
Maximal Static ExpansionDenis Barthou, Albert Cohen and Jean-Fran�cois CollardPRiSM, Universit�e de Versailles45 Avenue des �Etats-Unis78035 Versailles, Francefbad,acohen,jfcg@prism.uvsq.frKeywords Expansion of data structures, privatization, sin-gle assignment.AbstractMemory expansions are classical means to extract paral-lelism from imperative programs. However, for dynamiccontrol programs with general memory accesses, such trans-formations either fail or require some run-time mechanismto restore the data
ow. This paper presents an expansionframework for any type of data structure in any imperativeprogram, without the need for dynamic data
ow restora-tion. The key idea is to group together the write operationsthat participate in the
ow of the same datum. We showthat such an expansion boils down to mapping each groupto a single memory cell. We give a practical algorithm forcode transformation. This algorithm, however, is valid for(possibly non-a�ne) loops over arrays only.1 IntroductionData dependences are known to hamper automatic paral-lelization of imperative programs and their e�cient com-pilation on modern superscalar or VLIW processors. Ageneral method to tackle this problem is to disambiguatememory accesses and to assign distinct memory cells to non-con
icting writes, i.e. to expand data structures. In parallelprocessing, expanding a datum also allows to place one copyof the datum on each processor, enhancing parallelism. Thistechnique is known as array privatization [15, 12, 5] and isextremely important to parallelizing and vectorizing com-pilers [11, 13]. A similar technique is register or variablerenaming.In the extreme case, each memory cell is written at mostonce, and the program is said to be in single assignment(SA) form. Unfortunately, when the control
ow cannotbe predicted at compile-time, some run-time computationis needed to preserve the original data
ow: In the staticsingle-assignment framework, �-functions may be needed to\merge" multiple reaching de�nitions, i.e. possible data def-initions due to several incoming control paths [6, 7]. SuchTo be published in the proceedings of PoPL'98: The twenty-�fth annual ACM SIGACT-SIGPLAN symposium on Prin-ciples of Programming Languages, January 19{21 1998, SanDiego, CA.

�-functions may be an overhead at run-time, especially fornon-scalar data structures or when replicated data are dis-tributed across processors. We are thus looking for a staticexpansion, i.e. an expansion of data structures that doesnot need a �-function. (Notice that according to our de�ni-tion, an expansion in the static single assignment frameworkmay not be static.) The goal of this paper is to automati-cally �nd the static expansion which expands all data struc-tures as much as possible, i.e. the maximal static expansion.Maximal static expansion may be considered as a trade-o�between parallelism and memory usage.We present an algebraic framework to derive the max-imal static expansion. The input of this framework is the(perhaps inaccurate) output of a data-
ow analysis, so ourmethod is \optimal" with respect to the precision of thisanalysis. Our framework is valid for any imperative pro-gram, without restriction|the only restrictions being thoseof your favorite data-
ow analysis. We then present an al-gorithm to construct the maximal static expansion for pro-grams with arrays only, but where subscripts and controlstructures are unrestricted.The paper is organized as follows: Section 2 studies mo-tivating examples showing what we want to achieve. Sec-tion 3 formally states what (maximal) static expansion is,and Section 4 presents a general framework to solve thisproblem. This framework is applied in Section 5 to derivean algorithm for maximal static expansion. Section 6 ap-plies this algorithm to the motivating examples, before ourconclusion.2 Motivating ExamplesThe general framework presented in this paper is valid forany imperative programs. However, the three examples westudy in this section are basically loop nests over arrays(mainly because our own analysis [2] is restricted to suchprograms).2.1 De�nitionsFor any statement, the iteration vector is the vector builtfrom surrounding loop counters. The iteration domain is theset of values the iteration vector takes during program exe-cution. For instance, the iteration domain of T in Figure 1is Dom(T) = fi : 1 � i � Ng. Each iteration of a loopspawns instances, called operations, of statements includedin the loop body. In the example program, the for loopon i yields N instances of T , denoted by h1; T i; : : : ; hN;T i.Moreover, we introduce arti�cial integer counters for while1

