Hybrid Specialization: A Trade-off Between Static and Dynamic Specialization

Minhaj Ahmad Khan

Henri-Pierre Charles

Denis Barthou
University of Versailles-Saint-Quentin-en-Y velines, France.

Code specialization is a well-known technique used to
produce more efficient code from a generic one. This tech-
nique is widely used, from high level languages to opti-
mized libraries like FFTW. It works by substituting a for-
mal input value by an effective value, and can be done ei-
ther statically or dynamically. Static specialization makes
use of data that is expected to be frequently used, whereas,
dynamic specialization uses the actual values at run-time.

We propose a novel hybrid method combining both the
static and the dynamic specialization.

With the code specialized for different values, the com-
piler is able to generate highly optimized code. This lets
the compiler fully exploit the ILP provided by modern pro-
cessors. Code specialization is most effectively performed
at runtime due to the unavailability of input values. This
information may be used for a wide range of optimizations
and analyses; dependences may be simplified due to infor-
mation related to array indices or other optimizations such
as constant propagation, dead code elimination, loop un-
rolling and software pipelining can be performed. The spe-
cialization approach that we suggest proceeds in two steps
performed at both static and dynamic compile times. In the
first phase, the code is specialized for profiled values, and
a template is selected through compile-time analysis. Con-
sequently, the specializers for the templates are also gener-
ated after the analysis. The generation of specializers is fol-
lowed by generation of code to perform activities required
for cache coherence (in case of 1A-64) for new specialized
code. In the second phase, the template is transformed at
runtime into the appropriate specialized version. A special-
izer (corresponding to a template), modifies a few instruc-
tions in the template to generate the correct code for runtime
input data.

A wrapper code is also generated which redirects con-
trol to corresponding specialized or unspecialized version
as shown in Figure 1.

The runtime specialization of values is also achieved by
dynamic compilation systems like Tick C and off-line par-
tial evaluators like Tempo[1] but they require the activities
including code generation with memory allocation and yet
these systems would require to keep different versions with

Runtime specialization

Specialized once

Statically specialized Runmany '
S Dynamically Fallback to
->Version2 P .
4 specialized code original code
->Version3

Figure 1. Runtime view of Wrapper

different optimizations. Moreover, the dynamic compila-
tion systems require many calls to amortize the overhead.
For the hybrid specialization approach, we avoid such time-
consuming activities. The specialization is performed for
a limited number of instructions in a generic binary tem-
plate. To generate a single instruction, it incurs overhead of
9 cycles and 2 cycles over IA-64 and Pentium-IV processors
respectively. This cost is very less as compared to dynamic
compilation systems such as Tempo or Tick C which require
100 to 800 cycles to generate a single instruction. This tem-
plate is generated during static compilation and is highly op-
timized since we expose some of the unknown values in the
source code to the compiler. The template is then adapted
to new values during execution thereby avoiding code ex-
plosion as in other existing specializers. We have imple-
mented hybrid specialization in HySpec [2] framework ob-
taining performance improvement up to 50% for different
DFT sizes of FFTW and up to 27% for some SPEC bench-
marks.

References

[1] C. Consel, L. Hornof, R. Marlet, G. Muller, S. Thibault, and
E.-N. Volanschi. Tempo: Specializing Systems Applications
and Beyond. ACM Computing Surveys, 30(3es), 1998.

[2] M. A. Khan, H.-P. Charles, and D. Barthou. Reducing code
size explosion through low-overhead specialization. In Pro-
ceeding of the 11th Annual Workshop on the Interaction be-
tween Compilers and Computer Architecture, Phoenix, Febru-
ary 2007.

IEE |-:

COMPUTER
SOCIETY

16th International Conference on
Parallel Architecture and Compilation Techniques (PACT 2007)
0-7695-2944-5/07 $25.00 © 2007 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 26, 2009 at 11:55 from IEEE Xplore. Restrictions apply.

