Allocating Communication Channels to Parallel Tasks

b

Denis Barthou® Franco Gasperoni® and Uwe Schwiegelshohn®

March 14, 1997

Abstract

In this paper we study the problem of allocating communication channels to a number
of processes or tasks that need to exchange data. Given a communication graph G' we
investigate the problem of determining the minimum channel capacity needed to execute
(i, the problem of finding an optimal schedule for G with minimum channel requirements
and in the case where only a fixed channel capacity is available, the problem of finding
a schedule which meets channel constraints and has minimum length. We provide a
linear time algorithm for the first problem when G is a forest. However, both the second
and third problems are shown to be NP-hard even when (' is made up of chains of
tasks or is a tree where every task needs the results of at most two other tasks. To
somewhat compensate for such intractability we provide an efficient transformation of
our communication problems to integer programming. This allows the use of off-the-shelf
routines to find optimum solutions. More specifically given two integer parameters k£ and
[and an arbitrary communication graph G we create an integer program polynomial in [
and the size of G which has a feasible solution if and only if there exists a schedule s for
(G such that s requires a channel capacity of at most £ and has a length of at most [time
units.

1. Introduction

The problem of scheduling a set of tasks that need to exchange data by means of
communication has been investigated by several researchers ([6, 1, 4, 5] to name a few).
Most of this work has assumed that the time to transport data can be sizable and could
indeed be greater than the time it took to compute the data. On the other hand the overall
number of communication channels or network bandwidth was always supposed to be
unbounded. Even in the absence of resource constraints (unlimited number of processors
and communication channels) this problem and practically all meaningful subproblems
have been shown to be NP-hard [1, 5]. Furthermore none of the attempted heuristics has
been shown to yield close to optimum results in general.

In this work we look at the task communication problem from a different perspective.
We assume that the time to transport data from one task to another is negligible with

respect to the time it is required to produce the data. However, we will consider the
number of available communication channels or network bandwidth to be limited.

In our framework a given set T" of tasks have to be executed. Processing power is always
assumed to be available in sufficient quantities. Each task 7 € T' requires a certain amount
of processing time d(7) > 0. In addition tasks may need to exchange information. This
is achieved by means of communication channels. More specifically the data produced by
a task 7 may be required by a task 7’ before 7/ can commence execution. As soon as 7T
starts, a communication channel C' needs to be established between 7 and 7/. The channel
(' provides a communication link so that data can be conveyed to 7’. In the case where 7/
is unable to accept 7’s results, because all of the data that it requires is not yet available,
(' provides some buffering space to hold 7’s results. These will be delivered when 7/ is
ready, i.e. when all the data required by 7" and produced by other tasks becomes available.
It is only when 7’ starts that the channel C from 7 to 7’ can be reused by some other
task. Note that the buffering space and bandwidth that need to be allocated to ' while
7 sends data to 7/ are a function of the amount of information transferred.

Because a task models some unknown set of computational activities, its execution
need not be restricted to a single processor. Therefore a communication channel is always
required when forwarding data between two tasks.

The set of communication channels can be viewed as an asynchronous network providing
bandwith and buffering space in which messages are temporarily saved when the recipients
are not ready to accept them. If a computation requires more bandwith or buffering space
that the network can provide a second network, much slower than the first one, is in charge
of relaying the data between processors. Thus a computation can always be carried to
completion but if it cannot be scheduled so as to meet the resource constraints of the
fast network it incurs a serious time penalty. Given this framework it is interesting to
investigate the following questions:

e The ACME corporation wants to buy a new parallel computer. In order to test
a given platform without committing too much of their budget they ask their IS
department to compute the minimum communication capacity required to execute
their typical application efficiently.

e The corporation has finally selected a machine where the overall computational
resources can be partitioned among a number of users. Such is for instance the
case on the Connection Machine 5 [8]. Given a particular problem P the system
administrator may now ask what is the minimum amount of communication capacity
that she needs to set aside for P so that it can execute as quickly as possible.

o After careful elaboration the system administrator has decided to allocate the same
amount of communication capacity to each user. It is now the user’s turn to ask
about optimality, but from a different angle, namely what is the best possible exe-
cution time that she can get for her problem with the given capacity.