loops. For instance, operations of S in Figure 1 are labeledhi;w; Si, with 1 � i � N and w 2 N.The execution order on operations is denoted by �.2.2 First Example: Dynamic Control FlowWe �rst study the pseudo-code shown in Figure 1; This ker-nel appears in several convolution codes 1. Parts denoted by... are supposed to have no side-e�ect.real xfor i = 1 to N doT x = ...while ... doS x = ... x ...end whileR ... = ... x ...end for Figure 1: First example.Each operation hi; T i assigns a new value to variable x.In turn, statement S assigns x an unde�ned number of times(possibly zero). The value read in x by statement R is thusde�ned either by T , or by some instance of S, in the sameiteration of the for loop (the same i). Therefore, if theexpansion assigns distinct memory cells to hi; T i and to in-stances of hi;w;Si, how could operation hi; Ri \know" whichmemory cell to read from?To formalize this problem, we use a data-
ow analysis todescribe where values are de�ned and where they are used.The intuitive picture is that a datum
ows from its sourceto the sink. We assume that the data-
ow analysis works atoperation level. Moreover the analysis may be more or lessaccurate: When the exact source of a read operation cannotbe predicted at compile time, we suppose that it returns aset of possible sources for this read. This set is a conservativeapproximation of the source.We may thus call � the function mapping a read opera-tion to its set of sources. Applied to the example in Figure 1,it tells us that the set of sources �(hi; w;Si) of an operationhi;w; Si is:�(hi; w;Si) = �������� if w > 0then fhi;w� 1; Sigelse fhi; T ig (1)And the set of sources �(hi;Ri) of an operation hi;Ri is:�(hi;Ri) = �hi; T i	 [�hi; w;Si : w � 0	; (2)where w is the (arbitrary) counter of the while-loop.Let us try to expand scalar x. One way is to convertthe program into SA, making T write into x'[i] and Sinto x''[i; w]: Then, each memory cell is assigned to atmost once, complying with the de�nition of SA. However,what should right-hand sides look like now? A brute-forceapplication of (2) yields the program in Figure 2. Whilethe right-hand side of S only depends on w, the right-handside of R depends on the control
ow, thus needing a func-tion similar to a �-function in the SSA framework (even if,on this introductory example, the �-function would be verysimple) [9].1For instance, Horn and Schunck's algorithm to perform 3D Gaus-sian smoothing by separable convolution.

for i = 1 to N doT x'[i] = ...while ... doS x''[i,w] = ...if w > 0 then x''[i,w-1] else x'[i] ...end whileR ... = ... �(hi; T i; fhi;w;Si : w � 0g) ...end for Figure 2: First example, continued.The aim of this paper is to expand x as much as possiblein this program but without having to insert �-functions.A possible static expansion is to uniformly expand x intox[i] and avoid output dependencies between distinct itera-tions of the for loop. The resulting maximal static expan-sion of this example is given by Figure 3. It has the samedegree of parallelism and is simpler than the program insingle-assignment.real x[1..N]for i = 1 to N doT x[i] = ...while ... doS x[i] = ... x[i] ...end whileR ... = ... x[i] ...end forFigure 3: Expanded version of the �rst example.Notice that it should be easy to adapt the array privatiza-tion techniques by Maydan et al. [12] to handle the programin Figure 1; This would tell us that x can be privatizedalong i. However, we want to do more than privatizationalong loops, as illustrated in the following examples.2.3 Second Example: Array ExpansionLet us give a more complex example; We would like to ex-pand array A in the program in Figure 4.Since T always executes when j equals N , a value readby hi; j; Si, j > N is never de�ned by an instance hi0; j0; Siof S with j0 � N . Figure 4 describes the data-
ow relationsbetween S instances: An arrow from (i0; j0) to (i; j) meansthat instance (i0; j0) de�nes a value that may reach (i; j).Formally, the source of one instance of statement S is:�(hi; j; Si) = ���������������� if j � Nthen �hi0; j0; Si : 1 � i0 � 2N^ 1 � j0 < j ^ i0 � j0 = i� j	else �hi0; j0; Si : 1 � i0 � 2N^ N < j0 < j ^ i0 � j0 = i� j	[�hi0;N;T i : 1 � i0 < i^ i0 = i� j +N	 (3)Because sources are non-singleton sets, converting this pro-gram to SA form would require run-time computation of thememory location read by S.However, we notice that the iteration domain of S maybe split into disjoint subsets by grouping together opera-2

real A[1..4*N-1]for i = 1 to 2*N dofor j = 1 to 2*N doif ... thenS A[i-j+2*N] = ... A[i-j+2*N] ...end ifT if j = N then A[i+N] = ... end ifend forend for
i

2NN
N 2N

j

Figure 4: Second example.tions involved in the same data
ow. These subsets builda partition of the iteration domain. Each subset may haveits own memory cell, a cell that will not be written nor readby operations outside the subset. The partition is given inFigure 5.a.Using this property, we can duplicate only those elementsof A that are used twice. These are all the array elementsA[c], 1+N � c � 3N�1. They are accessed by operationsin the large central set in Figure 5.b. Let us label with 1the subsets in the lower half of this area, and with 2 thesubsets in the top half. We add one dimension to array A,subscripted with 1 and 2 in statements S2 and S3 in Fig-ure 6, respectively. Elements A[c]; 1 � c � N are accessedby operations in the upper left triangle in Figure 5.b andhave only one subset each (one subset in the correspondingdiagonal in Figure 5.a), which we label with 1. The samelabeling holds for sets corresponding to operations in thelower right triangle.The maximal static expansion is shown in Figure 6. No-tice that this program has the same degree of parallelism asthe corresponding single-assignment program, without therun-time overhead.2.4 Third Example: Non-A�ne Array SubscriptsConsider the program in Figure 7.a, where foo and barare arbitrary subscripting functions 2. Since all array ele-ments are assigned by T , the value read by R at the ithiteration must have been produced by S or T at the sameiteration. The data-
ow graph is similar to the �rst exam-ple: �(hi;Ri) = �hi; Si	 [�hi; j; T i : 1 � j � N	: (4)The maximal static expansion adds a new dimension to A2A[foo (i)] stands for an array subscript between 1 and N , \toocomplex" to be analyzed at compile-time.

