
Chapter 5

Logic Design with MSI Components 
and Programmable Logic Devices
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The complexity of a chip

Scale of integration:
• SSI 1 - 10 gates
• MSI 10 - 100 gates
• LSI 100 - 1000 gates
• VLSI > 1000 gates
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Specialized MSI components

• adders
• comparators
• encoders/decoders
• multiplexers/demultiplexers
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Full Adder
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The Karnaugh maps for a full adder
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SUM and CARRY functions

SUM = x'y'c + x'yc' + xy'c' + xyc
CARRY = xy + yc + cx
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A realization of the binary full adder
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Parallel (ripple) binary adder

Designed to add two binary numbers bit by bit
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Parallel binary subtracter constructed by using a parallel binary adder
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Parallel binary adder/subtracter
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Carry-look-ahead adder

• Problem: the time required to do addition is 
proportional to the number of bits involved.

• Solution: compute the carry for each stage 
independently by using a carry-look-ahead 
network.
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Carry-Look-ahead Adder

Recall that
ci+1 = xiyi + xici + yici =xiyi + (xi + yi)ci

Let gi = xiyi be the carry-generate function, and
pi = xi + yi be the carry-propagate function.

Then we can write  ci+1 = gi + pici and 
c1 = g0 + p0c0

c2 = g1 + p1g0 + p1p0c0

c3 = g2 + p2g1 + p2p1g0 + p2p1p0c0

…
We see that all carry signal ci can be computed by a two level logic 
circuit.
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A carry lookahead adder. (a) General organization. (b) Sigma block

Σ ΣΣ
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A 4-bit carry lookahead adder
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Cascade connection of 4-bit carry lookahead adders
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A 4-bit carry look-ahead generator
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A 16-bit high-speed adder
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Organization of a single-decade decimal adder
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Organization of a single-decade BCD adder



J. C. Huang, 2004 Digital Logic Design 20

A single-decade BCD adder
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Organization of a 1-bit comparator
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From the truth table (Table 5.4) on page 247 we obtained

Gi+1 = AiB'i + AiGi + B'iGi

Ei+1 = A'iB'iEi + AiBiEi

Li+1 = A'iBi + BiLi + A'iLi
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Comparing two binary numbers A and B. (a) 1-bit comparator 
network. (b) Cascade connection of 1-bit comparators.
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D0
D1
D2
D3
D4
D5
D6
D7

D0
D1
D2
D3
D4
D5
D6
D7

8x3 
encoder

3x8 
decoder

Main function of encoder and decoder 

The purpose is to reduce the number of wires required for interconnection.

(sender) (receiver)
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A 2n-to-n-line encoder symbol
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An 8-to-3-line encoder
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Symbol for an n-to-2n-line decoder
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A 3-to-8-line decoder 

(a) Logic diagram. 

(b) Truth table.

(c) Symbol
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Decoder realization of  f1(x2,x1,x0) = 
Σm(1,2,4,5) and f2(x2,x1,x0) = Σm(1,5,7)
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Decoder realization of Boolean functions
f1 = ΠM(2, 7) and f2 = ΠM(0, 5, 7)
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A decoder realization of f1(x2,x1,x0) = ΠM(0,1,3,5) and f2(x2,x1,x0) = 
ΠM(1,3,6,7) (a) Using output or-gates. (b) Using output nor-gates.
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A 3-to-8-line decoder using nand-gates
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Realization of the pair of maxterm canonical expressions 
f1(x2,x1,x0) = ΠM(0,3,5) and f2(x2,x1,x0) = ΠM(2,3,4) with a 
3-to-8-line decoder and two and-gates.
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Realization of the Boolean expressions f1(x2,x1,x0) = 
ΠM(0,1,3,4,7) with a 3-to-8-line decoder and two nand-gates.
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A decoder realization of f1(x2,x1,x0) = Σm(0,2,6,7) and f2(x2,x1,x0) = 
Σm(3,5,6,7) (a) Using output and-gates. (b) Using output nand-gates.
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And-gate 2-to-4-line decoder with an enable input. (a) Logic 
diagram. (b) Compressed truth table. (c) Symbol.
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Nand-gate 2-to-4-line decoder with an enable input



J. C. Huang, 2004 Digital Logic Design 38

A 4-to-16-line 
decoder constructed 
from 2-to-4-line 
decoder
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D0
D1
D2
D3
D4
D5
D6
D7

D0
D1
D2
D3
D4
D5
D6
D7

8x1 
multiplexer

1x8 
demultiplexer

Main function of multiplexer and demultiplexer 
 

The purpose is to reduce the number of wires required for interconnection 
by making the signals to time-share the link.

