
Hybrid Specialization: A Trade-off Between Static and Dynamic Specialization

Minhaj Ahmad Khan Henri-Pierre Charles
Denis Barthou

University of Versailles-Saint-Quentin-en-Yvelines, France.

Code specialization is a well-known technique used to

produce more efficient code from a generic one. This tech-

nique is widely used, from high level languages to opti-

mized libraries like FFTW. It works by substituting a for-

mal input value by an effective value, and can be done ei-

ther statically or dynamically. Static specialization makes

use of data that is expected to be frequently used, whereas,

dynamic specialization uses the actual values at run-time.

We propose a novel hybrid method combining both the

static and the dynamic specialization.

With the code specialized for different values, the com-

piler is able to generate highly optimized code. This lets

the compiler fully exploit the ILP provided by modern pro-

cessors. Code specialization is most effectively performed

at runtime due to the unavailability of input values. This

information may be used for a wide range of optimizations

and analyses; dependences may be simplified due to infor-

mation related to array indices or other optimizations such

as constant propagation, dead code elimination, loop un-

rolling and software pipelining can be performed. The spe-

cialization approach that we suggest proceeds in two steps

performed at both static and dynamic compile times. In the

first phase, the code is specialized for profiled values, and

a template is selected through compile-time analysis. Con-

sequently, the specializers for the templates are also gener-

ated after the analysis. The generation of specializers is fol-

lowed by generation of code to perform activities required

for cache coherence (in case of IA-64) for new specialized

code. In the second phase, the template is transformed at

runtime into the appropriate specialized version. A special-

izer (corresponding to a template), modifies a few instruc-

tions in the template to generate the correct code for runtime

input data.

A wrapper code is also generated which redirects con-

trol to corresponding specialized or unspecialized version

as shown in Figure 1.

The runtime specialization of values is also achieved by

dynamic compilation systems like Tick C and off-line par-

tial evaluators like Tempo[1] but they require the activities

including code generation with memory allocation and yet

these systems would require to keep different versions with

Runtime specialization

Dynamically
specialized code

Specialized once

Wrapper

Statically specialized
->Version1
->Version2
->Version3

...

Fallback to
original code

Run many

Figure 1. Runtime view of Wrapper

different optimizations. Moreover, the dynamic compila-

tion systems require many calls to amortize the overhead.

For the hybrid specialization approach, we avoid such time-

consuming activities. The specialization is performed for

a limited number of instructions in a generic binary tem-

plate. To generate a single instruction, it incurs overhead of

9 cycles and 2 cycles over IA-64 and Pentium-IV processors

respectively. This cost is very less as compared to dynamic

compilation systems such as Tempo or Tick C which require

100 to 800 cycles to generate a single instruction. This tem-

plate is generated during static compilation and is highly op-

timized since we expose some of the unknown values in the

source code to the compiler. The template is then adapted

to new values during execution thereby avoiding code ex-

plosion as in other existing specializers. We have imple-

mented hybrid specialization in HySpec [2] framework ob-

taining performance improvement up to 50% for different

DFT sizes of FFTW and up to 27% for some SPEC bench-

marks.

References

[1] C. Consel, L. Hornof, R. Marlet, G. Muller, S. Thibault, and

E.-N. Volanschi. Tempo: Specializing Systems Applications

and Beyond. ACM Computing Surveys, 30(3es), 1998.
[2] M. A. Khan, H.-P. Charles, and D. Barthou. Reducing code

size explosion through low-overhead specialization. In Pro-
ceeding of the 11th Annual Workshop on the Interaction be-
tween Compilers and Computer Architecture, Phoenix, Febru-

ary 2007.

16th International Conference on
Parallel Architecture and Compilation Techniques (PACT 2007)
0-7695-2944-5/07 $25.00  © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 26, 2009 at 11:55 from IEEE Xplore.  Restrictions apply.


