
Allocating Communication Channels to Parallel TasksDenis Barthoua Franco Gasperonib and Uwe SchwiegelshohncMarch 14, 1997AbstractIn this paper we study the problem of allocating communication channels to a numberof processes or tasks that need to exchange data. Given a communication graph G weinvestigate the problem of determining the minimum channel capacity needed to executeG, the problem of �nding an optimal schedule for G with minimum channel requirementsand in the case where only a �xed channel capacity is available, the problem of �ndinga schedule which meets channel constraints and has minimum length. We provide alinear time algorithm for the �rst problem when G is a forest. However, both the secondand third problems are shown to be NP-hard even when G is made up of chains oftasks or is a tree where every task needs the results of at most two other tasks. Tosomewhat compensate for such intractability we provide an e�cient transformation ofour communication problems to integer programming. This allows the use of o�-the-shelfroutines to �nd optimum solutions. More speci�cally given two integer parameters k andl and an arbitrary communication graph G we create an integer program polynomial in land the size of G which has a feasible solution if and only if there exists a schedule s forG such that s requires a channel capacity of at most k and has a length of at most l timeunits.1. IntroductionThe problem of scheduling a set of tasks that need to exchange data by means ofcommunication has been investigated by several researchers ([6, 1, 4, 5] to name a few).Most of this work has assumed that the time to transport data can be sizable and couldindeed be greater than the time it took to compute the data. On the other hand the overallnumber of communication channels or network bandwidth was always supposed to beunbounded. Even in the absence of resource constraints (unlimited number of processorsand communication channels) this problem and practically all meaningful subproblemshave been shown to be NP-hard [1, 5]. Furthermore none of the attempted heuristics hasbeen shown to yield close to optimum results in general.In this work we look at the task communication problem from a di�erent perspective.We assume that the time to transport data from one task to another is negligible with1

respect to the time it is required to produce the data. However, we will consider thenumber of available communication channels or network bandwidth to be limited.In our framework a given set T of tasks have to be executed. Processing power is alwaysassumed to be available in su�cient quantities. Each task � 2 T requires a certain amountof processing time d(�) > 0. In addition tasks may need to exchange information. Thisis achieved by means of communication channels. More speci�cally the data produced bya task � may be required by a task � 0 before � 0 can commence execution. As soon as �starts, a communication channel C needs to be established between � and � 0. The channelC provides a communication link so that data can be conveyed to � 0. In the case where � 0is unable to accept � 's results, because all of the data that it requires is not yet available,C provides some bu�ering space to hold � 's results. These will be delivered when � 0 isready, i.e. when all the data required by � 0 and produced by other tasks becomes available.It is only when � 0 starts that the channel C from � to � 0 can be reused by some othertask. Note that the bu�ering space and bandwidth that need to be allocated to C while� sends data to � 0 are a function of the amount of information transferred.Because a task models some unknown set of computational activities, its executionneed not be restricted to a single processor. Therefore a communication channel is alwaysrequired when forwarding data between two tasks.The set of communication channels can be viewed as an asynchronous network providingbandwith and bu�ering space in which messages are temporarily saved when the recipientsare not ready to accept them. If a computation requires more bandwith or bu�ering spacethat the network can provide a second network, much slower than the �rst one, is in chargeof relaying the data between processors. Thus a computation can always be carried tocompletion but if it cannot be scheduled so as to meet the resource constraints of thefast network it incurs a serious time penalty. Given this framework it is interesting toinvestigate the following questions:� The ACME corporation wants to buy a new parallel computer. In order to testa given platform without committing too much of their budget they ask their ISdepartment to compute the minimum communication capacity required to executetheir typical application e�ciently.� The corporation has �nally selected a machine where the overall computationalresources can be partitioned among a number of users. Such is for instance thecase on the Connection Machine 5 [8]. Given a particular problem P the systemadministrator may now ask what is the minimumamount of communication capacitythat she needs to set aside for P so that it can execute as quickly as possible.� After careful elaboration the system administrator has decided to allocate the sameamount of communication capacity to each user. It is now the user's turn to askabout optimality, but from a di�erent angle, namely what is the best possible exe-cution time that she can get for her problem with the given capacity.Formally a communicating task system is modeled as a weighted directed acyclic graphG = (T;E; d;w), called the communication graph, where the vertex set T represents the2

