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Abstract. The increasing complexity of hardware features in modern
processors makes compilation for high performance very challenging. Per-
formance models used by compilers are too simple to take into account
this complexity and choose accordingly the most effective optimization
sequence.
Adaptive compilation is now a widespread approach relying on an explo-
ration for optimization sequences or compiler flags and on code execution
in order to evaluate precisely performance. The main drawback of this
approach is its very high cost, that is partially addressed by efficient
search techniques based on genetic or machine learning algorithms.
This paper presents a novel approach for adaptive compilation, relying
on performance evaluation of only fragments of the code, named constant
performance codelets, and on a simple performance model. The search for
transformations leading to these codelets is user-defined through prag-
mas. We show on three large applications (two numerical simulations
and a genomic application) that the performance prediction for the op-
timized function is quite accurate and that substantial speed-up can be
reached on Itanium2 architecture.

1 Introduction

The increasing complexity of hardware features in modern processors makes com-
pilation for high performance very challenging. Effects of one single optimization
depend on both the application and the target architecture and is hard to pre-
dict. Static compilers resort to simplified performance models, focusing on one
metric (such as cache misses for instance) assessing the assumed effectiveness of
the optimization. The combined effects of a sequence of optimizations is there-
fore most often unpredictable and prevents compilers from finding most effective
optimization sequences. Actually, the risk of using an approximate performance
model is as much to degrade performance as to miss optimization opportunities.
This leads most production compilers to trigger some optimizations only in very
favorable cases (xlc compiler and vectorization for BlueGene for instance [16]).

One approach to deal with the problem of simplistic performance model is to
rely on performance measures, making code execution part of the compilation
time. Adaptive compilation drives selection of optimization sequences by feed-
back performance evaluation [20]. To limit the search among possible optimiza-
tion sequences, several techniques have been proposed[21]: adaptive compilers



resort to genetic algorithms[6], machine learning algorithms[2] and some amount
of enumeration. Auto-tuning libraries also use adaptive compilation techniques
(Spiral[30], FFTW[13], ATLAS[36], Stapl[28] for instance) and have shown their
effectiveness even compared to hand-tuned codes. With the exception of BLAS
library where it has been shown that a pure performance model approach for
ATLAS can be competitive with the empirical search version [39], the main draw-
back of iterative compilation is its large compilation time. As for each change of
compiler flag, optimization parameter or sequence, the whole code is executed.
Most of the research on iterative compilation has focused on limiting the search,
and consecutively, the total execution time (see [14] for instance, based on the
different phases of an execution). However, these approaches assume some prop-
erties on dynamic execution (the input is representable, the run of the test is
repeatable) whereas our method is based only on static decomposition of the
code based on control (and dataflow) properties.

This paper proposes a novel approach for adaptive compilation, combining
empirical search to a performance model. The main contribution is to describe
a method that searches for many code variants and predicts performance accu-
rately while only small code fragments are executed. The method is threefold:
(i) source to source transformation sequences are explored according to user-
defined pragmas, generating as many code versions, (ii) for each version, some
inner loops, named codelets, are taken out of the application and executed, (iii)
performance evaluation of each code version is obtained by combining codelet
timing measures and a simple performance model. This approach is an exten-
sion of the method presented in [3] for library generation of linear algebra codes,
and we generalize it so that real applications can be targeted. We show with
experimental results on three applications (lattice QCD simulation, molecular
simulation and a genomic application) that our performance model is very accu-
rate and that substantial speed-up can be reached for sequential executions on
Itanium2 architecture.

The paper is organized as follows. The rest of the introduction presents some
motivating example and recalls the framework of meta-compilation that we use.
Section 2 defines the codelets the search tries to discover and the properties ex-
pected from these codes. Section 3 describes more in depth the search methodol-
ogy we used and Section 4 presents how performance of the whole code is inferred
from previous codelet evaluation and blocks of copy/prefetch evaluation. Section
5 shows the results obtained on the three applications and we conclude with re-
lated works and conclusion remarks.

