
Optimizing Code Through Iterative Specialization

Minhaj Ahmad Khan
Univ. of Versailles

France

mik@uvsq.fr

Henri-Pierre Charles
Univ. of Versailles

France

hpc@uvsq.fr

Denis Barthou
Univ. of Versailles

France

denis.barthou@uvsq.fr

ABSTRACT
Code specialization is a way to obtain significant improve-
ment in the performance of an application. It works by
exposing values of different parameters in source code. The
availability of these specialized values enables the compilers
to generate better optimized code. Although most of the ef-
ficient source code implementations contain specialized code
to benefit from these optimizations, the real impact of spe-
cialization may however vary depending upon the value of
the specializing parameter.

In this paper, we suggest the specialization of code to
acquire an iterative approach. For some specialized code,
we search for a better version of code by re-specializing the
code, followed by a low-level code analysis. The specialized
versions fulfilling the required criteria are then transformed
to generate another equivalent version of the original spe-
cialized code.

The approach has been tested on Itanium-II architecture
using icc compiler. The results show significant improve-
ment in the performance of different behchmarks.

Keywords
Compiling techniques, program optimization and specializa-
tion, analysis and transformation, programming languages
implementation

1. INTRODUCTION
The specialization of code [4] is a technique that makes

values of different variables available to the compiler. Hav-
ing a better knowledge of values that variables can take,
enables the compiler to generate better code. This principle
drives many well-known optimizations: from partial evalu-
ation to profile value-driven transformations or the runtime
optimizations. When a variable does not change its value
and behaves like constant for a set of instructions, then the
optimizations such as constant propagation, dead-code elim-
ination, strength reduction or use of machine idioms can all

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’08 March 16-20, 2008, Fortaleza, Ceará, Brazil
Copyright 2008 ACM 978-1-59593-753-7/08/0003 ...$5.00.

directly take advantage of this information. This infoma-
tion may also be beneficial for analyses that may in turn
enable complex optimizations. For instance, constant loop
bounds may trigger loop unrolling, fusion and computation
of prefetch distance. This is why, the highly optimized li-
braries such as ATLAS [13] and FFTW [5] also contain spe-
cialized code.

With the specialization, there are many optimizations which
are dependent on the value of the specializing variable. For
example, cyclic/acyclic scheduling with region enlarging or
compaction optimizations[14], modulo scheduling/pipelining
[11] with different II (Initiation Interval1) & number of stages
and different unrolling factors, all can largely impact the ex-
ecution speed of an application. Similarly, while scheduling
instructions, the amount of parallelism is directly or indi-
rectly dependent on the code size [14]. This can be achieved
through code specialization which largely impacts code size
and thereby may modify the sequence of optimizations. In
most of the cases, it is not apparent that specialization with
a particular value would bring the best performance for ap-
plication execution. This fact makes the iterative compila-
tion approach [3] inevitable to search for a better specialized
version.

In this article, we present a new method based on an iter-
ative approach that is aimed at improving the performance
of specialized code. It works by re-specializing code, per-
forming code validation and transforming the object code
to make it equivalent to the original code.

2. PRINCIPLE OF ITERATIVE SPECIAL-
IZATION

The iterative specialization relies on the fact that after
code specialization, the compiler produces code that can be
divided into groups of versions such that within a group, the
optimizations (including register allocation and scheduling)
are similar. Therefore, within one group (a set of versions
of the specialized parameter), all the code versions have the
same instructions and may only differ by some immediate
constants [1][9].

To see the impact of different specializing values, consider
the DAXPY code given in Figure 1 which is used to calculate
Y = Y + alpha * X, where X and Y are vectors and alpha

is a constant value.
When this code is compiled, analysis of assembly code

shows that different optimizations are performed for differ-

1In pipelined loop, number of cycles required to start new
iteration

206

#define size 7
void DAXPY(double * X, double * Y, double alpha)
{

for (int i=0; i < size; i++)
Y[i] = Y[i] + alpha * X[i] ;

}

Figure 1: Sample DAXPY code

ent values of the variable size. When the variable size is
specialized to be 7, the compiler performs multi-versioning
thereby generating two versions at the object code level. In
contrast, the code specialized with 15 is unrolled and also
pipelined with Initiation Intervals of 2 and 4 cycles for its
two versions. The code similar to one specialized with 15 is
also generated after specialization of size variable with value
of 13. The assembly versions generated after specialization
with 13 and 15 differ in statements as given in Figure 2.