tasks or processes that need to be executed, the edge set E represents the communicationrequirements among the tasks, for every � 2 T the positive integer d(�) gives the amountof processing needed by task � and for each edge e = (�; � 0), the positive integer w(e)gives the required bu�ering and bandwith capacity to forward data from � to � 0. Morespeci�cally an edge (�; � 0) 2 E from � to � 0 implies that the data produced by � isexplicitly required by � 0 and needs to be conveyed to it by the means of a communicationchannel with a minimum bandwith and bu�ering capacity of w(e).The goal is to �nd a valid schedule s for G, that is a mapping from T into the positiveintegers such that for all edge (�; � 0) 2 Es(�) + d(�) � s(� 0)The length of schedule s is denoted jsj and is de�ned to be max� s(�)+ d(�). The overallcapacity of the communication channels required by s at time t is denoted C(s; t) and isde�ned to beC(s; t) = Xe2X(s;t)w(e) where X(s; t) = f(�; � 0) 2 E : s(�) � t < s(� 0)gThe maximum bandwith and bu�ering capacity needed by schedule s is denoted C(s) =maxtC(s; t). The three problems that we have formulated earlier can be formally writtenas follows:Channel su�ciency: what is the minimum capacity needed to execute a communicat-ing task systemG = (T;E; d;w), i.e. �nd a valid schedule s for G which has smallestC(s).Channel minimality: what is the minimum capacity needed to execute a communicat-ing task system G = (T;E; d;w) in the smallest possible amount of time, i.e. �nda valid schedule s for G with smallest C(s) such that its length jsj is equal to thelongest d-weighted path in G.Channel constrained: what is the best possible schedule for a communicating tasksystem G = (T;E; d;w) when only a capacity of k is available, i.e. �nd a validschedule s with smallest length jsj such that C(s) � k.Except for the transformation to integer programming which is given in the last section,the communication graph will be restricted to a forest, that is the data produced by onetask will be needed by at most one other task. We will also assume that all tasks requirethe same processing time which, without any loss of generality, can be assumed to be1. Likewise will assume that communication requirements between any two tasks areidentical, that is for every edge e of the communication graph w(e) = 1. Under theseconstraints a schedule s can be seen as a mapping from T into the set f0; 1; : : : ; jT jg andfor every time instant t, C(s; t) gives the number of communication channels required bys at time t. In the sequel this restricted framework will be denoted G = (T;E; 1; 1) andthe notion of channel capacity will be identi�ed with the notion of channel itself.3

In this restricted framework communication channels can be viewed as including bothprocessing and communication. The overall machine can be seen as a set of processorsconnected to a memoryless network where once a task has �nished executing, the processorP involved tries to ship the results to the processor P 0 of the receiving task. If this is notready then P stalls until P 0 is ready to accept P 's messages. As such the problem can beviewed as an extension of the classical scheduling problem where a number of identicalprocessors are provided to execute a set of precedence constrained tasks.Even in this simple case we will show that two out of the three problems above arecomputationally intractable. More precisely we show that even if the communicationgraph is a a forest comprising only chains of tasks or a tree where each task has at mosttwo immediate predecessors, the channel minimality and channel constrained problems areNP-hard. This is in sharp contrast with the polynomial time algorithms for the equivalentsimpler classical scheduling problems where only processor constraints are considered [2].To compensate the aforementioned intractability results we will provide in the lastsection of this work, an e�cient polynomial time reduction of our problems to integerprogramming. The reduction can handle arbitrary communication graphs. Because ofthe amount of research that has been invested in integer programming this approach willenable us to use o�-the-shelf state-of-the-art routines to solve channel minimality andchannel constrained problems without having to design an exhaustive search algorithm.Of course in the worst case all integer programming routines are bound to take exponentialtime unless P = NP.Note that in the restricted framework G = (T;E; 1; 1) where G is a forest, the problemsstudied herein can be viewed as the problems of generating optimal code with no spillingfor expression trees on a RISC machine comprising several functional units and sharinga common register �le. Indeed by extending the result of Sethi & Ullman [7] on optimalcode generation for expression trees on a one processor machine, we provide a linear timealgorithm for the channel su�ciency problem.2. The Channel Su�ciency ProblemIn this section we outline a linear time algorithm to solve the channel su�ciency problemin our restricted framework, when the communication graph (T;E; 1; 1) is a forest F . Thealgorithm extends the ideas employed by Sethi & Ullman [7]. The approach used in thissection is directly applicable to the case where task durations are di�erent.The minimum number of channels needed to execute F will be denoted c(F). Withoutany loss of generality, we can assume that the communication graph is a tree rather thana forest. In fact, c(F) is given by the maximum of the c(T), where T is a tree in F . LetT = (T;E; 1; 1) be a communication tree, then c(T) is given by the following recursiveformula:� if T contains a single task: c(T) = 0� if not, let Ti, for i = 1; : : : ; a be the subtrees whose roots are the immediate predeces-sors of T 's root. We assume that theses subtrees are indexed so that c(Ti) � c(Ti+1).4

