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Code specialization is a well-known technique used to

produce more efficient code from a generic one. This tech-

nique is widely used, from high level languages to opti-

mized libraries like FFTW. It works by substituting a for-

mal input value by an effective value, and can be done ei-

ther statically or dynamically. Static specialization makes

use of data that is expected to be frequently used, whereas,

dynamic specialization uses the actual values at run-time.

We propose a novel hybrid method combining both the

static and the dynamic specialization.

With the code specialized for different values, the com-

piler is able to generate highly optimized code. This lets

the compiler fully exploit the ILP provided by modern pro-

cessors. Code specialization is most effectively performed

at runtime due to the unavailability of input values. This

information may be used for a wide range of optimizations

and analyses; dependences may be simplified due to infor-

mation related to array indices or other optimizations such

as constant propagation, dead code elimination, loop un-

rolling and software pipelining can be performed. The spe-

cialization approach that we suggest proceeds in two steps

performed at both static and dynamic compile times. In the

first phase, the code is specialized for profiled values, and

a template is selected through compile-time analysis. Con-

sequently, the specializers for the templates are also gener-

ated after the analysis. The generation of specializers is fol-

lowed by generation of code to perform activities required

for cache coherence (in case of IA-64) for new specialized

code. In the second phase, the template is transformed at

runtime into the appropriate specialized version. A special-

izer (corresponding to a template), modifies a few instruc-

tions in the template to generate the correct code for runtime

input data.

A wrapper code is also generated which redirects con-

trol to corresponding specialized or unspecialized version

as shown in Figure 1.

The runtime specialization of values is also achieved by

dynamic compilation systems like Tick C and off-line par-

tial evaluators like Tempo[1] but they require the activities

including code generation with memory allocation and yet

these systems would require to keep different versions with
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Figure 1. Runtime view of Wrapper

different optimizations. Moreover, the dynamic compila-

tion systems require many calls to amortize the overhead.

For the hybrid specialization approach, we avoid such time-

consuming activities. The specialization is performed for

a limited number of instructions in a generic binary tem-

plate. To generate a single instruction, it incurs overhead of

9 cycles and 2 cycles over IA-64 and Pentium-IV processors

respectively. This cost is very less as compared to dynamic

compilation systems such as Tempo or Tick C which require

100 to 800 cycles to generate a single instruction. This tem-

plate is generated during static compilation and is highly op-

timized since we expose some of the unknown values in the

source code to the compiler. The template is then adapted

to new values during execution thereby avoiding code ex-

plosion as in other existing specializers. We have imple-

mented hybrid specialization in HySpec [2] framework ob-

taining performance improvement up to 50% for different

DFT sizes of FFTW and up to 27% for some SPEC bench-

marks.
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