(sender) (receiver)

S2 S1 S0 S2 S1 S0
control signal control signal
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A multiplexer/demultiplexer arrangement 
for information transmission. 
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A 4-to-1-line multiplexer
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Demultiplexer



J. C. Huang, 2004 Digital Logic Design 43

A 2n-to-1-line multiplexer symbol
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MUX implementation of a Boolean function

• Any Boolean function of n variables can be 
implemented by a multiplexer with n 
control inputs in a straightforward manner.
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Example:  f(x, y, z) =  Σm(2, 5, 6, 7)

x   y   z   |  f(x, y, z) |     =
0   0   0   |  f(0, 0, 0) |     0
0   0   1   |  f(0, 0, 1) |     0
0   1   0   |  f(0, 1, 0) |     1
0   1   1   |  f(0, 1, 1) |     0
1   0   0   |  f(1, 0, 0) |     0
1   0   1   |  f(1, 0, 1) |     1
1   1   0   |  f(1, 1, 0) |     1
1   1   1   |  f(1, 1, 1) |     1
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MUX implementation of a Boolean function

• Even better, any Boolean function of n 
variables can be implemented by a 
multiplexer with n-1 control inputs as 
illustrated in the following.
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Implementing a function of 3 variables with a 4x1 MUX: Method 1

I0

I1

I2

I3
s1 s0

f(x, y, z)

x y
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Using a multiplexer to implement a Boolean function:  Method 1 

 

Note that the output of a 4x1 multiplexer is 

F(x, y, z) = x'y'I0 + x'yI1 + xy'I2 + xyI3 

 

Now, given a Boolean function 

f(x, y, z) = f(0, 0, 0)x'y'z' + f(0, 1, 0)x'yz' + f(1, 0, 0)xy'z' + f(1, 1, 0)xyz' 
   +f(0, 0, 1)x'y'z + f(0, 1, 1)x'yz + f(1, 0, 1)xy'z + f(1, 1, 1)xyz  
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The value for input I0 is to be determined as follows. 

if f(0, 0, 0) =  and f(0, 0, 1) =  then f(0, 0, 0)x'y'z' + 

f(0, 0, 1)x'y'z = 

and thus we should 

let I0 = 

0 0 0=x'y'0 0 

0 1 x'y'z z 

1 0 x'y'z' z' 

1 1 x'y'=x'y'1 1 

 

The value for I1 , I2 , and I3  are to be determined in a similar manner. 
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Implementing a function of 3 variables with a 4x1 MUX: Method 2

I0

I1

I2

I3
s1 s0

f(x, y, z)

y z
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Using a multiplexer to implement a Boolean function:  Method 2 

 

Note that the output of a 4x1 multiplexer is 

F(x, y, z)= I0y'z' + I1y'z + I2yz' + I3yz 

 

Now, given a Boolean function 

f(x, y, z) = f(0, 0, 0)x'y'z' + f(0, 0, 1)x'y'z + f(0, 1, 0)x'yz' + f(0, 1, 1)x'yz   
     + f(1, 0, 0)xy'z' + f(1, 0, 1)xy'z + f(1, 1, 0)xyz' + f(1, 1, 1)xyz  



J. C. Huang, 2004 Digital Logic Design 52

The value for input I0 is to be determined as follows. 

if f(0, 0, 0) =  and f(0, 0, 1) =  then f(0, 0, 0)x'y'z' + 

f(1, 0, 0)xy'z' = 

and thus we should 

let I0 = 

0 0 0=0y'z' 0 

0 1 xy'z' x 

1 0 x'y'z' x' 

1 1 y'z'=1y'z' 1 

 

The value for I1 , I2 , and I3  are to be determined in a similar manner. 
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A multiplexer tree to form a 
16-to-1-line multiplexer
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Realization of a three-variable function 
using a 8-to-1-line multiplexer. 
(a) Three-variable truth table. 
(b) General realization. 
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Example: realization of f(x,y,z) = Σm(0,2,3,5)
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Realizing a 3-variable Boolean function with a 4-to-1 multiplexer 
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Realization of f(x,y,z) = Σm(0,2,3,5) using a 4-to-1-line multiplexer
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Obtaining multiplexer realizations using Karnaugh maps. 
(a) Cell groupings corresponding to the data line functions. 
(b) Karnaugh maps for the Ii subfunctions.