Figure 5.a.
j

i
i

j
Figure 5.b.

N N 2N
N 2NN2N

2N

Figure 5: Partition of the iteration domain (N = 4).subscripted by i. It is su�cient to make the �rst loop par-allel.These examples show the need for an automatic staticexpansion technique. We present in the following sectiona formal de�nition of expansion and a general frameworkfor maximal static expansion. We then describe an expan-sion algorithm for arrays that yields the expanded programsshown above. Notice that it is easy to recognize the orig-inal programs in their expanded counterparts, which is apractical property of our algorithm.2.5 Related workIf the input program is built of nested for loops with a�nebounds and accesses arrays with a�ne subscripts, one can�nd a static expansion which is also in single-assignmentform. Feautrier [8] coined the term static control programsfor this class of programs.In the case of programs with general control and unre-stricted arrays subscripts, array data-
ow analyses are ap-proximate [3, 2, 16, 17]: Several writes may be the uniquede�nition of a given value, but the analysis cannot tell. [9]describes how to obtain a single-assignment program to theprice of dynamic restoration of data
ow.3

real A[1..4*N-1,1..2]for i = 1 to 2*N dofor j = 1 to 2*N dofexpansion of statement Sgif -2*N+1 <= i-j <= -N thenif ... thenS1 A[i-j+2*N,1] = ... A[i-j+2*N,1] ...end ifelsif -N+1 <= i-j <= N-1 thenif j <= N thenif ... thenS2 A[i-j+2*N,1] = ... A[i-j+2*N,1] ...end ifelseif ... thenS3 A[i-j+2*N,2] = ... A[i-j+2*N,2] ...end ifend ifelseif ... thenS4 A[i-j+2*N,1] = ... A[i-j+2*N,1] ...end ifend iffexpansion of statement TgT if j = N then A[i+N,2] = ... end ifend forend forFigure 6: Maximal static expansion for the second example.Many studies are related to array privatization. As hint-ed above, Maydan et al. [12] proposed an algorithm to pri-vatize arrays. However, their method only applies to staticcontrol programs. Tu and Padua [15] proposed a privati-zation technique for a very large class of programs. But itresorts to dynamic restoration of data
ow. Another ac-curate approach using array regions has been described byCreusillet [5]. Her method avoids the cost of a dynamicrestoration and copies back the privatized elements into theoriginal arrays.However, privatization only detects parallelism along theenclosing loops; It is thus less powerful than general arrayexpansion techniques. Indeed, the example in Section 2.3shows that our method not only may expand along diagonalsin the iteration space but may also do some \blocking" alongthese diagonals.3 Static ExpansionLet
 be the set of all operations in the program, f the func-tion mapping operations to memory cells they write into,and W �
 be the set of all writes. We still use � to denotethe function mapping a read operation to its set of possiblesources. Notice that � may also be seen as a relation betweenread and write operations. Let f 0 be the expansion, that isthe new function, after program transformation, mappingoperations to the memory cells they write into.Let us consider two operations u and v belonging to thesame set of possible sources of some read r. If they bothwrite in the same memory cell (f(u) = f(v)) and if we assigntwo distinct memory cells to u and v (f 0(u) 6= f 0(v)), thena �-function is needed to restore the data
ow since we donot know which of the two cells has the value needed by r.

real A[1..N]for i = 1 to N dofor j = 1 to N doT A[j] = ...end forS A[foo(i)] = ...R ... = ... A[bar(i)]end forFigure 7.a: Source program.real A[1..N,1..N]for i = 1 to N dofor j = 1 to N doT A[j,i] = ...end forS A[foo(i),i] = ...R ... = ... A[bar(i),i]end forFigure 7.b: Expanded version.Figure 7: Third Example.Static expansion enforces f 0(u) = f 0(v).De�nition 1 (Static expansion) A static expansion is amapping f 0 from operations to memory cells such that8u; v : (9r; u 2 �(r) ^ v 2 �(r) ^ f(u) = f(v))=) f 0(u) = f 0(v):Because the sources of a read are mapped to the same mem-ory cell by f 0, static expansion preserves the original data-
ow graph.Notice also that, according to this de�nition, even a con-stant function on W is a static expansion. Because we areinterested in maximizing the memory expansion, the rangeof a \good" static expansion should be as large as possible.In other words, such an expansion should be constant onsets as small as possible:De�nition 2 (Maximal static expansion) A static ex-pansion f 0 is maximal on the set of operationsW if, for anystatic expansion f 00,8u; v 2 W : f 0(u) = f 0(v) =) f 00(u) = f 00(v):Intuitively, if f 0 is maximal, then f 00 cannot do better: itmaps two writes to the same memory cell when f 0 does.We need to characterize the sets of operations on which amaximal static expansion f 0 is constant, i.e. the equivalenceclasses of the relation fu; v 2 W : f 0(u) = f 0(v)g. Theset of theses classes is denoted by W�f 0 . The number ofmemory cells after maximal static expansion is thus equalto the cardinal of W�f 0 .However, this hardly gives us an expansion scheme, be-cause this result does not tell us how much each individualmemory cell should be expanded. The purpose of Section 4is to give a similar result for each memory cell c used in theoriginal program. This result appears in Theorem 1. Thistheorem is then used to give a practical expansion scheme.4

