
Chapter 5

Logic Design with MSI Components
and Programmable Logic Devices

J. C. Huang, 2004 Digital Logic Design 1

The complexity of a chip

Scale of integration:
• SSI 1 - 10 gates
• MSI 10 - 100 gates
• LSI 100 - 1000 gates
• VLSI > 1000 gates

J. C. Huang, 2004 Digital Logic Design 2

Specialized MSI components

• adders
• comparators
• encoders/decoders
• multiplexers/demultiplexers

J. C. Huang, 2004 Digital Logic Design 3

Half Adder

x y sum carry

0
0
1
1

0
1
0
1

0
1
1
0

0
0
0
1

x Sum

y Carry

sum = x’y + xy’

carry = xy

J. C. Huang, 2004 Digital Logic Design 4

Full Adder

0 0
0 1
0 1
1 0
0 1
1 0
1 0
1 1

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

ci+1 sixi yi ci

xi
si

yi

ci+1
ci

J. C. Huang, 2004 Digital Logic Design 5

The Karnaugh maps for a full adder

J. C. Huang, 2004 Digital Logic Design 6

SUM and CARRY functions

SUM = x'y'c + x'yc' + xy'c' + xyc
CARRY = xy + yc + cx

J. C. Huang, 2004 Digital Logic Design 7

A realization of the binary full adder

J. C. Huang, 2004 Digital Logic Design 8

Parallel (ripple) binary adder

Designed to add two binary numbers bit by bit

J. C. Huang, 2004 Digital Logic Design 9

Parallel binary subtracter constructed by using a parallel binary adder

J. C. Huang, 2004 Digital Logic Design 10

Parallel binary adder/subtracter

J. C. Huang, 2004 Digital Logic Design 11

Carry-look-ahead adder

• Problem: the time required to do addition is
proportional to the number of bits involved.

• Solution: compute the carry for each stage
independently by using a carry-look-ahead
network.

J. C. Huang, 2004 Digital Logic Design 12

Carry-Look-ahead Adder

Recall that
ci+1 = xiyi + xici + yici =xiyi + (xi + yi)ci

Let gi = xiyi be the carry-generate function, and
pi = xi + yi be the carry-propagate function.

Then we can write ci+1 = gi + pici and
c1 = g0 + p0c0

c2 = g1 + p1g0 + p1p0c0

c3 = g2 + p2g1 + p2p1g0 + p2p1p0c0

…
We see that all carry signal ci can be computed by a two level logic
circuit.

J. C. Huang, 2004 Digital Logic Design 13

A carry lookahead adder. (a) General organization. (b) Sigma block

Σ ΣΣ

J. C. Huang, 2004 Digital Logic Design 14

A 4-bit carry lookahead adder

J. C. Huang, 2004 Digital Logic Design 15

Cascade connection of 4-bit carry lookahead adders

J. C. Huang, 2004 Digital Logic Design 16

A 4-bit carry look-ahead generator

J. C. Huang, 2004 Digital Logic Design 17

A 16-bit high-speed adder

J. C. Huang, 2004 Digital Logic Design 18

Organization of a single-decade decimal adder

J. C. Huang, 2004 Digital Logic Design 19

Organization of a single-decade BCD adder

J. C. Huang, 2004 Digital Logic Design 20

A single-decade BCD adder

J. C. Huang, 2004 Digital Logic Design 21

Organization of a 1-bit comparator

J. C. Huang, 2004 Digital Logic Design 22

From the truth table (Table 5.4) on page 247 we obtained

Gi+1 = AiB'i + AiGi + B'iGi

Ei+1 = A'iB'iEi + AiBiEi

Li+1 = A'iBi + BiLi + A'iLi

J. C. Huang, 2004 Digital Logic Design 23

Comparing two binary numbers A and B. (a) 1-bit comparator
network. (b) Cascade connection of 1-bit comparators.

J. C. Huang, 2004 Digital Logic Design 24

D0
D1
D2
D3
D4
D5
D6
D7

D0
D1
D2
D3
D4
D5
D6
D7

8x3
encoder

3x8
decoder

Main function of encoder and decoder

The purpose is to reduce the number of wires required for interconnection.