J. C. Huang, 2004 Digital Logic Design 59

Realization of f(x,y,z) = Σm(0,2,3,5). 
(a) Karnaugh map.
(b) I0, I1, I2, and I3 submaps.
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Using Karnaugh maps to obtain multiplexer realizations under various 
assignments to the select inputs. 
(a) Applying input variables y and z to the S1 and S0 select lines. 
(b) Applying input variables x and y to the S0 and S1 select lines.
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Alternative realizations of f(x,y,z) = Σm(0,2,3,5). 
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A select line assignment and corresponding data line functions 
for a multiplexer realization of a four-variable function. 
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Realizations of f(w,x,y,z) = Σm(0,1,5,6,7,9,12,15). 
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Using a four-variable Karnaugh map to obtain a Boolean 
function realization with a 4-to-1-line multiplexer.
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Realizations of the Boolean function
f(w,x,y,z) = Σm(0,1,5,6,7,9,13,14). 
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General structure of Programmable Logic 
Devices (PLDs)
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Buffer/inverter. (a) Symbol. (b) Logic equivalent
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Types of PLDs

Programmable
Programmable
Fixed

Fixed
Programmable
Programmable

PROM
PLA
PAL

OR-arrayAND-arrayDevice
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Programming by blowing fuses. 
(a) Before programming. 
(b) After programming.
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PLD notation
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Structure of a PROM
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A 2n × m PROM. 
(a) Logic diagram. 
(b) Representation in PLD notation.
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Using a PROM for logic design. (a) Truth table. (b) PROM realization.
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Logic diagram of 
an n × p × m PLA
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Example of combinational logic design using a PLA. (a) Maps showing the 
multiple-output prime implicants. (b) Partial covering of the f1 and f2 maps. (c) 
Maps for the multiple-output minimal sum. (d) Realization using a 3 × 4 × 2 
PLA.
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Example of combinational logic design using a PLA. (a) Maps 
showing the multiple-output prime implicants. (b) A multiple-
output minimal sum covering. (c) Alternative multiple-output 
minimal sum covering. (d) Realization using a 3 × 4 × 2 PLA.
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Exclusive-or-gate with a programmable fuse. 
(a) Circuit diagram. (b) Symbolic representation. 
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General structure of a PLA having true 
and complemented output capability
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Karnaugh maps for the functions f1(x,y,z) = Σm(1,2,3,7) 
and f2(x,y,z) = Σm(0,1,2,6)



J. C. Huang, 2004 Digital Logic Design 80

Two realizations of f1(x,y,z) = Σm(1,2,3,7) and f2(x,y,z) = Σm(0,1,2,6). 
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A simple four-input, three-output PAL device. 
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An example of using a PAL device to realize two Boolean 
functions. (a) Karnaugh maps. (b) Realization. 
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A PLD programming unit
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A PLCC package with socket

Printed circuit board 
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Limitations of PLAs and PALs

These chips are limited to fairly modest 
size, typically supporting a combined 
number of inputs plus outputs of not more 
than 32.

Slide 3.31.1
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Complex Programmable Logic Devices 
(CPLDs)

A CPLD comprises multiple PAL-like 
blocks on a single chip with internal wiring 
resources to connect the circuit blocks.

It is made to implement complex circuits 
that cannot be done on a PAL or PLA.



J. C. Huang, 2004 Digital Logic Design 87

I/O
 b

lo
ck

 
PAL-like

block 
PAL-like

block 
I/O

 block 

Structure of a CPLD

PAL-like
block 

I/O
 b

lo
ck

 

PAL-like
block 

I/O
 block 

Interconnection wires 



J. C. Huang, 2004 Digital Logic Design 88

D Q 

D Q 

D Q 

PAL-like block (details not shown)

PAL-like block

A section of a CPLD
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CPLD packaging and programming

(a) CPLD in a Quad Flat Pack (QFP) package

Printed 
circuit board 

To computer 

(b) JTAG programming
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A Measure of Circuit Size

A commonly used measure is the total 
number of two-input NAND gates that 
would be needed to build the circuit.

It is called the number of equivalent gates.
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Field-Programmable Gate Arrays (FPGAs)

An FPGA is a PLD that supports 
implementation of large logic circuits.

It is different from others in that it does not 
contain AND or OR planes.  Instead, it 
contains logic blocks as depicted in the next 
slide.
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Structure of an FPGA

Logic block Interconnection switches

I/O block 

I/O block 

I/O
 block I/O
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Typical FPGAs

FPGAs can be used to implement logic 
circuits of more than a few hundred 
thousand equivalent gates in size.

The most commonly used logic block is a 
lookup table (LUT) as depicted in Fig. 3.36.

Slide 3.35.1
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A three-input LUT
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