Then: c(T) = maxi=1:::a c(Ti) + (i if Ti contains a single taski� 1 otherwise !Note that this recursive formulation of c(T) can be easily computed in linear time by apostorder traversal of T .The following lemma introduces the fundamental property on which the above formulais based.Lemma 1 Let T and Ti, for 1 � i � a, be communication trees as de�ned in the recur-sive formula. Let s be a valid schedule for T . Then there exists a schedule s0 such thatC(s0) � C(s) and the execution of the root of one of the Ti is completed before any of thetasks in Tj, j 6= i, are initiated.Proof: For a tree Ti, let start(Ti), respectively end(Ti), be the smallest initiation time,respectively the greatest completion time, of any of its tasks in schedule s. Let i0 be thetree index such that start(Ti0) = mini=1:::a start(Ti)Then, schedule s0 is de�ned to be:s0 = (s(�) if � is a task in Ti0s(�) + end(Ti0)� start(Ti0) otherwiseClearly s0 is still a valid schedule for T and the execution of Ti0's root is completed beforeany of the tasks in Tj, j 6= i0, are initiated. It remains to show that C(s0) � C(s).Let CTi(s; t) denote the number of communication channels used in schedule s at timet to execute the tasks in tree Ti. Clearly for start(Ti0) � t < end(Ti0), we have C(s0; t) �C(s; t). Let D denote end(Ti0) � start(Ti0) and �r the root of T . For end(Ti0) � t <D + jsj � d(�r), one communication channel needs to hold the results of Ti0's root thusC(s0; t) = 1 + Xj 6=i0 CTj(s; t�D)Furthermore, at least one communication channel must be devoted in s to the tasks in Ti0until T 's root starts executing. Thus, for start(Ti0) � t < jsj � d(�r) we have1 + Xj 6=i0 CTj (s; t) � C(s; t)and therefore, C(s0) � C(s). 2Theorem 1 The recursive formula given at the beginning of the section gives the mini-mum number of channels needed to compute T .Proof: By inductive application of the previous lemma, there exists a valid schedule s0 for5