1.1 Motivating Example

Consider the example in Figure 1.a, taken from the hot spot function in GIBBS
application developed by U.of Orsay and French Oil Institute (IFP). GIBBS
ensemble simulation (see [31] for instance) is a molecular simulation computing
fluid phase equilibria properties using a Monte-Carlo method.

The code has a triangular loop domain (and bounds are not statically known),
indirect accesses in statements 3,4,9 and 10 and dynamic control due to condi-



tionals. Note that for presentation details, some statements, similar to 4 and 5,
have been omitted. The code does not look as a very good candidate for compiler
optimizations but the application context ensures that the working set of this
code is and fits into the L2 cache of an Itanium2. Let us show that a realistic
performance evaluation of this code, depending on the values of loop bounds
molstart and molend can be computed without executing the whole code.

Applying for instance the following transformations lead to the inner loops
presented in Figure 1.b: Statements 14 and 15 are reductions and are respon-
sible of the only loop-carried dependences. A 1D tiling of loop j is possible, at
the expense of tail code with triangular iteration domain due to the initial tri-
angular iteration domain. Fissioning the resulting inner loop into three groups
of statements 3 − 6, 7 − 13 and 14 − 15 produces the three loops presented in
Figure 1.b.

for (i=molstart; i<molend; i++)
1 tk = TypeLJ[S[i]]
2 k = S[i]

for (j=i+1; j<=molend; j++)
3 tl = TypeLJ[S[j]]
4 rijx = X[k] - X[S[j]];
5 rijx1 = rijx - boxl1 * round(rijx / boxl1);
6 rij2 = rijx1 * rijx1;

if (rij2 < mindist)
7 energy = 2 * infinity;

else
8 energy=0;

if (rij2 < cutoff2)
9 epsilon = Eps[ncftype * tl + tk];
10 sigma = Sig2[ncftype * tl + tk];
11 rij2 = sigma / rij2;
12 rij6 = rij2 * rij2 * rij2;
13 energy = epsilon * (rij6 - rij6 * rij6);
14 Energy change[j]= Energy change[j] + energy;
15 Energy change[i]= Energy change[i] + energy;

(a) Initial version of GIBBS main function. Some
statements have been omitted out of simplication.

codelet1(X,S,TypeLJ,boxl1,k,Rij2)
for (jj=0; jj<STEP; jj++)

3 tl = TypeLJ[S’[jj]]
4 x = X[k] - X[S’[jj]];
5 x1 = x - boxl1 * round(x / boxl1);
6 Rij2[jj] = x1 * x1;

codelet2(Rij2,tl,tk,Eps,Sig2,E)
for (jj=0; jj<STEP; jj++)

if (Rij2[jj] < mindist)
7 E[jj] = 2 * infinity;

else
8 E[jj]=0;

if (Rij2[jj] < cutoff2)
9 e = Eps[ncftype * tl + tk];
10 s = Sig2[ncftype * tl + tk];
11 r3 = s / Rij2[jj];
12 r6 = r3 * r3 * r3;
13 E[jj] = e * (r6 - r6 * r6);

codelet3(Ei,Eij,E)
for (jj=0; jj<STEP; jj++)

14 Eij[jj]= Eij[jj] + E[jj];
15 Ei[ii]= Ei[ii] + E[jj];

(b) Three codelets obtained after transformation,
represented as functions.

Fig. 1. Initial Gibbs hot-spot function and three codelets extracted from it after trans-
formations.

The three codelets exhibit now the following property:

– No dynamic control: Examining the assembly code of the second loop (with
the conditional) shows that the conditional has been transformed into pred-
icated code. This implies that now for all three loops, the control no longer
dependent on input data (loop branches are statically predicted by icc).

– All data is in cache L2: choosing for STEP a value of 100 ensures that data
fits in cache, even with the additional arrays resulting from the fission (array
expansion on scalars).



– Performance evaluation of codelets do not depend on input values, due to
the two previous items.