4 Expansion SchemeLet us de�ne the relation:uRv () 9r; u 2 �(r) ^ v 2 �(r): (5)� is itself a relation on
 �
 and the reciprocal relationis denoted by ��1. Therefore, uRv () u 2 �(��1(v)),i.e., R = � � ��1. Relation R is obviously symmet-ric. De�nition 1 requires that a static expansion f 0 veri-�es f 0(u) = f 0(v) when f(u) = f(v) and uRv. Given u, vand w in W, if f(u) = f(v) = f(w), uRv and vRw thenf 0(u) = f 0(v) = f 0(w). Therefore, given u 2 W, f 0 is con-stant on the set of all v 2 W such that f(u) = f(v) anduR�v, R� being the transitive closure of R. We may givean equivalent de�nition of a static expansion:De�nition 3 A static expansion is a mapping f 0 from op-erations to memory cells such that8u; v : uR�v ^ f(u) = f(v) =) f 0(u) = f 0(v):We now characterize any maximal static expansion interms of R� and f :Lemma 1 f 0 is a maximal static expansion if and only if8u; v 2 W : uR�v ^ f(u) = f(v) () f 0(u) = f 0(v):(6)Su�cient condition|the \if" partLet f 0 be a mapping s.t. 8u; v 2 W : f 0(u) =f 0(v) () uR�v ^ f(u) = f(v): By de�nition,f 0 is a static expansion.Let us show that f 0 is maximal. Suppose that foru; v 2 W: f 0(u) = f 0(v). (6) implies uR�v andf(u) = f(v). Thus, from De�nition 3, any staticexpansion f 00 satis�es f 00(u) = f 00(v). Therefore,f 0(u) = f 0(v) =) f 00(u) = f 00(v), so f 0 complieswith De�nition 2.Necessary condition|the \only if" partLet f 0 be a maximal static expansion. Because f 0is a static expansion, we only have to prove that8u; v 2 W : f 0(u) = f 0(v) =) uR�v ^ f(u) =f(v).On the one hand, f 0(u) = f 0(v) =) f(u) = f(v)because f is a static expansion. On the otherhand, assume f 0(u) = f 0(v) and :uR�v. Weshow that it contradicts the maximality of f 0:Let f 00(w) = f 0(w) when :uR�w, and f 00(w) = cwhen uR�w, with c 6= f 0(u). f 00 is a static ex-pansion: By construction, f 00(u0) = f 00(v0) forany u0 and v0 such that u0R�v0. The contradic-tion comes from the fact that f 00(u) 6= f 00(v). 2Let us de�ne M = f(W) the set of all memory cellsaccessed by write operations, and for c 2 M , W(c) = fu 2W : f(u) = cg the set of operations writing into c. Givenc 2 M , the previous lemma entails that a static expansionf 0 is maximal i�8u; v 2 W(c) : f 0(u) = f 0(v) () uR�v:Therefore, classes of R� in W(c) are exactly the sets we arelooking for:

Theorem 1 The sets on which a maximal static expansionf 0 is constant are described by:W�f 0 = [c2M W(c)�R� (7)The equivalence classes de�ned in this theorem gives thepartition intuitively found in Section 2, and the expansionfactor of each individual memory cell c is Card(W(c)�R�).Consider for instance A[0] in Figure 5.a. The instances ofS that belong to W(A[0]) are on the main diagonal f(i; j) :1 � i; j � 2N ^ i = j = 0g. R� partitions these operationsin exactly the two subsets depicted in the �gure.To generate the transformed code, one has to rememberwhich equivalent class an operation belongs to: Let ' be thefunction mapping an operation u to a representative of itsequivalence class. One may label each element of W(c)�R� , orequivalently, label each element of '(W(c)). Such a labelingscheme is obviously arbitrary, but all programs transformedusing our method are equivalent up to a permutation ofthese labels. We denote by �(u) the label we choose for theelements of '(W(f(u))). Then, f 0 = (f; �).Our expansion scheme depends on the transitive closurecalculator and on the part calculating W(c). We would liketo stress the fact that the expansion produced is static andmaximal with respect to the results yielded by these parts,whatever their accuracy:� The exact transitive closure may be too complicatedand may therefore be over-approximated. The ex-pansion factor of a memory cell c is then lower thanCard(W(c)�R�). However, the expansion remains staticand is maximal with respect to the transitive closuregiven to the algorithm.� The setsW(c) may not be known precisely at compile-time. (For instance, when data structures are arrayswith non-a�ne subscripts.) One may use some ap-proximation]W(c) instead, such that W(c) �]W(c),and expand c into as many cells as elements in Ŵ(c)�R� .However, an operation u may then belong to two dis-tinct classes of Ŵ(c)�R� and Ŵ(c0)�R� , c 6= c0, that is,have several representatives and be associated to dif-ferent class labels. To avoid this pitfall, we enforce thesame labels for all classes including u: We �rst labelall classes of W�R� , which in turn gives labels to theclasses of all Ŵ(c)�R� . The drawback of this methodis that some memory cells not used during programexecution may be allocated. The reasons are that wecannot know statically which cells will be referred to,and that the set of numbers labeling the classes of agiven Ŵ(c)�R� may not be dense.The maximal static expansion scheme given above worksfor any imperative programs. More precisely, you may ex-pand any imperative program using maximal static expan-sion, provided that a data-
ow analysis technique can han-dle it (at operation level) and that transitive closure com-putation, relation composition, intersection, and so on, arefeasible in your framework.Expanding scalars and arrays is done by renaming thevariables and adding new dimensions to arrays; However,no straightforward expansion exists for trees, graphs, dy-namic data structures with pointers : : : In the general case,5