T with minimum C(s0) such that the tasks from two di�erent subtrees Ti of T never exe-cute simultaneously in s0. Thus, there exists an ordering Ti1 ;Ti2; : : : ;Tia of T1;T2; : : : ;Tasuch that in s0 we haveend(Ti1) � start(Ti2) < end(Ti2) � start(Ti3) : : :Let CTi(s0) denote the number of channels needed in s0 to compute Ti. Clearly, if c(Ti) <CTi(s0) we can replace the piece of s0's schedule corresponding to Ti with the valid schedulefor Ti yielding c(Ti) without a�ecting C(s0) or s0's validity for T . Thus we can assumethat CTi(s0) = c(Ti). Furthermore, if CTi(s0) < CTj (s0) and end(Ti) � start(Tj) we canswap the position of Ti's and Tj 's schedules in s0 without a�ecting C(s0) or s0's validityfor T . Thus we can assume that in s0 we havec(Ti1) � c(Ti2) � : : : � c(Tia)Let us renumber the Ti such that Ti1 = T1;Ti2 = T2 and so on. While Ti is executing ins0, i� 1 channels are holding the results of T1; : : : ;Ti�1. Thus, the minimum number ofchannels needed to compute T1 through Ti isminj=1;:::;i c(Tj) + (j if Tj contains a single taskj � 1 otherwise !and therefore by induction the recursive formula given at the beginning of this section iscorrect. 23. Intractability ResultsIn this section we show that both the channel minimality and channel constrainedproblems are NP-hard even for very simple cases. Before getting in the heart of thematter we will outline how the channel minimality and channel constrained problems canbe reduced one to the other.Theorem 2 If the general channel constrained problem can be solved in time f(n;m),where n is the number of tasks and m the number of edges in the communication graph,then the general channel minimality problem can be solved in time f(n;m) � log(mwmax)where wmax is the maximum communication capacity needed to forward data between tasks.Conversely if the general channel minimality problem can be solved in time g(n;m) thenthe channel constrained problem can be solved in time g(n;m) � log(ndmax) where dmax isthe maximum time it takes to execute any task.Proof: Clearly if we have an overall communication capacity of mwmax at our disposal atrivial greedy schedule which executes everything as early as possible guarantees that anycommunication graph can be executed at maximum speed. Thus if we can solve the generalchannel constrained problem in time f(n;m), then by performing a logarithmic search onthe set f1; 2; : : : ;mwmaxg we can �nd the smallest number k such that the length of the6

optimum schedule when the available channel capacity is restricted to k is equal to thelength of the longest weighted path in the communication graph.Conversely suppose that l is the length of the optimum schedule for the general channelconstrained problem when the overall channel capacity is k. Then if we add to the originalcommunication graph a chain of tasks of overall length l, then the minimum channelcapacity required to execute the new communication graph in the shortest possible timewill be at most k + 1. Clearly 0 < l � ndmax. Thus we can perform a logarithmicsearch on the set f1; 2; : : : ; ndmaxg and employ the previously described transformation tocompute the minimum channel capacity needed to complete the computation by time l.The smallest duration l such that the minimum number of channels needed is at mostk + 1 yields a solution to the channel constrained problem with k channels. 2Note that if the communication graph is restricted to be a tree the second transfor-mation, from the channel constrained to the channel minimality problem, cannot beemployed. However this can easily be �xed by making the root of the chain be a child ofthe root of the tree.The intractability proofs that follow are based on a reduction from 3-partition. Aninstance I3P = (X;m;B; size) of the 3-partion problem is a set X of 3m elements, apositive integer bound B and a positive integer size size(x) for each x 2 X, such thatB=4 < size(x) < B=2 and such that Px2X size(x) = mB. The goal is to partition X intom disjoint sets, X1, : : :, Xm such that for 1 � i � m, Px2Xi size(x) = B. Because of theconstraint imposed on size(x) each Xi must contain exactly 3 elements. The 3-partitionproblem is strongly NP-hard [3]. In this particular case it means that even if we restrict Band the weights size(x) to be polynomial in m, the 3-partition problem remains NP-hard.Without any loss of generality one can assume that B is a multiple of 4 so that B=4 isan integer, for otherwise it su�ces to multiply B and all size(x) by 4 which does notchange the substance of the 3-partition problem. This will be convenient in the proof oftheorem 4.Given the reduction given in theorem 2 the NP-hardness of any particular subproblemof channel minimality immediately implies the NP-hardness of the corresponding channelconstrained subproblem.Theorem 3 The channel minimality problem is NP-hard even when task durations andcommunication capacities are equal to 1 and the communication graph is a set of chains.Proof: Let I3P = (X;m;B; size) be a given instance of the 3-partition problem. Wecreate a communication graph G where for all x 2 X G contains a chain of size(x)unit time tasks. Finally G contains a chain of B unit time tasks. We will show thatI3P has a solution if and only if the minimum number of channels needed to execute thecommunication graph in B time steps is exactly m+ 1.Clearly any schedule which employs less than m + 1 channels at every time step willbe unable to compute the communication graph in time B. If there exists a schedule ssuch that jsj = B and C(s) = m + 1 then I3P has a solution. In fact at every timestep there must be exactly m + 1 tasks executing. Clearly if C(s) = m + 1 at most7