(sender) (receiver)

J. C. Huang, 2004 Digital Logic Design 25

A 2n-to-n-line encoder symbol

J. C. Huang, 2004 Digital Logic Design 26

An 8-to-3-line encoder

J. C. Huang, 2004 Digital Logic Design 27

Symbol for an n-to-2n-line decoder

J. C. Huang, 2004 Digital Logic Design 28

A 3-to-8-line decoder

(a) Logic diagram.

(b) Truth table.

(c) Symbol

J. C. Huang, 2004 Digital Logic Design 29

Decoder realization of f1(x2,x1,x0) =
Σm(1,2,4,5) and f2(x2,x1,x0) = Σm(1,5,7)

J. C. Huang, 2004 Digital Logic Design 30

Decoder realization of Boolean functions
f1 = ΠM(2, 7) and f2 = ΠM(0, 5, 7)

J. C. Huang, 2004 Digital Logic Design 31

A decoder realization of f1(x2,x1,x0) = ΠM(0,1,3,5) and f2(x2,x1,x0) =
ΠM(1,3,6,7) (a) Using output or-gates. (b) Using output nor-gates.

J. C. Huang, 2004 Digital Logic Design 32

A 3-to-8-line decoder using nand-gates

J. C. Huang, 2004 Digital Logic Design 33

Realization of the pair of maxterm canonical expressions
f1(x2,x1,x0) = ΠM(0,3,5) and f2(x2,x1,x0) = ΠM(2,3,4) with a
3-to-8-line decoder and two and-gates.

J. C. Huang, 2004 Digital Logic Design 34

Realization of the Boolean expressions f1(x2,x1,x0) =
ΠM(0,1,3,4,7) with a 3-to-8-line decoder and two nand-gates.

J. C. Huang, 2004 Digital Logic Design 35

A decoder realization of f1(x2,x1,x0) = Σm(0,2,6,7) and f2(x2,x1,x0) =
Σm(3,5,6,7) (a) Using output and-gates. (b) Using output nand-gates.

J. C. Huang, 2004 Digital Logic Design 36

And-gate 2-to-4-line decoder with an enable input. (a) Logic
diagram. (b) Compressed truth table. (c) Symbol.

J. C. Huang, 2004 Digital Logic Design 37

Nand-gate 2-to-4-line decoder with an enable input

J. C. Huang, 2004 Digital Logic Design 38

A 4-to-16-line
decoder constructed
from 2-to-4-line
decoder

J. C. Huang, 2004 Digital Logic Design 39

D0
D1
D2
D3
D4
D5
D6
D7

D0
D1
D2
D3
D4
D5
D6
D7

8x1
multiplexer

1x8
demultiplexer

Main function of multiplexer and demultiplexer

The purpose is to reduce the number of wires required for interconnection
by making the signals to time-share the link.

(sender) (receiver)

S2 S1 S0 S2 S1 S0
control signal control signal

J. C. Huang, 2004 Digital Logic Design 40

A multiplexer/demultiplexer arrangement
for information transmission.

J. C. Huang, 2004 Digital Logic Design 41

A 4-to-1-line multiplexer

J. C. Huang, 2004 Digital Logic Design 42

Demultiplexer

J. C. Huang, 2004 Digital Logic Design 43

A 2n-to-1-line multiplexer symbol

J. C. Huang, 2004 Digital Logic Design 44

MUX implementation of a Boolean function

• Any Boolean function of n variables can be
implemented by a multiplexer with n
control inputs in a straightforward manner.

J. C. Huang, 2004 Digital Logic Design 45

Example: f(x, y, z) = Σm(2, 5, 6, 7)

x y z | f(x, y, z) | =
0 0 0 | f(0, 0, 0) | 0
0 0 1 | f(0, 0, 1) | 0
0 1 0 | f(0, 1, 0) | 1
0 1 1 | f(0, 1, 1) | 0
1 0 0 | f(1, 0, 0) | 0
1 0 1 | f(1, 0, 1) | 1
1 1 0 | f(1, 1, 0) | 1
1 1 1 | f(1, 1, 1) | 1

J. C. Huang, 2004 Digital Logic Design 46

MUX implementation of a Boolean function

• Even better, any Boolean function of n
variables can be implemented by a
multiplexer with n-1 control inputs as
illustrated in the following.