Now executing the codelets requires to initialize all their input data and
depending on the initialization of arrays, in particular of the indirection array
S’, performance may vary: this may trigger cache conflicts or bank conflicts
depending on initial position of new arrays and depending on the values given
to S’. These effects are not taken into account directly in our model but we
measure performance of codelets for different values of STEP, preventing cache
conflicts cache bank conflicts between simply indexed arrays. We assume these
effects can be neglected for the indirection.

Performance evaluation of the three codelets is fast (they contain only one
loop, fixed loop bound, data in cache) and the evaluation will help us to define
performance evaluation of the whole code, using these codelets. Assume for in-
stance that the three codelets take respectively c1, c2 and c3 cycles to execute for
a value 100 of STEP. Execution time of the whole code is therefore (in cycles),
according to a simple additive performance model:

(molend− molstart) ∗ ((
molend− molstart + 1

100
) ∗ (c1 + c2 + c3) + ε)

where ε is the time taken by the tail code. It is possible to ignore the effect of ε by
tiling again the tail code with a tile size smaller that STEP. Actual performance
measures of the code composed of codelets show in Section 5 that the previous
formula predicts performance with 2% accuracy.

Section 2 defines more precisely the characteristics of the codelets we look for,
Section 3 describes the framework for the search of these codelets and Section 4
presents the performance model.

1.2 X-language Framework

In order to generate multiple versions of a code, we resort to a two-stage com-
pilation framework. Source-to-source transformations are expressed in a meta-
compilation language and are applied on the code after the first compilation
stage. The second stage corresponds to a usual compilation phase. We used
X-language[10], a language of pragmas, to describe these sequences of transfor-
mations. X-language pragmas enable to:

– Specify code fragments (scope) on which X-language transformations apply,
using #pragma xlang begin and #pragma xlang end directives around se-
lected code;

– Trigger source-to-source transformations on code fragment using pragma
directives, such as
#pragma xlang transform tile(i,II,STRIDE)
#pragma xlang transform unroll(II,UNROLL)

The first directive tiles the loop i with a stride STRIDE into a new loop II.
The second one partially unrolls II by a factor of UNROLL. Available trans-
formations include unrolling, tiling, fission, fusion, interchange, scalar pro-
mote, . . . The rule-based transformation engine of X-language enables more



transformations. Many of these transformations require input parameters,
such as the degree of unrolling, the tile size,. . . Specifying parameter values,
and hence generating multiple versions, can be done through other pragmas
(extension presented in [3]):
#pragma xlang parameter UNROLL [0:8:2]

The previous pragma defines values for the unrolling factor UNROLL of 0 (no
unroll) to 8, with a stride of 2.

– Define new transformations: the rule-based transformation engine of X-language
enables simple addition of new transformations or new strategies

The main advantage of X-language is that the user can apply very precisely
desired source-to-source transformations.

Extensions to X-language necessary to handle new transformations are pre-
sented in Section 3.

2 Constant Performance Codelets

The principle of the method is to explore many code optimizations and by exe-
cuting the codelets composing a code version, predict performance of this version.
We describe in this section the characteristics imposed on these codelets so that
the performance model remains simple.

We do not try to model code performance expressed as a function of program
inputs. It means in particular that we will not try to predict performance by
extrapolation. Performance of codelets are measured in some conditions that
will be reproduced in the application so that the measure is reliable. Note that
we only focus on cycle counts.

A general formulation of performance would depend on program inputs and
on initial machine state. We consider in turn several hardware mechanisms that
are difficult to model and the conditions on codes so that their effects can be
either measured or neglected. These conditions are mostly on assembly code
(this may differ with source code):

1. The codelet is a loop (at least one loop). For large enough loops, the codelet
execution takes enough cycles so that impact of the instructions before and
after the codelet (through out-of-order mechanism for instance) can be ne-
glected. The “large enough” criteria is architecture dependent. For loops
with only a few iterations, our performance prediction may be very different
from the real evaluation.