//size=13
mov ar.lc=12

....
add r24=48,r14
add r26=48,r18

// size=15
mov ar.lc=14

....
add r24=56,r14
add r26=56,r18

Figure 2: Assembly Code generated by icc v 9.1

It means that the versions for 7 and 13 fall in two dif-
ferent groups, whereas those for 13 and 15 fall in the same
group. For both groups, the compiler has performed differ-
ent optimizations. If we represent the sequence of optimiza-
tions (scheduling, register allocation etc.) as patterns, the
set of values {7,13,15,31,33,143} generates four groups, {7},
{13,15}, {31,33}, {143} as shown in Figure 3. Each group
has different optimizations from other groups.

Within any two versions of a group, the constant values in
object code are in fact functions of the specialized param-
eter in source code. These functions are either affine (i.e.
val*A+B, where A and B are constants and val is the value
of the specialized parameter) or may be inferred from the
expressions in the source code (found by static analysis of
source code). We consider in this paper only regular codes
w.r.t. the specialized parameters: these are neither involved
in IF-condition predicates, nor in bounds of loops that are
not alike Fortran DO-loops. The immediate operands that
differ can be replaced by other valid immedidate values to
produce another version which is equivalent to original spe-
cialized version. The instructions which need to be trans-
formed, will be termed as annotated instructions. We select
single version from the group as a template version which
contains annotated instructions to be transformed. Since all
the versions in a group are equivalent, any version can be
selected as the template.

Before performing transformation, the template code needs
to be validated against the values generated in both the cases
i.e. affine and non-affine formulae. Each new value should
fall within the limitations offered by the instruction set of
the architecture.

Once validated, the old immediate values of each instruc-
tion of the template are replaced by new immediate values
which are obtained by using the formulae (affine or non-
affine) for each annotated instruction. This transformation
actually makes the code equivalent to original specialized

code. The original code exists in other group to benefit from
different optimizations, but performs the same functionality
as of original specialized code. Since we have more than
one group, the specialization and transformation are per-
formed iteratively to select faster version of code. Both the
re-specialization of code and the transformation, are entirely
performed at static compile time incurring no overhead dur-
ing execution of the application.

2.1 Formal Context of Iterative Specialization
This section describes the context of iterative specializa-

tion together with notions of groups and templates.
We first define specialization as follows: Given a program

P and a parameter param specialized with value val, special-
ization is a function that converts the program P to P

param

val
where param is the name of the parameter having value val
such that many operations related to param have been op-
timized. The specialization function can be given as:

Spec(P,param, val) : P → P
param

val
(1)

The basic idea of iterative specialization is to generate n
versions of the program P, P

param

vali
using different functions

Speci,
Speci(P, param, vali) : P → P

param
vali

(2)

such that vali 6= val and P
param

val 6= P
param

vali
∀1 ≤ i ≤ n.

Once, different versions are generated, we can search for
different subsets of vali called groups by generating versions
P

param

vali
such that:

(P param

valj
− P

param

valk
) ∨ (P param

valk
− P

param

valj
) = Imm, (3)

where Imm is a set of Immediate Operands(i.e. constants)
and valj 6= valk 6= val for 1 ≤ j < k ≤ n, We annotate
all such instructions and find the formulae on which these
immediate operands are based. Any of these versions in the
group may be used as template. Let |T | be the number of the
found formulae, then for each annotated instruction of the
template (which differs from others in a group), we restrict
each immediate operand to fall into any of two following
categories:

1. Be an affine function of its specializing value. i.e. For
a group G having a version P param

v specialized with
value v, We must have,

ImmG = A ∗ v + B. (4)

The values of coefficients A and B can be obtained
after solving the system of linear equations. In this
case, the template instruction formula would be A ∗
val + B if each given annotated instruction is valid for
the old parameter param. To validate an instruction,
we proceed as follows.

