being a
probable loss in static expansion. However, we cannot do
any better, and in accordance to our definition, the static
expansion we derive is still maximal. When the data-flow
analysis and/or the transitive closure tool give poor results,
our expansion scheme does not fail but degrades gracefully.

Future work will study the application of the framework
to a wider class of problems. We also intend to enhance the
algorithm so as to handle pointer-based data structures and
recursive programs.

Acknowledgments The first two authors are supported by

the French Ministére de I’Enseignement Supérieur et de la
Recherche (MESR) and the third by the Centre National de
la Recherche Scientifigue (CNRS). All authors are, in addi-
tion, supported by INRIA project AAA and the German-
French ProCoPe program.

We would like to thank Paul Feautrier, Max Geigl, Mar-
tin Griebl and Vincent Lefebvre for fruitful discussions on
this topic.

References

[1] C. Ancourt and F. Irigoin. Scanning polyhedra with
DO loops. In Proc. of ACM SIGPLAN Symp. on Prin-
ciples and Practice of Parallel Programming, pages 39—
50, June 1991.

[2] D. Barthou, J.-F. Collard, and P. Feautrier. Fuzzy array
dataflow analysis. Journal of Parallel and Distributed
Computing, 40:210-226, 1997.

[3] J.-F. Collard, D. Barthou, and P. Feautrier. Fuzzy ar-
ray dataflow analysis. In Proc. of 5th ACM SIGPLAN
Symp. on Principles and Practice of Parallel Program-
ming, pages 92-102, Santa Barbara, CA, July 1995.

[4] J.-F. Collard, P. Feautrier, and T. Risset. Construction
of DO loops from systems of affine constraints. Parallel
Processing Letters, 5(3), 1995.

[5] B. Creusillet. Array Region Analyses and Applications.
PhD thesis, Ecole des Mines de Paris (ENSMP), De-
cember 1996.

[6] R. Cytron, J. Ferrante, B. K. Rosen, M. K. Wegman,
and F. K. Zadeck. An efficient method of computing
static single assignment form. In 16th Annual ACM
Symposium on Principles of Programming Languages,
pages 2535, 1989.

[7] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman,
and F. K. Zadeck. Efficiently computing static single as-
signment form and the control dependence graph. ACM
Transactions on Programming Languages and Systems,
13(4):451-490, October 1991.

[8] P. Feautrier. Dataflow analysis of scalar and array refer-
ences. Int. Journal of Parallel Programming, 20(1):23—
53, February 1991.

[9] M. Griebl and J.-F. Collard. Generation of synchronous
code for automatic parallelization of while loops. In
Furo-Par95, Stockholm, Sweden, August 1995.

[10] W. Kelly, W. Pugh, E. Rosser, and T. Shpeisman. Tran-
sitive closure of infinite graphs and its applications. Int.
Journal of Parallel Programming, 24(6):579-598, 1996.

[11] D. Levine, D. Callahan, and J. Dongarra. A compara-
tive study of automatic vectorizing compilers. Parallel
Computing, 17:1223-1244, 1993.

[12] D. E. Maydan, S. P. Amarasinghe, and M. S. Lam. Ar-
ray dataflow analysis and its use in array privatization.
In Proc. of ACM Conf. on Principles of Programming
Languages, pages 2—15, January 1993.

[13] K. L. Pieper. Parallelizing Compilers: Implementa-
tion and Effectiveness. PhD thesis, Stanford University,
Computer Systems Laboratory, June 1993.

[14] W. Pugh. The omega test: a fast and practical integer
programming algorithm for dependence analysis. Com-
munications of the ACM, 8:102-114, August 1992.

[15] P. Tu and D. Padua. Automatic array privatization. In
Proc. Sizth Workshop on Languages and Compilers for
Parallel Computing, number 768 in Lecture Notes in
Computer Science, pages 500-521, August 1993. Port-
land, Oregon.

[16] D. Wonnacott and W. Pugh. Nonlinear array depen-
dence analysis. In Proc. Third Workshop on Languages,
Compilers and Run-Time Systems for Scalable Comput-
ers, 1995. Troy, New York.

[17] D. G. Wonnacott. Constraint-Based Array Dependence
Analysis. PhD thesis, University of Maryland, 1995.

Copyright ©1997 by the Association for Computing Ma-
chinery, Inc. Permission to make digital or hard copies of
part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or
distributed for profit or direct commercial advantage and
that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post
on servers, or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Publica-
tions Dept., ACM Inc., fax +1 (212) 869-0481, or (permis-
sions@acm.org).