2. Control flow does not depend on input data. It means constant loop bounds,
no while loops, and conditional depending only on loop counters. It prevents
effects due to branch mispredicts. Note that if..then..else constructs in the
source code may be translated into straight line block of code with condi-
tional instructions, for architectures having such instructions (Itanium for
instance). In this case, as all instructions of both branches are executed,
execution time does not depend on the value of the test (as the example of
Gibbs in the introduction).



3. Dataflow dependences in the codelet do not depend on inputs. Indeed, the
processor may stall due to detected dependences. If these dependences de-
pend on inputs, performance prediction will lose accuracy. Due to hardware
design, dependence testing (a read after a write for instance) is achieved by
comparing only a few bits of the addresses. This may cause stalls, even if
there is no real dependence. The number of stalls changes only if relative
position of starting addresses of arrays changes. We assume that all arrays
are aligned to the same boundaries.

4. Configuration of inputs in cache is known when the codelet starts. This
condition, combined to the previous ones, ensures that the misses and hits
of the codelet will be exactly the same between two executions. However, this
assumption implies that for each different configuration of data in cache, a
different performance measure has to be made, thus limiting the number of
configuration. In our examples, we considered only the case when data was
fully contained in a cache level or not.

5. No I/O or system calls.

These conditions define a constant performance codelet and the search aims to
decompose the code into these codelets. As a consequence of their definition,
these codelets can be taken out of the application context and benchmarked in
vitro to evaluate their performance in different input configurations (cache hier-
archy that contain these inputs). Compared to traditional iterative compilation
framework, there is no need to execute the whole application.

The identification and the extraction of the codelets are nowaday still per-
formed by the programmer. We focused our research on the loops which take
the major amount of time in our programs. To automate this part of the work,
a simple code extractor should be coupled with a profiler tool to extract only
the more interesting loops top optimize, or at least to give some hint to the
programmer on which loops the search should be apply. Already existing code
isolators tend to collect a print of the machine state when executing the codelet
in the whole program to offer the same runtime environment for the isolated
code [23]. Our method allows the extracted codelet to be independant from the
program environment, and, at the end, it will be the program to be adjusted
according to the more performant optimized codelet.

Extracted codelet can be just considered as new macro instructions, specific
to the application. There is no parallelism between these instructions (no ILP,
no out-of-order effect) and as long as the instructions are executed with their
data in the right memory configuration, the performance model is just additive.
The total execution time is the sum of the measure latencies of each instruction.

The following section describes how these codelets are generated and Section
4 explains how to make sure that the codelets are always executed in the same
memory configuration as they were executed.



3 Searching for High Performance Codelets

The goal of this search is to search among all code transformations those that
will lead to the definition of high performance codelets. As seen in previous
section, a constant performance codelet has to check some static properties that
help define the search. Due to the potential high number of codelets, a static
analysis on the compiler-generated assembly code reduces the number of required
executions (discarding codelets with obvious poor performance).

3.1 Defining search space with X-language

X-language relies on a C99 compiler tcc[1] that passes an AST to a Prolog
program that does the effective search, based on a set of rules. X-language has
been used to generate many versions of codes for linear algebra libraries[3]. For
more complex codes, some extensions have been added, in the pragma language
itself and in the range of transformations considered. involved, pattern guided
vectorization.

X-language does not have by itself a dependence analysis, this removes a
constraint due to overly conservative dependence analysis, but may also generate
incorrect code. For some transformations (such as slicing) it is necessary to
indicate the group of statements that must be kept in sequence. This is achieved
by two pragmas:

– #pragma xlang section id where n is a unique number. This indicates the
beginning of sequential section of code.

– #pragma xlang dependence(list− of − ids). This indicates that a chain of
dependence between sections of code.

The following transformations are added to X-language:

– #pragma xlang transform unrolljam(loop − id, unroll − factor): unroll
and jam is a simple extension based on existing transformations and depen-
dence analysis provided by previous pragmas. The jam performs fusion of
all loop surrounded by the unrolled loop.