Formally a communicating task system is modeled as a weighted directed acyclic graph
G = (T,F,d,w), called the communication graph, where the vertex set T represents the

tasks or processes that need to be executed, the edge set F represents the communication
requirements among the tasks, for every 7 € T the positive integer d(7) gives the amount
of processing needed by task 7 and for each edge e = (7,7’), the positive integer w(e)
gives the required buffering and bandwith capacity to forward data from 7 to 7. More
specifically an edge (7,7') € E from 7 to 7' implies that the data produced by 7 is
explicitly required by 7" and needs to be conveyed to it by the means of a communication
channel with a minimum bandwith and buffering capacity of w(e).

The goal is to find a valid schedule s for G, that is a mapping from 7' into the positive
integers such that for all edge (7,7') € £

s(r) +d(7) < s(7)

The length of schedule s is denoted |s| and is defined to be max; s(7) + d(7). The overall
capacity of the communication channels required by s at time ¢ is denoted C(s,t) and is

defined to be
C(s,1)= > w(e) where X(s,t)={(r,7")€E : s(r) <t <s(r')}

e€X (s5,t)

The maximum bandwith and buffering capacity needed by schedule s is denoted C'(s) =
max; C'(s,t). The three problems that we have formulated earlier can be formally written
as follows:

Channel sufficiency: what is the minimum capacity needed to execute a communicat-
ing task system G = (T, F, d,w), i.e. find a valid schedule s for G which has smallest
C(s).

Channel minimality: what is the minimum capacity needed to execute a communicat-
ing task system G = (T, F,d,w) in the smallest possible amount of time, i.e. find
a valid schedule s for G with smallest C'(s) such that its length |s| is equal to the
longest d-weighted path in G.

Channel constrained: what is the best possible schedule for a communicating task
system G = (T, FE,d,w) when only a capacity of k is available, i.e. find a valid
schedule s with smallest length |s| such that C'(s) < k.

Except for the transformation to integer programming which is given in the last section,
the communication graph will be restricted to a forest, that is the data produced by one
task will be needed by at most one other task. We will also assume that all tasks require
the same processing time which, without any loss of generality, can be assumed to be
1. Likewise will assume that communication requirements between any two tasks are
identical, that is for every edge e of the communication graph w(e) = 1. Under these
constraints a schedule s can be seen as a mapping from 7' into the set {0,1,...,|T|} and
for every time instant ¢, C'(s,t) gives the number of communication channels required by
s at time t. In the sequel this restricted framework will be denoted G = (T, E,1,1) and
the notion of channel capacity will be identified with the notion of channel itself.

In this restricted framework communication channels can be viewed as including both
processing and communication. The overall machine can be seen as a set of processors
connected to a memoryless network where once a task has finished executing, the processor
P involved tries to ship the results to the processor P’ of the receiving task. If this is not
ready then P stalls until P’ is ready to accept P’s messages. As such the problem can be
viewed as an extension of the classical scheduling problem where a number of identical
processors are provided to execute a set of precedence constrained tasks.

Even in this simple case we will show that two out of the three problems above are
computationally intractable. More precisely we show that even if the communication
graph is a a forest comprising only chains of tasks or a tree where each task has at most
two immediate predecessors, the channel minimality and channel constrained problems are
NP-hard. This is in sharp contrast with the polynomial time algorithms for the equivalent
simpler classical scheduling problems where only processor constraints are considered [2].

To compensate the aforementioned intractability results we will provide in the last
section of this work, an efficient polynomial time reduction of our problems to integer
programming. The reduction can handle arbitrary communication graphs. Because of
the amount of research that has been invested in integer programming this approach will
enable us to use off-the-shelf state-of-the-art routines to solve channel minimality and
channel constrained problems without having to design an exhaustive search algorithm.
Of course in the worst case all integer programming routines are bound to take exponential
time unless P = NP.