appropriate expansion \rules" must be de�ned|dependingon both the data and control structures.We give below an algorithm to construct expanded codesfor loops nests and arrays only 3.Before giving the algorithm, we would like to focus ontwo important points:� The algebraic view given in this section consideredeach memory cell c in turn. Obviously, since the num-ber of memory cells brought into play in a program isoften unknown or parameterized, a naive applicationof this view would not practical. Our method gives asolution parameterized by the identity of the cell c, soits complexity does not grow with Card(M).� The de�nitions given in Section 3 and the expansionscheme are valid for any class of imperative programs.The only restrictions and limitations are those of thedata-
ow analysis and of the algorithm to computetransitive closures.In the sequel, since we apply our own array data-
owanalysis framework to maximal static expansion, weinherit its syntactical restrictions: Data structures arescalars and arrays; Pointers are not allowed. Loops,conditionals and array subscripts are unrestricted.5 An Algorithm for Loop NestsUsing a data-
ow analysis such as FADA [2], the data-
owgraph is described by systems of a�ne inequalities over it-eration variables and structure parameters. Our algorithmthen reduces to well known transformations on a�ne integerpolyhedra, most of them being implemented in Omega [14].We present below the expansion algorithm for all accessesto a given array A.Input: The data-
ow graph as an a�ne relation � betweenreads and their reaching de�nitions (the sources).Output: The target expanded code.1. Compute R = ����1. (This boils down to eliminatingr in (5).)2. If R is not transitive, compute R� with Omega's tran-sitive closure operator. Because the transitive closureof an a�ne relation is not necessary a�ne, the resultmay be an upper-approximation. See [10] for details.This approximation is a conservative one, but mayhide an interesting possible static expansion. UsingOmega, R� is described as a mapping from u to bu(bu being the class of u for relation R�: bu = fv 2W : uR�vg).3. In each class bu, pick a single, arbitrary element. Thischosen element is now considered as the representative'(u). How do we pick this element? As long as theelement we pick is unique, any method is �ne. Letus choose the minimum according to lexicographicalorder (which is a case of overkill).4. Are all subscript functions a�ne?3This is mainly due to the fact that our implementation of theexpansion scheme is based on our own data-
ow analysis, which isrestricted to such programs.

Yes Let us consider c = A[x]. W(A[x]) is theunion of fhi; Si : i 2 Dom(S) ^ f(hi;Si) = xgover all statements S writing into A.Compute '(W(A[x])), which is a set of repre-sentatives of W(A[x])�R� . Give a number to eachelement in the set of representatives.No Compute '(W). Give a number to each elementin the set of representatives.If an element in the set of representatives is itself aparameterized a�ne set of operations, labeling boilsdown to scanning exactly once all the integer points inthe set, which can be done using classical techniques [1,4].In both cases, u has a single representative and istherefore mapped to a unique label �(u).5. Code generation is then straightforward: any refer-ence A[f(u)] in the left hand side is transformed intoA[f(u); �(u)]. For any reference in the right handside, one has to �nd the label of the source of theread. That is, any read A[g(u)] is transformed intoA[g(u); �(�(u))]. (Recall that �(u) is a set, mappedby construction of � to a single label �(�(u)).)When � is a conditional whose predicate is a�ne w.r.t.loop counters, then the conditional can be taken outof A's subscript.6. The size declaration A[:::] of A is transformed intoA[:::;maxSmaxu2Dom(S) �(u)] 4.Computing the Lexicographical Minimum Let us call buthe equivalence class of u for relation R�. The lexicograph-ical minimum of bu is:min� (bu) = v s.t. uR�v ^ (6 9w : uR�w ^w� v)This de�nition may be simpli�ed in writing � as a relationbetween operations:�= �(u; v) : u� v	:Thus, min� (bu) = �R� n (� �R�)�(u) (8)Complexity For each array in the source program, the al-gorithm proceeds as follows:� Compute the reciprocal relation ��1 of �. This is dif-ferent from computing the inverse of a function andbarely consists in a swap of the two arguments of �.� Composing two relations � and �0 boils down to elim-inating y in x�y ^ y�0z.4Arrays usually have to be rectangular; Therefore A�(u) [f(u)]may be a better renaming. Consider for instance the expanded ver-sion of example 2: Expanding A into A1 and A2 would require 6N � 2array elements instead of 8N � 2 in Figure 6.6