– #pragma xlang transform vectorize(loop − id): vectorization is pattern
based and applies only if all statements of a loop can be vectorized. Vector-
ization is decomposed into as many pattern based rules as there are vector
instructions.

– #pragma xlang transform tryintrinsics(name): it matches all function
names and replaces them with the equivalent intrinsics (if present in rules).
This directive will generate codes with and without the intrinsics substitu-
tion.

– #pragma xlang transform distribute(loop − id): distributes statements
in different loops, preserving dependences given by the previous pragmas.

For all applications, two parameters are searched for: tile sizes (generating inner
loops with constant loop bounds) and unrolling factors.

Here is an example of the X-language program used to explore different
versions of GIBBS and generate multiple codelets.



#pragma xlang parameter SIZE [64:256:64]
#pragma xlang parameter UNROLLF[0:8:2]
#pragma xlang parameter UNROLLI[0:4:2]
#pragma xlang parameter any(tile1D(j,jj,SIZE),tile2D(i,j,ii,jj,SIZE,SIZE))
#pragma xlang transform tryIntrinsics(round)
#pragma xlang transform unrollandjam(ii,UNROLLI)
#pragma xlang transform distribute(jj)
#pragma xlang transform unroll(jj,UNROLLJ)
#pragma xlang transform decompose(1)

with the dependences accordingly. The keyword ”any” defines that any combina-
tion of transformation given as parameter will be tried. A number of rules define
optimization in the search, and in particular combining tilings is not permitted.
Therefore here the directive just states that one or the other tiling should be
tried. The last directive selects inner loops that fulfill conditions for constant
performance codelets and exports them as C files, ready to be compiled sepa-
rately.

Some phases of the search, notably the writing of initializing code for the
codelet, are still performed by hand.

3.2 Evaluation of codelets

Before benchmarking the codelets, we must checked that the performance mea-
sured will be stable in the application context. In particular, the compiler gen-
erated assembly file is checked with a tool we developed, MAQAO [9].

For codelets that still have some conditional depending on variables other
than loop counters, MAQAO checks whether the assembly loop body has one
basic block or not. In which case, the conditional has been replaced by predicated
code. Otherwise, the codelet is discarded. Some codelets exhibit poor code qual-
ity. For instance, speculative codes for Itanium usually offer poor performance:
the compiler speculates that there is no dependence between several statements
but is unable to prove it. Spill code due to high register pressure is also detected.
In these cases, the code is discarded before execution.

Since the codelets are rather small portion of code, they are executed sev-
eral times, with the data already in the right memory configuration before the
measurement, to avoid timers problems [35].

Once the codelets have been tested, possibly in different input cache configu-
ration, the final code has to be built, ensuring that the codelets are executed in
the same condition. Two additional codelets are generated automatically: copies
and prefetches, as described in the following section.

4 Memory Hierarchy Optimization

The goal is to transform the code using the codelets so as to ensure that codelet
performance will be the same than the performance measured. As codelets as-
sume their data is in some cache, this requires some cache model in order to



compute the data region necessary to prefetch or copy before execution of the
codelets. However, the objective is not to modify the codelets by adding prefetch
instructions inside, as this would alter performance. On the contrary, prefetches
and copies will be added by blocks. Performance of these blocks can also be
measured.

We use a simple memory model based on cache capacity. If the data structure
of the codelets is altered (due to vectorization for instance), a block of copies is
chosen otherwise a block of prefetches is taken. These codelets are first schedule
right before the codelet and then moved at earlier positions as long as the work-
ing set between the copy and the codelet still fit in cache. This model is very
preliminary but we found that it was sufficient to handle the application consid-
ered. The reason is that all applications considered access data with indirection.
In this case, precise evaluation at compile time of data movement is no longer
possible.

We need to measure block of copies and of prefetches designed for partic-
ular codelets. Let us whether they can be considered as constant performance
codelets. They have constant loop bounds, static control, and a loop. Moreover,
dataflow dependences inside the codelets do not depend on inputs. Different tests
are needed, according to the position of the data to copy/prefetch in the memory
hierarchy. However, performance still depends on spacial locality since two data
in the same cache line and accessed consecutively will be accessed faster than if
they were mapped to two different cache lines. Variation between two executions
with different input data (not size) only happen for A[B[i]], due to this effect.
When an indirection of the kind A[B[i]] occur in a copy, we choose the worst
case execution and initialize B such that it addresses different cache lines.