Note that in the restricted framework G = (T, £, 1,1) where (i is a forest, the problems
studied herein can be viewed as the problems of generating optimal code with no spilling
for expression trees on a RISC machine comprising several functional units and sharing
a common register file. Indeed by extending the result of Sethi & Ullman [7] on optimal
code generation for expression trees on a one processor machine, we provide a linear time
algorithm for the channel sufficiency problem.

2. The Channel Sufficiency Problem

In this section we outline a linear time algorithm to solve the channel sufficiency problem
in our restricted framework, when the communication graph (7, £, 1,1) is a forest F. The
algorithm extends the ideas employed by Sethi & Ullman [7]. The approach used in this
section is directly applicable to the case where task durations are different.

The minimum number of channels needed to execute F will be denoted ¢(F). Without
any loss of generality, we can assume that the communication graph is a tree rather than
a forest. In fact, ¢(F) is given by the maximum of the ¢(7), where T is a tree in F. Let
T = (T,FE,1,1) be a communication tree, then ¢(7) is given by the following recursive
formula:

e if T contains a single task: ¢(7) =0

o ifnot,let 7;,fori =1,..., a be the subtrees whose roots are the immediate predeces-
sors of T's root. We assume that theses subtrees are indexed so that ¢(7;) > ¢(7iy1)-

4

Then:

i if 7; contains a single task
oT) = 20 (6(7:) + { i — 1 otherwise
Note that this recursive formulation of ¢(7) can be easily computed in linear time by a
postorder traversal of T .
The following lemma introduces the fundamental property on which the above formula
is based.

Lemma 1 Let T and T;, for 1 <1 < a, be communication trees as defined in the recur-
swe formula. Let s be a valid schedule for T. Then there exists a schedule s' such that
C(s") < C(s) and the execution of the root of one of the T; is completed before any of the
tasks in 1;, j # 1, are initiated.

Proof: For a tree T;, let start(T;), respectively end(T;), be the smallest initiation time,
respectively the greatest completion time, of any of its tasks in schedule s. Let 1o be the
tree index such that

start(Tiy) = min start(7T;)

1=1...a
Then, schedule s' is defined to be:
) os(7) if T is a task in T;,
"o s(1) 4 end(T,,) — start(Ti,) otherwise

Clearly s' is still a valid schedule for T and the execution of T;, ’s root is completed before
any of the tasks in T}, j # 19, are initiated. It remains to show that C(s") < C(s).

Let Cr(s,t) denote the number of communication channels used in schedule s at time
t to execute the tasks in tree T;. Clearly for start(T;,) <t < end(T,), we have C(s',t) <
C(s,t). Let D denote end(T;,) — start(T;,) and 7. the root of T. For end(T;,) <t <

D+ |s| — d(7.), one communication channel needs to hold the results of T, ’s root thus

Cls', t)=1+ > Cr(s,t = D)
i

Furthermore, at least one communication channel must be devoted in s to the tasks in T;,
until T ’s root starts executing. Thus, for start(T,) <t < |s| —d(,) we have

L4+ > Cr(s,t) < C(s,t)
i

and therefore, C(s') < C(s). O

Theorem 1 The recursive formula given at the beginning of the section gives the mini-
mum number of channels needed to compute T .

Proof: By inductive application of the previous lemma, there exists a valid schedule sq for

T with minimum C(so) such that the tasks from two different subtrees T; of T never exe-
cute simultaneously in so. Thus, there exists an ordering T;,, Tiyy -y Tiy of T1, T2y Ta
such that in sq we have

end(T;,) < start(T,) < end(T,) < start(T) ...

Let Cr:(so) denote the number of channels needed in sqg to compute T;. Clearly, if ¢(T;) <
C7:(s0) we can replace the piece of so’s schedule corresponding to T; with the valid schedule
for T; yielding c(T;) without affecting C(so) or so’s validity for T. Thus we can assume
that Cr;(so) = ¢(T;). Furthermore, if Cr;(s0) < C1(s0) and end(T;) < start(T;) we can
swap the position of T;’s and T;’s schedules in so without affecting C(so) or so’s validity
for T . Thus we can assume that in so we have

ATi) 2 eTiy) 2 .. 2 e(Ti)

Let us renumber the T; such that T;, = T1,Ti, = T2 and so on. While T; is executing in
S0, t — 1 channels are holding the results of Ty,...,Ti—1. Thus, the minimum number of
channels needed to compute Ty through T; is

min (0(7;) n { J if T; contains a single task)

G=1,0i 7 — 1 otherwise

and therefore by induction the recursive formula given at the beginning of this section is
correct. U

3. Intractability Results

In this section we show that both the channel minimality and channel constrained
problems are NP-hard even for very simple cases. Before getting in the heart of the
matter we will outline how the channel minimality and channel constrained problems can
be reduced one to the other.