� Computing the exact transitive closure of R is quiteexpensive. Kelly et al. [10] do not give a formal boundon the complexity of their algorithm, but their imple-mentation in the Omega toolkit proved to be e�cientif not concise. Notice again that the exact transitiveclosure is not necessary for our expansion scheme tobe correct.Moreover, R happens to be often transitive in prac-tice. In our implementation, this is �rst checked be-fore triggering the computation of the closure by test-ing whether the di�erence (R�R) nR is empty. In allthree examples, the relation is already transitive.� In the algorithm above, ' is a lexicographical mini-mum. This clearly is a bad idea, because the expan-sion scheme just needs a way to pick one element perequivalence class. Computing the lexicographical min-imum is expensive a priori, but was easy to implementin our �rst prototype.� Finally, numbering classes is costly only when we haveto scan a polyhedral set of representatives in dimensiongreater than 1. In practice, we only had intervals onthe examples we tried.Implementation The maximal static expansion is imple-mented in C++ on top of the Omega library. Figure 8 sum-maries the computation times for the three examples (ona Sun SPARCstation 5). These results do not include thecomputation times for data-
ow analysis and code genera-tion. 1st example 2nd example 3rd exampletransitiveclosure 100 100 110(check)picking therepresentatives 110 160 110(function ')other 130 150 70total 340 410 290Figure 8: Computation times, in milliseconds.Moreover, computing the class representatives is rela-tively fast; It validates our choice to compute function '(mapping operations to their representatives) using a lexi-cographical minimum. The intuition behind these results isthat the computation time mainly depends on the numberof a�ne constraints in the data-
ow analysis relation.Our only concern so far would be to �nd a way to ap-proximate the expressions of transitive closures when theybecome large.6 Back to the examplesThis section applies our algorithm to the motivating exam-ples, using the Omega Calculator [14] as a tool to manipulatea�ne relations.

6.1 First ExampleLet us consider the source program at Figure 1. Using theOmega Calculator text-based interface, we describe a step-by-step execution of the expansion algorithm. We have tocode operations as integer-valued vectors. An operationhi; Ssi is denoted by vector [i,..,s], where [..] possi-bly pads the vector with zeroes. We number T; S;R with 1,2, 3 in this order, so hi; T i, hi; j; Si and hi;Ri are written[i,0,1], [i,j,2] and[i,0,3], respectively.From (1) and (2), we construct the source relation S:# S := {[i,0,2]->[i,0,1] : 1<=i<=N}# union {[i,w,2]->[i,w-1,2] : 1<=i<=N && 1<=w}# union {[i,0,3]->[i,0,1] : 1<=i<=N}# union {[i,0,3]->[i,w,2] : 1<=i<=N && 0<=w};Step 1. Computing R is straightforward:# S' := inverse S;# R := S(S');# R;{[i,0,1]->[i,0,1] : 1<=i<=N} union{[i,w,2]->[i,0,1] : 1<=i<=N && 0<=w} union{[i,0,1]->[i,w',2] : 1<=i<=N && 0<=w'} union{[i,w,2]->[i,w',2] : 1<=i<=N && 0<=w' && 0<=w}Step 2. R is already transitive, no closure computation isthus necessary.Step 3. Let us choose '(u) as the �rst executed operationin class bu (the least operation according to the sequentialorder): '(u) = min�(fu0 : u0R�ug).To compute the lexicographical minimum, let us rewriteits de�nition using the Omega Calculator syntax. We thusdescribe ' by a relation of the form:'([i;w; s]) = [i0; w0; s0] s.t.[i;w; s];[i0; w0; s0] 2 W(x)^[i;w; s]R� [i0; w0; s0]^ (6 9 [i00; w00; s00] 2 W(x) :[i;w; s]R� [i00; w00; s00]^[i0; w0; s0]� [i00; w00; s00])Since [i;w;s] 2 W(x) is always veri�ed in this example,we may simplify this expression in using (8):'([i;w; s]) = �R� n (� �R�)�([i; w;s]): (9)The result of this computation is:8i;w; 1 � i � N;w � 1 : '(hi; T i) = hi; T i;'(hi;w;Si) = hi; T i:Step 4. Since we have only one memory cell, W(x) =W.Computing '(W(x)) yields N operations of the formhi; T i. Maximal static expansion of accesses to variable xrequires N memory cells. i is an obvious label:8i;w; 1 � i � N;w � 1 : �(hi;w; Si) = �(hi; T i) = i:(10)7