For blocks of prefetches, we design a codelet that prefetches all data and add
to it a small kernel consuming this data as fast as possible (with a reduction).
When the data prefetched is not in cache, an evaluation of this codelet provides
an evaluation of the latency due to the miss, and the overhead of the reduction
itself. It is important to notice that such case can be considered as a worst case,
since data prefetched is accessed right after the prefetch. In an application a
more favorable case may occur. Figure 2.b shows the performance of a codelet
of prefetch for 15.109 elements (spinors) required by a codelet from the HMC
application. The left bar measures only the overhead of the codelet, when data
is already in cache. The right bar shows the latency of the memory access, when
data in memory is prefetched and then used. This latency minus the overhead
provides the performance measure (worst case) for prefetches.

5 Experimental Results

We present application of our method to three applications.

5.1 Experimental setup and Applications

The target architecture is a BULL Novascale server featuring 1.6GHz Itanium 2
processor, with 3 cache levels was used. Out of these 3 levels, only the 2nd level



(a) (b)

Fig. 2. (a) Performance estimations for Gibbs depending on the combination of codelets
involved. (b) Performance measures for a codelet prefetching a spinor structure for
HMC. The codelet makes a block of prefetch followed by a reduction consuming
prefetched data. The measure is taken when all data is in cache (measuring overhead
of codelet) and when all data is in memory.

(256KB, unified) and the 3rd level (9MB, unified) can contain floating point
values. The processor offers 128 floating point registers and can issue up to 6
instructions per cycle.

We applied our technique on three applications. GIBBS, described in the
introduction, is a molecular simulation. The inputs considered required several
hours of computation. BLAST is genomic application for the comparison of se-
quences of genes. The implementation we used is described in [22] before being
adapted to an FPGA accelerator. HMC is a simulation code for Lattice Quan-
tum Chromodynamic (LQCD). LQCD is a numerical method based on Monte
Carlo method for the study of the theory of strong interaction in the domain
of subnuclear physics. Simulation of scientific interest require several thousand
hours of computation on parallel supercomputer. The input set we used for our
experiment is realistic enough for a sequential code and takes 5 hours on one
core of Itanium2. The HMC implementation we used is achieved by the ETMC
collaboration[32]. For each of these application, we focus only on the hot spot
function (there is only one for all these cases).

5.2 Comparing Estimated Performance and Measured Performance

Searching efficient codelets first needs to define a pragma program in X-language
driving the search. For each application, we list the optimization that were nec-
essary to obtain the presented speed-up. For Gibbs: loop distribution, tiling,
unrolling and substitution of a mathematical function by intrinsics. For BLAST:
vectorization (using intrinsics), unroll and jam, unrolling, memory copies. For
HMC: loop distribution, tiling, prefeches, unrolling.



Figure 3 shows the performance speed-up predicted by our performance
model, when using the best codelets, for the main computation function of the
applications. This is to be compared to the real measured performance.

(b) Gibbs, function tot lj energy (c) HMC, function
Hopping Matrix

(a) BLAST, function BLAST

Fig. 3. Performance of initial code (base 1, labeled origin), of the optimized code
according to performance prediction (speed-up labeled preview) and of the optimized
code according to performance measure (speed-up labeled measure).

For BLAST, vectorization and some unrolling brings most of the performance
gain. There is a gap between predicted performance and measures for Test2 be-
cause it is assumed that data is in cache for prediction while this is not exactly
the case for this input. For Gibbs, there is a 10% of speed-up according to perfor-
mance prediction and 9% of observed gain. For HMC, according to performance
prediction, there is no speed-up when using the best codelets whereas there is
a 10% speed-up in the real code. The reason is that there is some reuse of data
from one call of the function optimized, Hopping Matrix, to the other and this
is not taken into account in the performance prediction.