Let Ap and Bp be the coefficients calculated for p-th
instruction, then we have,

Sp =

‰

INSTMINp − Bp

Ap

ı

, Ep =

—

INSTMAXp − Bp

Ap

�

,

where INSTMAXp represents maximum value that
can be used as immediate operand for p-th annotated
instruction. The new valid range for the parameter
param with S = {Sp, for p=1 to |T |} and E={Ep, for
p=1 to |T |}, can be represented as:

MAX(S) ≤ param ≤ MIN(E). (5)

207

(a) size=7 (b) size=13 (c) size=15 (d) size=31 (e) size=33 (f) size=143

Figure 3: Different patterns of code due to different optimizations

2. Be a non-linear function whose formula can be directly
derived from the uses of the specialized parameter in
those expressions which only contain the parameter as
rvalue. To ensure correctness, we require that such for-
mula be similar in all the versions of the group G. For
a version specialized with value v, let f be a function
on which these values are based, then, we must have

f(v) = ImmG, (6)

where ImmG ∈ Imm is the immediate value (as found
in Equation 3). Function f should be unique in these
versions and would be the template instruction for-
mula. To validate p-th instruction, we have ∀ p =
1 to |T |,

INSTMINp ≥ fp(val) ≥ INSTMAXp, (7)

where INSTMINp and INSTMAXp are respectively
the minimum and maximum values that the architec-
ture allows for p-th annotated instruction of the tem-
plate.

If the code does not conform to above mentioned condi-
tions (Equations 4-5 or 6-7), it is illegal for re-specialization,
and, the assembly code would need to be specialized with
other values for that parameter.

However, in the case where code conforms to the above
given conditions, the next step is to transform all the in-
structions of the template. The new values are calculated
by using the original value val for the parameter param in
the corresponding template instruction formula. The per-
formance of transformed code is then profiled and the entire
process of re-specialization and transformation is iterated
(within threshold time limit) for all values in the input in-
terval.

2.2 Specialization Complexity
The main complexity of the algorithm lies in solving the

system of equations followed by searching the uses of the
specializing parameters. For single parameter, the com-
plexity of such a system is O(d(1 + e)), where we have
d instructions annotated and search through the e expres-
sions. However, for p parameters, the complexity increases
to O(d(p3 + e)) at static compile time.

3. ISPEC: IMPLEMENTATION FRAMEWORK
The iterative specialization framework ISPEC is aimed at

generating a better optimized version equivalent to the origi-
nal specialized code. It therefore iteratively specializes input
code (within threshold limit2), generates groups, checks the
conditions of code correctness (as described in Section 2.1),
and transforms the code to generate the equivalent version.
It also performs instrumentation to profile the execution per-
formance of the code.

2input configuration file to ISPEC Core contains threshold,
mode and compilation parameters

Source Code

ISPEC Core

Preprocessing

Code Generation

Modified Code

P=1 P=2 P=n

Invariants Analysis

Validation & Transformation

Annotated Code

Re-Specialized Code

Profiling

Figure 4: ISPEC Framework Architecture

The main phases of iterative specialization have been de-
picted in Figure 4.

3.1 Preprocessing and Analysis
The preprocessing requires the user-defined directive of

the following form to specify parameters and their interval
of values for which specialization would proceed.

#ispec Param Name|LOOP startVal endVal

The source code is parsed by ISPEC core and modified
either for the parameters defined using #define directive of
C language, or for the loop counts, both should be preceded
by the #ispec directive. Their values are replaced with new
values as given in the interval. By default, ISPEC makes use
of all values specified in the interval (ISPEC Normal mode),
however, it also supports use of pre-defined prime numbers
to reduce the time of iterative specialization (ISPEC Quick
mode).

The code generation is accomplished by invoking the com-
piler to obtain different versions. The generated versions
are compatible and can be transformed if they differ only
in immediate constants. The exploration of groups proceeds
by finding differences among object code versions at cor-
responding instructions in the code. The versions differ-
ing only in immediate constants are added to the groups,
and first version from each group is selected as a template.
The template is checked for both linear (by solving affine
formulae) and non-linear cases (by searching rvalues of the
expressions containing uses of specializing parameter). Con-
sequently, the formulae are generated corresponding to each
annotated instruction in the template.