Theorem 2 [f the general channel constrained problem can be solved in time f(n,m),
where n is the number of tasks and m the number of edges in the communication graph,
then the general channel minimality problem can be solved in time f(n,m) - log(muwmq.y)
where W, 1 the mazimum communication capacity needed to forward data between tasks.
Conversely if the general channel minimality problem can be solved in time g(n,m) then
the channel constrained problem can be solved in time g(n,m) - log(ndm.,) where dpq, is
the maximum time it takes to execute any task.

Proof: Clearly if we have an overall communication capacity of mw,,., at our disposal a
trivial greedy schedule which executes everything as early as possible guarantees that any
communication graph can be executed at maximum speed. Thus if we can solve the general
channel constrained problem in time f(n,m), then by performing a logarithmic search on
the set {1,2,...,mwy..} we can find the smallest number k such that the length of the

optimum schedule when the available channel capacity is restricted to k is equal to the
length of the longest weighted path in the communication graph.

Conversely suppose that [is the length of the optimum schedule for the general channel
constrained problem when the overall channel capacity is k. Then if we add to the original
communication graph a chain of tasks of overall length [, then the minimum channel
capacity required to execute the new communication graph in the shortest possible time
will be at most k + 1. Clearly 0 < | < ndpap. Thus we can perform a logarithmic
search on the set {1,2,... ndy..} and employ the previously described transformation to
compute the minimum channel capacity needed to complete the computation by time [.
The smallest duration | such that the minimum number of channels needed is at most
k+ 1 yields a solution to the channel constrained problem with k channels. O

Note that if the communication graph is restricted to be a tree the second transfor-
mation, from the channel constrained to the channel minimality problem, cannot be
employed. However this can easily be fixed by making the root of the chain be a child of
the root of the tree.

The intractability proofs that follow are based on a reduction from 3-partition. An
instance I3P = (X, m, B, size) of the 3-partion problem is a set X of 3m elements, a
positive integer bound B and a positive integer size size(x) for each € X, such that
B/4 < size(x) < B/2 and such that)" cx size(x) = mB. The goal is to partition X into
m disjoint sets, Xy, ..., X, such that for 1 <i <m, Y cy, size(z) = B. Because of the
constraint imposed on size(x) each X; must contain exactly 3 elements. The 3-partition
problem is strongly NP-hard [3]. In this particular case it means that even if we restrict B
and the weights size(x) to be polynomial in m, the 3-partition problem remains NP-hard.
Without any loss of generality one can assume that B is a multiple of 4 so that B/4 is
an integer, for otherwise it suffices to multiply B and all size(x) by 4 which does not
change the substance of the 3-partition problem. This will be convenient in the proof of
theorem 4.

Given the reduction given in theorem 2 the NP-hardness of any particular subproblem
of channel minimality immediately implies the NP-hardness of the corresponding channel
constrained subproblem.

Theorem 3 The channel minimality problem is NP-hard even when task durations and
communication capacities are equal to 1 and the communication graph is a set of chains.

Proof: Let I3P = (X,m, B,size) be a given instance of the 3-partition problem. We
create a communication graph G where for all v € X G contains a chain of size(x)
unit time tasks. Finally G contains a chain of B unit time tasks. We will show that
I3P has a solution if and only if the minimum number of channels needed to execute the
communication graph in B time steps is exactly m + 1.