m + 1 tasks can be executing every time step. If in a given time step there are less thanm+ 1 tasks executing then because Px2X size(x) = mB we must have jsj > B. Thus thetasks belonging to a same chain must execute in contiguous time steps. For x 2 X letchain(x) be the corresponding chain in the communication graph. Then by the previousremark there must be exactly m chains, apart for the chain of length B, chain(x1), : : :,chain(xm) whose �rst task starts executing at time 0. Each of the xi will be placed in aset Xi, 1 � i � m. Then for each set Xi we adjoin the element x0i such that chain(x0i)starts executing just after the last task in chain(xi) has completed. Again by the previousremark such chain must exist. We break ties arbitrarily. We repeat this step one moretime using x0i instead of xi. Clearly for all 1 � i � m, Px2Xi = B.Conversely if 3-partition has a solution we can very easily construct a schedule s whoselength jsj = B and such that C(s) = m+ 1. 2Theorem 4 The channel minimality problem is NP-hard even when task durations andcommunication capacities are equal to 1 and the communication graph is a tree whereevery task has at most two immediate predecessors.Proof: In the proof we will interchangeably use the words task and node. Given aninstance I3P = (X;m;B; size) of the 3-partition problem we will construct a communi-cation tree T which can be executed at maximum speed with exactly 6m+ 2B channels ifand only if I3P has a solution. Every task in T will require 1 unit of time to execute andwill depend on at most two other tasks.The idea is to construct a critical subtree which creates a rigid pattern in which theremaining subtrees, one for each element x 2 X, will be able to �t the overall use of6m + 2B channels if and only if I3P has a solution. The critical subtree comprises 3msubtrees called type-1 subtrees, B identical subtrees called type-2 subtrees and a glue subtreeto attach together the type-1 and type-2 subtrees. As we will see later on, the glue subtreewill also provide attachments for the trees which are associated to each x 2 X. This lastkind of subtrees is called a gadget subtree. There are 3m of these.Let S = maxx2X size(x). There are 3m type-1 subtrees. A type-1 subtree has m(2S+1)levels. For 1 � i � 3m, the i-th subtree has 2 nodes in the �rst di=3e(2S + 1) � 1 levelsand one node in the remaining levels. See �gure 1(a). When we put all the type-1 subtreenext to each other we obtain the pattern indicated in �gure 1(b).Type-2 subtrees are all identical. There are B of those. Each has m(2S +1) + 1 levels.In the �rst 2S levels there is one node per level. Level 2S+1 has two nodes. The next 2Slevels have again one node per level and the the level after that, level 4S+2 has again twonodes. This alternation of 2S one node levels followed by one two nodes levels is repeated.Figure 2 gives a type-2 tree. To its right we give the pattern obtained when we put all thetype-2 trees next to each other.For each element x 2 X we create the gadget tree shown in �gure 3(a). All the gadgettrees have the same number of levels, namely 2S. Finally the glue tree pastes together alltype-1, type-2 and gadget subtrees as shown in �gure 3(b). The �nal communication treewill be denoted T . 8

ssss
ss sss ss ss ss
.......
.......������������

level 2mS +m� 1level 2mS +m
level di=3e(2S + 1) + 1level di=3e(2S + 1)level di=3e(2S + 1) � 1level 3level 2level 1

(a) ..
.........

level 2S + 1: 6m� 3 nodeslevel 2S: 6m nodeslevel 1: 6m nodes
lev. (m� 1)(2S + 1): 3m+ 3 nodeslev. 2mS +m� 1: 3m+ 3 nodeslevel 2mS +m: 3m nodeslevel 6S + 3: 6m � 9 nodeslevel 6S + 2: 6m � 6 nodeslevel 4S + 2: 6m� 6 nodeslevel 4S + 1: 6m� 3 nodes

(b)Figure 1. (a) A type-1 subtree. There are 3m of these. In the �gure we have portrayedthe i-th, for 1 � i � 3m. (b) The pattern obtained by putting the 3m type-1 subtrees nextto each other. 9

vv
vv

vvvv
vvv
vvvvv
v

��� ��� ��� ���
.....
.....
.....
.....