Step 5. All left-hand side references to x are transformedinto x[i]; All references to x in the right hand side aretransformed into x[i] too since their sources are instancesof S or T for the same i. The expanded code is thus exactlythe one found intuitively in Figure 3.Step 6. The size declaration of the new array is x[1..N].6.2 Second ExampleWe now consider the source program in Figure 4. Operationshi; j; Si and hi;N; T i are denoted by [i,j,1] and [i,N,2],respectively. From (3), the source relation S is de�ned as:# S := {[i,j,1]->[i', j',1] : 1<=i,i'<=2N# && 1<=j'<j<=N && i'-j'=i-j}# union {[i,j,1]->[i',N,2] : 1<=i,i'<=2N# && N<j<=2N && i'=i-j+N}# union {[i,j,1]->[i',j',1] : 1<=i,i'<=2N# && N<j'<j<=2N && i'-j'=i-j};Step 1. As in the �rst example, we compute relation Rusing Omega:# S' := inverse S;# R := S(S');# R;{[i,j,1]->[i',j-i+i',1] : 1<=i<=2N-1 && 1<=j<N&& 1<=i'<=2N-1 && i<j+i' && j+i'<N+i} union{[i,j,1]->[i',j-i+i',1] : N<j<=2N-1 && 1<=i<=2N-1&& 1<=i'<=2N-1 && N+i<j+i' && j+i'<2N+i} union{[i,N,2]->[i',N-i+i',1] : 1<=i<i'<=2N-1&& i'<N+i} union{[i,j,1]->[N+i-j,N,2] : N<j<=2N-1 && i<=2N-1&& j<N+i} union{[i,N,2]->[i,N,2] : 1<=i<=2N-1}Step 2. We compute R�. Figure 5.a shows the equivalenceclasses of R�.Step 3. We compute '(u) as a relation similar to (9),using Omega. The result follows:8i; j; 1 � i � 2N; 1 � j � N; j � i � 0'(hi; j; Si) = h1; j � i+ 1; Si8i; j; 1 � i � 2N; 1 � j � N; j � i < 0'(hi; j; Si) = hi� j + 1; 1; Si8i; j; 1 � i � 2N;N + 1 � j � 2N; j � i � N'(hi; j; Si) = h1; j � i+ 1; Si8i; j; 1 � i � 2N;N + 1 � j � 2N; j � i < N'(hi; j; Si) = hi� j +N;N;T i8i; j; 1 � i � 2N'(hi;N; T i) = hi; N;T iStep 4. W(c) = fhi; j;Si : i�j+2N = cg[fhc�N;N;T ig:Let us compute the representatives for W(c):1 � c � N : '(W(c)) = h1; 1� c;SiN + 1 � c � 3N � 1 : '(W(c)) = �hc+ 1; 1; Si;hc+N;N;T i	3N � c � 4N � 1 : '(W(c)) = hc+ 1; 1; SiThis result shows three intervals of constant cardinalityof W(c)�R� ; They are described in Figure 5.b. A labeling can

be found mechanically. If i�j+2N � N or i�j+2N � 3N ,there is only one representative in '(W(i � j + 2N)), thus�(hi; j; Si) = 1. If N + 1 � i� j + 2N � 3N � 1, there aretwo representatives; Thus we de�ne �(hi; j; Si) = 1 if j � n,�(hi; j; Si) = 2 if j > N , and �(hi;N; T i) = 2.Step 5. The static expansion code appears in Figure 6.As hinted in Section 5, conditionals in � have been takenout of array subscripts.Step 6. Array A is allocated as A[1..4*N-1,1..2].6.3 Third Example: Non-A�ne Array SubscriptsWe come back to the program in Figure 7.a. Operationshi; j; T i, hi; Si and hi;Ri are written [i,j,1], [i,0,2] and[i,0,3]. From (4), we build the source relation as follows:# S := {[i,0,3]->[i,j,1] : 1<=i,j<=N}# union {[i,0,3]->[i,0,2] : 1<=i<=N};Step 1.# S' := inverse S;# R := S(S');# R;{[i,j,1]->[i,j',1] : 1<=i<=N && 1<=j<=N&& 1<=j'<=N} union{[i,0,2]->[i,j',1] : 1<=i<=N && 1<=j'<=N} union{[i,j,1]->[i,0,2] : 1<=i<=N && 1<=j<=N} union{[i,0,2]->[i,0,2] : 1<=i<=N}Step 2. R is already transitive: R = R�.Step 3. We compute '(u) as a relation similar to (9).8i; 1 � i � N : '(hi; Si) = hi; 1; T i8i; j; 1 � i � N;1 � j � N : '(hi; j; T i) = hi; 1; T iNote that every hi; j;T i operation is in relation withhi; 1; T i.Step 4. Since some subscripts are not a�ne, we cannotcompute at compile-time the exact sets W(A[x]) of oper-ations writing in some cell A[x]. Therefore, we compute'(W): '(W) = �hi; 1; T i	:We can use i to label these representatives; Thus theresulting � function is:�(hi; Si) = �(hi; j; T i) = i:Step 5. Using this labeling, all left hand side referencesto A[...] become A[..., i] in the expanded code. Sincethe source of hi;Ri is an instance of S or T at the sameiteration i, the right hand side of R is expanded the sameway. Expanding the code thus leads to the intuitive resultgiven at Figure 7.b.Step 6. The size declaration of A is now A[1..N,1..N].8