Clearly any schedule which employs less than m + 1 channels at every time step will
be unable to compute the communication graph in time B. If there exvists a schedule s
such that |s| = B and C(s) = m 4+ 1 then I3P has a solution. In fact at every time
step there must be exactly m + 1 tasks executing. Clearly if C(s) = m + 1 at most

m + 1 tasks can be executing every time step. If in a given time step there are less than
m + 1 tasks executing then because Y, cx size(x) = mB we must have |s| > B. Thus the
tasks belonging to a same chain must execute in contiguous time steps. For x € X let
chain(xz) be the corresponding chain in the communication graph. Then by the previous
remark there must be exactly m chains, apart for the chain of length B, chain(xy), ...,
chain(x,,) whose first task starts executing at time 0. Fach of the x; will be placed in a
set X;, 1 <o < m. Then for each set X; we adjoin the element x! such that chain(x!)
starts executing just after the last task in chain(x;) has completed. Again by the previous
remark such chain must exist. We break ties arbitrarily. We repeat this step one more
time using x instead of x;. Clearly for all1 <1 <m, Y cx, = B.

Conversely if 3-partition has a solution we can very easily construct a schedule s whose

length |s| = B and such that C(s)=m+ 1. O

Theorem 4 The channel minimality problem is NP-hard even when task durations and
communication capacities are equal to 1 and the communication graph is a tree where
every task has at most two immediate predecessors.

Proof: In the proof we will interchangeably use the words task and node. Given an
instance I13P = (X, m, B, size) of the 3-partition problem we will construct a communi-
cation tree T which can be executed at maximum speed with exactly 6m + 2B channels if
and only if I3P has a solution. Fvery task in T will require 1 unit of time to execute and
will depend on at most two other tasks.

The idea is to construct a critical subtree which creates a rigid pattern in which the
remaining subtrees, one for each element x € X, will be able to fit the overall use of
6m + 2B channels if and only if I3P has a solution. The critical subtree comprises 3m
subtrees called type-1 subtrees, B identical subtrees called type-2 subtrees and a glue subtree
to attach together the type-1 and type-2 subtrees. As we will see later on, the glue subtree
will also provide attachments for the trees which are associated to each v € X. This last
kind of subtrees is called a gadget subtree. There are 3m of these.

Let S = max,ex size(x). There are 3m type-1 subtrees. A type-1 subtree has m(25+1)
levels. For 1 < i < 3m, the i-th subtree has 2 nodes in the first [1/3](25 + 1) — 1 levels
and one node in the remaining levels. See figure 1({a). When we put all the type-1 subtree
next to each other we obtain the pattern indicated in figure 1(b).

Type-2 subtrees are all identical. There are B of those. Fach has m(2S + 1)+ 1 levels.
In the first 25 levels there is one node per level. Level 25 4+ 1 has two nodes. The next 25
levels have again one node per level and the the level after that, level 4.5 + 2 has again two
nodes. This alternation of 25 one node levels followed by one two nodes levels is repeated.
Figure 2 gives a type-2 tree. To its right we give the pattern obtained when we put all the
type-2 trees next to each other.

For each element @ € X we create the gadget tree shown in figure 3(a). All the gadget
trees have the same number of levels, namely 25. Finally the glue tree pastes together all
type-1, type-2 and gadget subtrees as shown in figure 3(b). The final communication tree
will be denoted T .

level 1 level 1: 6m nodes
level 2 ||
level 25: 6m nodes
level 3l
level 25 4+ 1: 6m — 3 nodes
 level 4S5+ 1: 6m —3 nodes |
level [i/3](25 +1) —1 level 415 + 2: 6m — 6 nodes
level [1/31(25 +1) | oo
level [1/3](25 +1) +1 [level 65 + 2 6m — 6 nodes |
| level 65 +3: 6m — 9 nodes]_
Wo. (m — 1)(28 + 1): 3m + 3 nod{s
feoe 2mS 4 m =L s
level 2mS 4+ m level 2mS 4+ m: 3m noded

(a) (b)

Figure 1. (a) A type-1 subtree. There are 3m of these. In the figure we have portrayed
the i-th, for 1 < <3m. (b) The pattern obtained by putting the 3m type-1 subtrees next
to each other.

level 1: B nodes

level 25 +2: B nodek

b

ev. 2mS +m + 1: K

e,
.
N
R
T
3 3
oo
! =
+ 1 2
() [y}
(N]
vy
=
[w}
[
[y}
VAl

Figure 2. A type-2 subtree. There are B of these. To its right the pattern obtained by
putting the B type-2 subtrees next to each other. The levels in the pattern indicate the
corresponding level in the type-2 tree to its left.