6 Related Works

High performance libraries is the key for high performance applications. ATLAS
[36] for instance focuses on linear algebra computations. But even with different
improvements [39], vendor[11, 25], hand-tuned BLAS3[15] still outperform AT-
LAS compiled codes and, up to now, such libraries manage to reach near-peak
performances on linear algebra kernels. Library generators resort to many opti-
mizations that usually are not part of the optimization sequence of a compiler.
Among them, loop tiling [37, 38] and register blocking [17, 4] improve data local-
ity on all levels of the memory hierarchy. The objective of these optimizations
is to decrease cache misses.

In our approach, we choose instead to make a tradeoff between Instruction
Level Parallelism (ILP) and cache usage, with a method of kernel decomposition
[3] which divides the program into code fragments. These code fragments called
codelets are used to obtain high performance. Unlike telescoping languages [5,
18], in our approach, the different language levels collaborate: source transfor-
mations explore high level cache optimizations that are difficult for production
compilers, and the approach relies on the compiler to express the ILP.

Adaptive and Iterative Compilation: In order to obtain good perfor-
mance when running on a specific machine, several adaptive [34, 33] or iterative
[19, 29] compilation techniques has been implemented. The principal drawback
of these techniques is the necessity to run the whole program several times to
obtain the best performance. Even when different optimized codes can be tested
in the same run [14], the whole application has to run at least once to detect the
best version. This is not realistic for very long-running program. Our method
allows to do some iterative compilation on a smaller part of the program, which
is less time consuming.

Extraction and Running Context: Despite the fact that code extractors
and isolators already exist in the litterature, we developped our own method to
extract codelets for optimization. The main reason is that they tend to not only
extract the code, but also save the state of the hardware when the original to-be-
extracted code is running in the whole program [23]. Since our method is based
on a simple memory model, we only need to know how the caches are filled with
the codelet data.

Annotation and Pragma Meta-language: To express the different opti-
mizations to apply on the codelets, we choose a meta-language based on pragmas
to automatically generate the different versions of the codelets. Since other works
allowed to make the same type of transformations [27], our choice being this lan-
guage was practical: it has been mainly developped in our team [10] and, as this
part is not the main contribution of this paper, we used the language we had at
hand.

The main drawback of our method being search space can become potentially
huge, it should be interesting to couple it with some techniques to shrink it. For
example, we could search a smaller space using genetic algorithms and machine
learning techniques [7, 8, 26], or scan more points withing the same amount of
time. With these methods, the iterative search for codelets would be decreased.



Memory Model: Our memory model, though very simple, was sufficient for
us to realize accurate predictions. Other detailed models exist ([12] for instance),
describing cache behaviour of individual memory access. But as codelets work
on chunks of arrays that are large enough, an approximated cache model is
enough for us. Some Models simply don’t address the same problem as us [24]
using their model to select the best variant of codelet, when we use our model
to predict precisely the execution time of the optimized function. In fact, this
kind of model could be used to filter out statically codelets with bad memory
performance prediction.

7 Conclusions

The approach presented in this paper proposes to address long compilation times
of adaptive compilation. The goal of the search we propose is to decompose the
code into high performance codelets that can be tested outside of the application
context. We have shown that on three real applications, from the performance
evaluation of these codelets, a simple performance model is able to predict with
accuracy the performance of the optimized code. While there is still many re-
quired execution of codelets, there is no need for long execution of the whole
application.

Our method can be improved in a number of ways. We have assumed that
the user is able to guide the optimization search, defining an appropriate op-
timization parameter search space for the application. A search base on the
characteristics of the code would be a significant step towards the integration of
this technique into an optimizing compiler. A more complex and realistic cache
model would increase the range of codes for which the performance model is
accurate . In particular, modeling n-way associativity, TLB misses, considering
potential conflict misses between array sections would be interesting in order to
apply our technique to more general codes, such as the hot spots of applications.
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