7 ConclusionExpanding data structures is a classical optimization to cutmemory-based dependences. However, the generated codehas to ensure that all reads refer to the correct memory cell.When control
ow is dynamic, the main drawback of suchmethods is therefore that some run-time computation hasto be done to decide the identity of the correct memory cell.This paper presented a new and general expansion frame-work: A cell can be expanded at most as many times asthere are classes of independent (as far as data-
ow is con-cerned) writes. A practical algorithm was given and appliedto real-life loop nests accessing arrays.Interestingly enough, the framework does not require anyprecision level of the data-
ow analysis, nor does it requirethe closure computation to be exact. Conservative approx-imate results are �ne as well, the only drawback being aprobable loss in static expansion. However, we cannot doany better, and in accordance to our de�nition, the staticexpansion we derive is still maximal. When the data-
owanalysis and/or the transitive closure tool give poor results,our expansion scheme does not fail but degrades gracefully.Future work will study the application of the frameworkto a wider class of problems. We also intend to enhance thealgorithm so as to handle pointer-based data structures andrecursive programs.Acknowledgments The �rst two authors are supported bythe French Minist�ere de l'Enseignement Sup�erieur et de laRecherche (MESR) and the third by the Centre National dela Recherche Scienti�que (CNRS). All authors are, in addi-tion, supported by INRIA project AAA and the German-French ProCoPe program.We would like to thank Paul Feautrier, M�ax Geigl, Mar-tin Griebl and Vincent Lefebvre for fruitful discussions onthis topic.References[1] C. Ancourt and F. Irigoin. Scanning polyhedra withDO loops. In Proc. of ACM SIGPLAN Symp. on Prin-ciples and Practice of Parallel Programming, pages 39{50, June 1991.[2] D. Barthou, J.-F. Collard, and P. Feautrier. Fuzzy arraydata
ow analysis. Journal of Parallel and DistributedComputing, 40:210{226, 1997.[3] J.-F. Collard, D. Barthou, and P. Feautrier. Fuzzy ar-ray data
ow analysis. In Proc. of 5th ACM SIGPLANSymp. on Principles and Practice of Parallel Program-ming, pages 92{102, Santa Barbara, CA, July 1995.[4] J.-F. Collard, P. Feautrier, and T. Risset. Constructionof DO loops from systems of a�ne constraints. ParallelProcessing Letters, 5(3), 1995.[5] B. Creusillet. Array Region Analyses and Applications.PhD thesis, �Ecole des Mines de Paris (ENSMP), De-cember 1996.[6] R. Cytron, J. Ferrante, B. K. Rosen, M. K. Wegman,and F. K. Zadeck. An e�cient method of computingstatic single assignment form. In 16th Annual ACMSymposium on Principles of Programming Languages,pages 25{35, 1989.

[7] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman,and F. K. Zadeck. E�ciently computing static single as-signment form and the control dependence graph. ACMTransactions on Programming Languages and Systems,13(4):451{490, October 1991.[8] P. Feautrier. Data
ow analysis of scalar and array refer-ences. Int. Journal of Parallel Programming, 20(1):23{53, February 1991.[9] M. Griebl and J.-F. Collard. Generation of synchronouscode for automatic parallelization of while loops. InEuro-Par95, Stockholm, Sweden, August 1995.[10] W. Kelly, W. Pugh, E. Rosser, and T. Shpeisman. Tran-sitive closure of in�nite graphs and its applications. Int.Journal of Parallel Programming, 24(6):579{598, 1996.[11] D. Levine, D. Callahan, and J. Dongarra. A compara-tive study of automatic vectorizing compilers. ParallelComputing, 17:1223{1244, 1993.[12] D. E. Maydan, S. P. Amarasinghe, and M. S. Lam. Ar-ray data
ow analysis and its use in array privatization.In Proc. of ACM Conf. on Principles of ProgrammingLanguages, pages 2{15, January 1993.[13] K. L. Pieper. Parallelizing Compilers: Implementa-tion and E�ectiveness. PhD thesis, Stanford University,Computer Systems Laboratory, June 1993.[14] W. Pugh. The omega test: a fast and practical integerprogramming algorithm for dependence analysis. Com-munications of the ACM, 8:102{114, August 1992.[15] P. Tu and D. Padua. Automatic array privatization. InProc. Sixth Workshop on Languages and Compilers forParallel Computing, number 768 in Lecture Notes inComputer Science, pages 500{521, August 1993. Port-land, Oregon.[16] D. Wonnacott and W. Pugh. Nonlinear array depen-dence analysis. In Proc. Third Workshop on Languages,Compilers and Run-Time Systems for Scalable Comput-ers, 1995. Troy, New York.[17] D. G. Wonnacott. Constraint-Based Array DependenceAnalysis. PhD thesis, University of Maryland, 1995.Copyright c
1997 by the Association for Computing Ma-chinery, Inc. Permission to make digital or hard copies ofpart or all of this work for personal or classroom use isgranted without fee provided that copies are not made ordistributed for pro�t or direct commercial advantage andthat copies bear this notice and the full citation on the�rst page. Copyrights for components of this work ownedby others than ACM must be honored. Abstracting withcredit is permitted. To copy otherwise, to republish, to poston servers, or to redistribute to lists, requires prior speci�cpermission and/or a fee. Request permissions from Publica-tions Dept., ACM Inc., fax +1 (212) 869-0481, or (permis-sions@acm.org).9