10

size(x) chains

25 — size(x) levels

%

A
size(x) levels

%

(@)

type 2 trees type 1 trees

— gadget trees

i
m(25 + 1) levels ! - T
! 4
i 125 levels
i/ ® @ e ® 00 @ e :/
A < q ® ® ® A
| : : : : : B levels
| L/
B + 3m levels \
3m levels
R > e -> R > ;/
B type-2 trees m type-1 trees m gadget trees

(t)

Figure 3. (a) The gadget subtree for x € X. There are 3m of these. (b) The final tree.

11

Let us now show that the minimum number of channels needed to execute T as fast
as possible is at least 2B + 6m. First of all it is clear that to execute T at maximum
speed all tasks in type-1 and type-2 trees must be executed as soon as possible, basically
tasks at level | have to start executing at time [— 1 and complete at time [. To be able to
accomplish this we must have at least 2B 4+ 3m channels at our disposal since there are
that many tasks in level 2mS + m of our type-1 and type-2 trees. Furthermore because
the 3m roots of the gadget trees cannot be scheduled after the tasks which belong to level
2mS 4 m in the type-1/type-2 trees we overall need at least 2B 4+ 6m channels.

Now assume that I3P has a solution, then we will show that T can be executed at
mazimum speed with exactly 2B + 6m channels. If I3P has a solution then X can be
partitioned in m disjoint sets Xq,..., X, such that for 1 <1 <m, 3 cx, size(x) = B.
Let us take the 3 gadget trees corresponding to the elements in Xy and schedule the trees
concurrently with the first 25 level tasks in the type-1/type-2 trees. These 3 gadget trees
fit perfectly but 3 channels need to be withdrawn from the pool of available channels until
the tasks in level 2mS + m of type-1/type-2 trees complete. In general the gadget trees
corresponding to the elements in X; can be scheduled concurrently with the type-1/type-2
tasks whose levels range between 2(1 — 1)S + 1 and 205 +1 — 1. Again 3 channels need to
be withdrawn from the pool of available channels from the time the type-1/type-2 tasks in
level 205 + i start executing until the type-1/type-2 tasks in level 2mS + m complete. The
shape of the type-1 subtrees is exactly designed to counterbalance this need for withdrawing
more and more channels from the overall channel pool. More precisely type-1 trees 31 — 2,
31— 1 and 31 all need one channel less to execute from the moment the task in level 205 +1
start. Thus if I3P has a solution the communication tree T can be executed at maximum
speed with exactly 2B + 6m channels.

Conversely suppose that the communication tree T can be executed at maximum speed
with 2B + 6m channels. Because at level 21B 4+ 1, for 1 < 1 < m, type-1 and type-2
trees require 2B + 6m — 31 channels, at most 31 gadget trees (or pieces thereof) can be
scheduled above that level. Thus at least 3 gadget trees must be scheduled between levels
2(m—1)S4+m—1 and 2mS +m. We claim that there must be exactly 3. For if there are
4 then we need 3m + 3 + B channels for the type-1/type-2 tasks, 3(m — 1) — 1 channels
for the roots of the gadget trees scheduled above level 2(m — 1)S + m — 1 and at least
4(B/441) = B4+4 channels for the | gadget trees scheduled between levels 2(m—1)S+m—1
and 2mS 4+ m (remember B was assumed to be a multiple of 4). Thus the overall number
of channels needed would be at least 2B + 6m + 3 which is prohibited. Henceforth there
are exactly 3 gadget trees executing between levels 2(m —1)S +m — 1 and 2mS +m. The
above reasonment can be repeated for the levels 2(m —2)S+m —2 and 2(m—1)S +m —1
and so on. Thus for each 1 <1 < m, there are exactly 3 gadget trees scheduled between
type-1/type-2 levels 2(1 — 1)S + i and 205 +i. As there are only B channels left to carry
out the execution of these 3 gadget trees and since Y cx size(x) = mB it must be that the
overall size of the elements associated with each of the 3 sets of gadget trees is exactly B.
Therefore if the communication tree T can be executed at mazimum speed with 2B + 6m
channels, I3P has a solution: for 1 <1 < m, X; contains the elements whose gadget trees
are scheduled between levels 2(0 — 1)S 4+ ¢ — 1 and 215 + ¢ type-1/type-2 trees. O