208

(a) ATLAS SGEMM (b) ATLAS DGEMM

(c) ATLAS CGEMM (d) ATLAS ZGEMM

Figure 5: ATLAS Performance Results

3.2 Validation and Transformation of Code
For each instruction of the template, the new value is

computed by putting original value of the parameter in the
corresponding formula. The result value is then validated
against the possible size of immediate operand for that in-
struction. If all the instructions are valid according to the
criteria described in Section 2.1, the immediate operands of
the annotated instructions of the template are replaced by
new calculated values. This transformation actually gener-
ates another valid version for the considered regular codes
(Section 2).

3.3 Profiling and Iterating Code Specializa-
tion

When all the annotated instructions in the object code
template have been modified, the object code is instrumented
(incorporating pfmon-lib) to profile the execution time of
specialized code. For each value in the specified interval of
the parameter, the entire procedure of searching equivalent
code and transformation is iterated. The search space is lim-
ited by profiling execution within the threshold time limit
which is set as configuration parameter.

4. EXPERIMENTAL SETUP AND RESULTS
The experiments have been performed over Intel Itanium-

II (IA-64) with 1.5 GHz processor clock speed. The iterative
specialization has been applied to different types of code in
ATLAS-3.6.0, FFTW-3.0.1 and FFMPEG libraries using 1
hour threshold time limit. The code has been compiled using
icc v 9.1 with -O3 optimization option.

4.1 ATLAS Library
ATLAS (Automatically Tuned Linear Algebra Software)

[13] consists of portable routines to solve different mathe-
matical problems.

The iterative specialization has been applied to linear
algebra BLAS-3 matrix-matrix multiplication kernels (rou-
tines a1 b1 and a1 bX) for each of SGEMM, DGEMM,
CGEMM and ZGEMM implementations. These routines

Figure 6: FFTW Performance Results

use N , M and K as dimensions of input matrices. The new
corresponding templates in all cases contained optimizations
with better scheduling of code and data prefetching. The
templates required 1, 32, 32 and 2 instructions for SGEMM,
DGEMM, CGEMM and ZGEMM respectively to generate
corresponding equivalent versions. The performance results
of ATLAS routines are shown in GFLOPS in Figure 5. The
iterative specialization is able to produce up to 8% speedup
for these routines.

4.2 FFTW
FFTW (Fastest Fourier Transform in the West) library

[5] is a set of specialized C routines called codelets which are
used to calculate fourier transforms.

The codelet st1 8 128 (already specialized for input-output
stride to be 128) is optimized through iterative specializa-
tion. The template differed from original specialized version
in number of memory loads and register usage, and required
20 instructions to be transformed. The speedup obtained
with different values of loop count (v) variable is shown in
Figure 6.

4.3 FFMPEG
For multimedia applications, FFMPEG [7] contains a set

of optimized libraries such as libavcodec which uses Discrete
Cosine Transform (DCT) for conversion of images in differ-

209

Figure 7: FFMPEG Performance Results

ent formats.
The template found after iterative specialization of

DCTSIZE parameter was very small as compared to orig-
inal code due to global acyclic scheduling, and required 26
instructions of object code to be transformed. As shown
in Figure 7, the iterative specialization is able to achieve
speedup up to 31% for conversion of different mpeg files to
raw format yuv for different sizes in FFMPEG library bench-
mark.

5. RELATED WORK
The iterative specialization approach is different from other

iterative compilation approaches [13][12][3]. These approaches
mainly search for best transformation/optimization param-
eters, whereas, our approach uses code specialization to ob-
tain different optimizations and can be used as another pa-
rameter in parameter optimization space.

In work related to code specialization, the Tempo special-
izer [4] performs specialization both at static compile time
and runtime. However, it generates different versions with
specialized code thereby increasing the size of code with no
guarantee of producing the best code after specialization due
to the large overhead of heavy dynamic code generation.