........
.lev. 2mS +m+ 1: B

level 1: B nodeslevel 2S: B nodeslevel 2S + 1: 2B nodeslevel 2S + 2: B nodeslevel 4S + 1: B nodeslevel 4S + 2: 2B nodeslevel 2(m� 1)S +m� 1: 2B nodeslevel 2mS +m: 2B nodesFigure 2. A type-2 subtree. There are B of these. To its right the pattern obtained byputting the B type-2 subtrees next to each other. The levels in the pattern indicate thecorresponding level in the type-2 tree to its left.10

ss sss sssss ssssss
?6?
6-� .. ���������� size(x) levels
2S � size(x) levelssize(x) chains

(a)s s ss s s s s ss s ss sss ss s
ssss

sss ssssss
`̀ `̀ `̀ `̀�� `̀ `̀

-�-�-�
?6?6
?6?6

QQQQQQQQQQQQQQQQQQQQQ �����������
.......BBB ��� BBB ��� BBB ���........ ?63m gadget trees3m type-1 treesB type-2 trees

m(2S + 1) levels 2S levelsB + 3m levels
111 ggg

3m levelsB levels222 type 2 trees type 1 trees gadget trees
(b)Figure 3. (a) The gadget subtree for x 2 X. There are 3m of these. (b) The �nal tree.11

Let us now show that the minimum number of channels needed to execute T as fastas possible is at least 2B + 6m. First of all it is clear that to execute T at maximumspeed all tasks in type-1 and type-2 trees must be executed as soon as possible, basicallytasks at level l have to start executing at time l� 1 and complete at time l. To be able toaccomplish this we must have at least 2B + 3m channels at our disposal since there arethat many tasks in level 2mS + m of our type-1 and type-2 trees. Furthermore becausethe 3m roots of the gadget trees cannot be scheduled after the tasks which belong to level2mS +m in the type-1/type-2 trees we overall need at least 2B + 6m channels.Now assume that I3P has a solution, then we will show that T can be executed atmaximum speed with exactly 2B + 6m channels. If I3P has a solution then X can bepartitioned in m disjoint sets X1; : : : ;Xm, such that for 1 � i � m, Px2Xi size(x) = B.Let us take the 3 gadget trees corresponding to the elements in X1 and schedule the treesconcurrently with the �rst 2S level tasks in the type-1/type-2 trees. These 3 gadget trees�t perfectly but 3 channels need to be withdrawn from the pool of available channels untilthe tasks in level 2mS + m of type-1/type-2 trees complete. In general the gadget treescorresponding to the elements in Xi can be scheduled concurrently with the type-1/type-2tasks whose levels range between 2(i� 1)S + i and 2iS + i� 1. Again 3 channels need tobe withdrawn from the pool of available channels from the time the type-1/type-2 tasks inlevel 2iS + i start executing until the type-1/type-2 tasks in level 2mS +m complete. Theshape of the type-1 subtrees is exactly designed to counterbalance this need for withdrawingmore and more channels from the overall channel pool. More precisely type-1 trees 3i� 2,3i�1 and 3i all need one channel less to execute from the moment the task in level 2iS+ istart. Thus if I3P has a solution the communication tree T can be executed at maximumspeed with exactly 2B + 6m channels.Conversely suppose that the communication tree T can be executed at maximum speedwith 2B + 6m channels. Because at level 2iB + i, for 1 � i � m, type-1 and type-2trees require 2B + 6m � 3i channels, at most 3i gadget trees (or pieces thereof) can bescheduled above that level. Thus at least 3 gadget trees must be scheduled between levels2(m� 1)S+m� 1 and 2mS+m. We claim that there must be exactly 3. For if there are4 then we need 3m + 3 + B channels for the type-1/type-2 tasks, 3(m � 1) � 1 channelsfor the roots of the gadget trees scheduled above level 2(m � 1)S + m � 1 and at least4(B=4+1) = B+4 channels for the 4 gadget trees scheduled between levels 2(m�1)S+m�1and 2mS +m (remember B was assumed to be a multiple of 4). Thus the overall numberof channels needed would be at least 2B + 6m + 3 which is prohibited. Henceforth thereare exactly 3 gadget trees executing between levels 2(m� 1)S +m� 1 and 2mS +m. Theabove reasonment can be repeated for the levels 2(m�2)S+m�2 and 2(m�1)S +m�1and so on. Thus for each 1 � i � m, there are exactly 3 gadget trees scheduled betweentype-1/type-2 levels 2(i� 1)S + i and 2iS + i. As there are only B channels left to carryout the execution of these 3 gadget trees and since Px2X size(x) = mB it must be that theoverall size of the elements associated with each of the 3 sets of gadget trees is exactly B.Therefore if the communication tree T can be executed at maximum speed with 2B + 6mchannels, I3P has a solution: for 1 � i � m, Xi contains the elements whose gadget treesare scheduled between levels 2(i� 1)S + i� 1 and 2iS + i type-1/type-2 trees. 212