12

4. Reduction to Integer Programming

To compensate for the intractability of the previous section we provide an efficient
transformation of our communication problems to integer programming. This allows the
use of off-the-shelf routines to find optimum solutions. More specifically given two integer
parameters 1 < k and 1 < [and an arbitrary communication graph G = (T, E,d, w)
we create an integer program polynomial in [and the size of G which has a feasible
solution if and only if there exists a schedule s for GG such that C'(s) < k and |s| < [. This
transformation can be readily used to solve the channel minimality or channel constrained
problems by emploing a logarithmic search to find the smallest value of k or [for which
a valid schedule exists. For the channel minimality problem the value of [is equal to the
longest path in the communication graph. For the channel constrained problem the value
of k is given by the channel capacity at our disposal.

Let |T| = n and |E| = m then our reduction employs O(nl + ml?) variables whose
values are restricted to be 0 or 1, O(n + ml?) equations and a total of O(nl + ml*) non
null equation coefficients.

Let us denote L, (7) the maximum length, with respect to the delay function d, of a path
from 7 to any sink task of G and L;(7) the maximum length, w.r.t. d, of a path from any
source task in G to 7. In any valid schedule s for G we have L;(7) < s(7) < |s| — Lu(7).
The reduction to integer programming proceeds as follows:

Variables: There are two sets of variables. In the first set we associate a variable z,; €
{0,1} to each task 7 € T and each integral time instant ¢t € [L)(7),l — L,(7)].
The value of z,, will be 1 if and only if task 7 is scheduled at time ¢, otherwise
z,; = 0. In the second set we associate a variable y.,» € {0,1} to each edge e in
the communication graph G and all time instants 1 < ¢ < ¢ <[. Let e = (7,7).
The value of y, ;s will be 1 if and only if 7 is scheduled at time ¢, i.e. z,;, = 1 and
7" is scheduled at time ¢/, i.e. @,y = 1, otherwise y.,, = 0. The variable y.
pinpoints the starting and ending times in which a communication channel needs
to be allocated from task 7 to 7’. Let n be the number of tasks and m the number
of edges in (. Then there are O(nl) x variables and O(ml?) y variables.

Constraints: Our goal in the integer program will be to find values for the z and y
variables that satisfies the following constraints:

1. For every task 7 € T exactly one element x,; must be set to one, all the other
have to be null, that is 2, > 0 and

There are n of these equations, for an overall total of O(nl) non null coefficients.

13

2. For every edge e in G there is exactly one y. ;s which is one, all the other have
to be null, that is y. ;s > 0 and

-1 l

Z Z Ye,t,t! =1

t=1t'=t+1

There are m of these equations for an overall total of O(m{?) non null coeffi-
cients.

3. The communication constraints enforced by the graph G have to be preserved,
that is for every edge e = (7,7') in GG if 7 is scheduled at time ¢, i.e. 2, = 1,
then 7’ has to be scheduled on or after time ¢t 4+ d(7), i.e. for each ' < t 4+ d(7)
we must have z,p» = 0. Formally this can be written as:

t+d(7)—1

Trt + Z Loyt g S 1
t'=L;(7")

There are ml of these equations for an overall total of O(ml*) non null coeffi-
cients.

4. The allocation of communication channels needs to be taken into account, that
is for each edge e = (7,7') of (¢ and time instants 1 <t <t <[we have:

Trg 4 Trrpr — Yerp < 1

There are at most mi? of these equations for an overall total of O(m{?) non
null coefficients.