The HySpec [1] specializer is able to generate code that
is based on templates. This approach requires the template
to be generated and optimized at static compile time. A
limited set of binary instructions is then specialized at dy-
namic compile time. Although it incurs less overhead than
complete code generation, its template may not be fully op-
timized as in our approach of iterative specialization. Sim-
ilarly, an iterative specialization approach that is oriented
towards improvement of multimedia applications has been
given in [9]. However, it is restricted to DCT implementa-
tions with fixed input size of 8.

Other specializers and code generators like DyC [6], Dy-
namo [8] and Tick C[10] also optimize code during execution.
The specialization is based on static and dynamic analyses
but the optimizations are performed at runtime to generate
specialized versions. These approaches therefore require the
code to be invoked multiple times to amortize the overhead.
Moreover, the increased object code size indirectly impacts
the application performance due to cache penalties.

In contrast to these approaches, our specialization ap-
proach is iterative, and therefore suitable to be performed
at static compile time. For the libraries, since the functions
are expected to be executed many times, the overhead of
iterating specialization at static compile time is less signifi-
cant.

6. CONCLUSION
In this article, we have presented a method to fully ex-

ploit the feature of specialization that improves performance
by generating the minimum object code requiring no run-
time overhead. We search for equivalent versions of code,
and generate different groups of versions where each group
contains versions for which the code optimizations are sim-
ilar after specialization. A version from a group is selected
and transformed to generate an equivalent version of origi-
nal code. This is followed by profiling to search for a bet-
ter equivalent version. The performance improvement over
highly efficient libraries is obtained through iterative special-
ization, however it varies depending upon the optimizations
performed by the compiler for that architecture.

7. REFERENCES
[1] M. Ahmad, H.-P. Charles, and D. Barthou. Reducing

code size explosion through low-overhead
specialization. In 11th Annual Workshop
INTERACT-11, Phoenix, 2007.

[2] M. Barreteau, F. Bodin, P. Brinkhaus, Z. Chamski et
al. Oceans: Optimizing compilers for embedded
applications. In Proceeding of Euro-Par98, 1998.

[3] F. Bodin, T. Kisuk, P. M. W. Knijnenburg et al.
Iterative compilation in a non-linear optimisation
space. In Workshop on Prole 14 and Feedback-Directed
Compilation, France, 1998.

[4] C. Consel, L. Hornof, R. Marlet et al. Tempo:
specializing systems applications and beyond. ACM
Computing Surveys, 30(3es), 1998.

[5] M. Frigo and S. G. Johnson. FFTW: An adaptive
software architecture for the FFT. In Intl. Conf. on
Acoustics, Speech, and Signal Processing, WA, 1998.

[6] B. Grant, M. Mock, M. Philipose, C. Chambers, and
S. J. Eggers. Dyc : An expressive annotation-directed
dynamic compiler for c. Tech. report, Univ. of
Washington, 1999.

[7] http://ffmpeg.sourceforge.net. Ffmpeg, Apr. 2006.

[8] M. Leone and R. K. Dybvig. Dynamo : A staged
compiler architecture for dynamic program
optimization. Technical report, Indiana Univ., 1997.

[9] M. Ahmad and H.P. Charles. Improving multimedia
applications through specialization of DCT/IDCT
kernels. IEEE Intl. conf. on Signal Processing and
Communications(ICSPC07), 2007.

[10] M. Poletto, W. C. Hsieh, D. R. Engler, and F. M.
Kaashoek. ’c and tcc : A language and compiler for
dynamic code generation. ACM TOPLAS, 1998.

[11] B. R. Rau. Iterative modulo scheduling: An algorithm
for software pipelining loops. In 27th Intl. Symposium
on Microarchitecture, 1994.

[12] S. Triantafyllis, M. Vachharajani, N. Vachharajani,
and D. August. Compiler optimization space
exploration. In ’CGO-03, March 2003.

[13] R. C. Whaley and J. Dongarra. Automatically Tuned
Linear Algebra Software. Technical Report
UT-CS-97-366, Univ. of Tennessee, December 1997.

[14] H. Zhou. Code size efficiency in global scheduling for
ilp processors, 2002.

210