4. Reduction to Integer ProgrammingTo compensate for the intractability of the previous section we provide an e�cienttransformation of our communication problems to integer programming. This allows theuse of o�-the-shelf routines to �nd optimum solutions. More speci�cally given two integerparameters 1 � k and 1 � l and an arbitrary communication graph G = (T;E; d;w)we create an integer program polynomial in l and the size of G which has a feasiblesolution if and only if there exists a schedule s for G such that C(s) � k and jsj � l. Thistransformation can be readily used to solve the channel minimality or channel constrainedproblems by emploing a logarithmic search to �nd the smallest value of k or l for whicha valid schedule exists. For the channel minimality problem the value of l is equal to thelongest path in the communication graph. For the channel constrained problem the valueof k is given by the channel capacity at our disposal.Let jT j = n and jEj = m then our reduction employs O(nl + ml2) variables whosevalues are restricted to be 0 or 1, O(n +ml2) equations and a total of O(nl +ml3) nonnull equation coe�cients.Let us denote Lu(�) the maximum length, with respect to the delay function d, of a pathfrom � to any sink task of G and Ll(�) the maximum length, w.r.t. d, of a path from anysource task in G to � . In any valid schedule s for G we have Ll(�) � s(�) � jsj � Lu(�).The reduction to integer programming proceeds as follows:Variables: There are two sets of variables. In the �rst set we associate a variable x�;t 2f0; 1g to each task � 2 T and each integral time instant t 2 [Ll(�); l � Lu(�)].The value of x�;t will be 1 if and only if task � is scheduled at time t, otherwisex�;t = 0. In the second set we associate a variable ye;t;t0 2 f0; 1g to each edge e inthe communication graph G and all time instants 1 � t < t0 � l. Let e = (�; � 0).The value of ye;t;t0 will be 1 if and only if � is scheduled at time t, i.e. x�;t = 1 and� 0 is scheduled at time t0, i.e. x� 0;t0 = 1, otherwise ye;t;t0 = 0. The variable ye;t;t0pinpoints the starting and ending times in which a communication channel needsto be allocated from task � to � 0. Let n be the number of tasks and m the numberof edges in G. Then there are O(nl) x variables and O(ml2) y variables.Constraints: Our goal in the integer program will be to �nd values for the x and yvariables that satis�es the following constraints:1. For every task � 2 T exactly one element x�;t must be set to one, all the otherhave to be null, that is x�;t � 0 andl�Lu(�)Xt=Ll(�) x�;t = 1There are n of these equations, for an overall total of O(nl) non null coe�cients.13