5. The final constraint is that at every time instant ¢ a channel capacity of at
most k is employed, that is

qz_: Z Z w(e)ye,t,t/ <k

t=1t'=qeel
There are [of these equations for an overall total of O(m{*) non null coefficients.

The overall number of number of non-null coefficients is O(mi®). It is fairly straight-
forward to see that the above integer program has a feasible solution if and only if there
exists a valid schedule s for the communication graph G such that |s| = and C(s) < k.
More specifically s(7) =t if and only if ., = 1.

Note that in the case where all communication capacities are equal The above transfor-
mation yields a 0-1 integer program. Alternatively we can provide a better transformation
in terms of the overall number of non null coefficients needed in the constraint equations.
For each task 7 € T we respectively define pn(7) and sn(T) to be the number of pre-
decessors/successors of 7 in the communication graph G. In this new transformation we
only need the = variables and therefore constraint 2 above disappears. Constraints 4 and
5 get merged into a sigle new constraint:

14

Let k; denote the number of tasks 7 such that [— L,(7) = ¢, that is the
number of channels that would be required at time ¢ by the schedule sy where
so(1) =1 — Ly(7). Then for all 1 <t <[we have

ky + Z Z (sn(r) —pn(7)) - 2,0 <k

7€T and t/:Ll (7’)
[—Ly(7)>t

There are [of these equations for an overall total of O(nl*) non null coefficients.
Thus this second transformation only needs O(ml*) non null coefficients.

Theorem 5 The modified integer program in the case of identical edge capacities has a
feasible solution if and only if there exists a valid schedule s for the communication graph

G such that |s| <1 and C(s) < k.

Proof: We only need to show that the new constraint accurately accounts for the fact
that at every time step no more than k communication channels are needed.

Let so denote the schedule such that so(t) = | — L,(7) for every task 7 € T. We
have C(sg,t) = ke. Clearly the left hand side of the t-th new constraint equation correctly
reports the number of channels needed at time t in so. Fach schedule can be reached from
this starting schedule so by simply scheduling tasks at earlier time instants.

Assume that for a given schedule s the channel usage is correctly described by the left
hand side of the new constraints. Consider now a second schedule s' which is almost
identical to s except for the fact that a task T is scheduled at time t — 1 in s’ rather
than at time t in s. The number of channels needed at time t in s’ remains unchanged
whereas the number of channels needed at time t — 1 in s' increases by sn(r) — pn(T)
since the pn(7) channels that where needed to convey data to T in s are not necessary in
s but sn(t) new channels need to be allocated at time t — 1 in ' to carry data from T
to its immediate successors in the communication graph G. It is easy to see that the new
constraint equations correctly account for such changes in communication channel needs.
Inductive application of this procedure shows the correct description of the channel usage
by the left hand side of the new constraint equations. O

15

P. CHRETIENNE, Task scheduling over distributed memory machines, in Parallel and
Distributed Algorithms, M. Cosnard, ed., Elsevier Science Publishers (North Holland),
1989, pp. 165-176.

E. G. CorrFMAN, Computer and Job-shop Scheduling Theory, John Wiley and Sons,
New York, New York, 1976.

M. R. GAREY AND D. S. JOHNSON, Computers and Intractability - A Guide to the
Theory of NP-Completeness, Freeman, New York, New York, 1979.

A. GERASOULIS, S. VENUGOPAL, AND T. YANG, Clustering task graphs for message
passing architectures, in International Conference on Supercomputing, ACM, June
1990, pp. 447-456.

C. H. PAPADIMITRIOU AND M. YANNAKAKIS, Towards an architecture-independent
analysis of parallel algorithms, STAM Journal of Computing, 19 (1990), pp. 322-328.
V. SARKAR, Partitioning and Scheduling Parallel Programs fro Fxecution on Multi-
processors, MIT Press, 1989.

R. SETHI AND J. D. ULLMAN, The generation of optimal code for arithmetic expres-
stons, Journal of the ACM, 17 (1970), pp. 715-728.

THINKING MACHINE CORPORATION, CM5-Technical Summary, Thinking Machine
Corporation, Oct. 1991.

16