2. For every edge e in G there is exactly one ye;t;t0 which is one, all the other haveto be null, that is ye;t;t0 � 0 andl�1Xt=1 lXt0=t+1 ye;t;t0 = 1There are m of these equations for an overall total of O(ml2) non null coe�-cients.3. The communication constraints enforced by the graph G have to be preserved,that is for every edge e = (�; � 0) in G if � is scheduled at time t, i.e. x�;t = 1,then � 0 has to be scheduled on or after time t+ d(�), i.e. for each t0 < t+ d(�)we must have x� 0;t0 = 0. Formally this can be written as:x�;t + t+d(�)�1Xt0=Ll(� 0) x� 0;t0 � 1There are ml of these equations for an overall total of O(ml2) non null coe�-cients.4. The allocation of communication channels needs to be taken into account, thatis for each edge e = (�; � 0) of G and time instants 1 � t < t0 � l we have:x�;t + x� 0;t0 � ye;t;t0 � 1There are at most ml2 of these equations for an overall total of O(ml2) nonnull coe�cients.5. The �nal constraint is that at every time instant q a channel capacity of atmost k is employed, that isq�1Xt=1 lXt0=q Xe2Ew(e)ye;t;t0 � kThere are l of these equations for an overall total of O(ml3) non null coe�cients.The overall number of number of non-null coe�cients is O(ml3). It is fairly straight-forward to see that the above integer program has a feasible solution if and only if thereexists a valid schedule s for the communication graph G such that jsj = l and C(s) � k.More speci�cally s(�) = t if and only if x�;t = 1.Note that in the case where all communication capacities are equal The above transfor-mation yields a 0-1 integer program. Alternatively we can provide a better transformationin terms of the overall number of non null coe�cients needed in the constraint equations.For each task � 2 T we respectively de�ne pn(�) and sn(T) to be the number of pre-decessors/successors of � in the communication graph G. In this new transformation weonly need the x variables and therefore constraint 2 above disappears. Constraints 4 and5 get merged into a sigle new constraint: 14

Let kt denote the number of tasks � such that l � Lu(�) = t, that is thenumber of channels that would be required at time t by the schedule s0 wheres0(�) = l� Lu(�). Then for all 1 � t � l we havekt + X�2T andl�Lu(�)>t tXt0=Ll(�)(sn(�)� pn(�)) � x�;t0 � kThere are l of these equations for an overall total of O(nl2) non null coe�cients.Thus this second transformation only needs O(ml2) non null coe�cients.Theorem 5 The modi�ed integer program in the case of identical edge capacities has afeasible solution if and only if there exists a valid schedule s for the communication graphG such that jsj � l and C(s) � k.Proof: We only need to show that the new constraint accurately accounts for the factthat at every time step no more than k communication channels are needed.Let s0 denote the schedule such that s0(�) = l � Lu(�) for every task � 2 T . Wehave C(s0; t) = kt. Clearly the left hand side of the t-th new constraint equation correctlyreports the number of channels needed at time t in s0. Each schedule can be reached fromthis starting schedule s0 by simply scheduling tasks at earlier time instants.Assume that for a given schedule s the channel usage is correctly described by the lefthand side of the new constraints. Consider now a second schedule s0 which is almostidentical to s except for the fact that a task � is scheduled at time t � 1 in s0 ratherthan at time t in s. The number of channels needed at time t in s0 remains unchangedwhereas the number of channels needed at time t � 1 in s0 increases by sn(�) � pn(�)since the pn(�) channels that where needed to convey data to � in s are not necessary ins0 but sn(�) new channels need to be allocated at time t � 1 in s0 to carry data from �to its immediate successors in the communication graph G. It is easy to see that the newconstraint equations correctly account for such changes in communication channel needs.Inductive application of this procedure shows the correct description of the channel usageby the left hand side of the new constraint equations. 2
15

1 P. Chr�etienne, Task scheduling over distributed memory machines, in Parallel andDistributed Algorithms, M. Cosnard, ed., Elsevier Science Publishers (North Holland),1989, pp. 165{176.2 E. G. Coffman, Computer and Job-shop Scheduling Theory, John Wiley and Sons,New York, New York, 1976.3 M. R. Garey and D. S. Johnson, Computers and Intractability - A Guide to theTheory of NP-Completeness, Freeman, New York, New York, 1979.4 A. Gerasoulis, S. Venugopal, and T. Yang, Clustering task graphs for messagepassing architectures, in International Conference on Supercomputing, ACM, June1990, pp. 447{456.5 C. H. Papadimitriou and M. Yannakakis, Towards an architecture-independentanalysis of parallel algorithms, SIAM Journal of Computing, 19 (1990), pp. 322{328.6 V. Sarkar, Partitioning and Scheduling Parallel Programs fro Execution on Multi-processors, MIT Press, 1989.7 R. Sethi and J. D. Ullman, The generation of optimal code for arithmetic expres-sions, Journal of the ACM, 17 (1970), pp. 715{728.8 Thinking Machine Corporation, CM5{Technical Summary, Thinking MachineCorporation, Oct. 1991.

16