J. C. Huang, 2004 Digital Logic Design 47

Implementing a function of 3 variables with a 4x1 MUX: Method 1

I0

I1

I2

I3
s1 s0

f(x, y, z)

x y

J. C. Huang, 2004 Digital Logic Design 48

Using a multiplexer to implement a Boolean function: Method 1

Note that the output of a 4x1 multiplexer is

F(x, y, z) = x'y'I0 + x'yI1 + xy'I2 + xyI3

Now, given a Boolean function

f(x, y, z) = f(0, 0, 0)x'y'z' + f(0, 1, 0)x'yz' + f(1, 0, 0)xy'z' + f(1, 1, 0)xyz'
 +f(0, 0, 1)x'y'z + f(0, 1, 1)x'yz + f(1, 0, 1)xy'z + f(1, 1, 1)xyz

J. C. Huang, 2004 Digital Logic Design 49

The value for input I0 is to be determined as follows.

if f(0, 0, 0) = and f(0, 0, 1) = then f(0, 0, 0)x'y'z' +

f(0, 0, 1)x'y'z =

and thus we should

let I0 =

0 0 0=x'y'0 0

0 1 x'y'z z

1 0 x'y'z' z'

1 1 x'y'=x'y'1 1

The value for I1 , I2 , and I3 are to be determined in a similar manner.

J. C. Huang, 2004 Digital Logic Design 50

Implementing a function of 3 variables with a 4x1 MUX: Method 2

I0

I1

I2

I3
s1 s0

f(x, y, z)

y z

J. C. Huang, 2004 Digital Logic Design 51

Using a multiplexer to implement a Boolean function: Method 2

Note that the output of a 4x1 multiplexer is

F(x, y, z)= I0y'z' + I1y'z + I2yz' + I3yz

Now, given a Boolean function

f(x, y, z) = f(0, 0, 0)x'y'z' + f(0, 0, 1)x'y'z + f(0, 1, 0)x'yz' + f(0, 1, 1)x'yz
 + f(1, 0, 0)xy'z' + f(1, 0, 1)xy'z + f(1, 1, 0)xyz' + f(1, 1, 1)xyz

J. C. Huang, 2004 Digital Logic Design 52

The value for input I0 is to be determined as follows.

if f(0, 0, 0) = and f(0, 0, 1) = then f(0, 0, 0)x'y'z' +

f(1, 0, 0)xy'z' =

and thus we should

let I0 =

0 0 0=0y'z' 0

0 1 xy'z' x

1 0 x'y'z' x'

1 1 y'z'=1y'z' 1

The value for I1 , I2 , and I3 are to be determined in a similar manner.

J. C. Huang, 2004 Digital Logic Design 53

A multiplexer tree to form a
16-to-1-line multiplexer

J. C. Huang, 2004 Digital Logic Design 54

Realization of a three-variable function
using a 8-to-1-line multiplexer.
(a) Three-variable truth table.
(b) General realization.

J. C. Huang, 2004 Digital Logic Design 55

Example: realization of f(x,y,z) = Σm(0,2,3,5)

J. C. Huang, 2004 Digital Logic Design 56

Realizing a 3-variable Boolean function with a 4-to-1 multiplexer

J. C. Huang, 2004 Digital Logic Design 57

Realization of f(x,y,z) = Σm(0,2,3,5) using a 4-to-1-line multiplexer

J. C. Huang, 2004 Digital Logic Design 58

Obtaining multiplexer realizations using Karnaugh maps.
(a) Cell groupings corresponding to the data line functions.
(b) Karnaugh maps for the Ii subfunctions.

J. C. Huang, 2004 Digital Logic Design 59

Realization of f(x,y,z) = Σm(0,2,3,5).
(a) Karnaugh map.
(b) I0, I1, I2, and I3 submaps.

J. C. Huang, 2004 Digital Logic Design 60

Using Karnaugh maps to obtain multiplexer realizations under various
assignments to the select inputs.
(a) Applying input variables y and z to the S1 and S0 select lines.
(b) Applying input variables x and y to the S0 and S1 select lines.

J. C. Huang, 2004 Digital Logic Design 61

Alternative realizations of f(x,y,z) = Σm(0,2,3,5).

J. C. Huang, 2004 Digital Logic Design 62

A select line assignment and corresponding data line functions
for a multiplexer realization of a four-variable function.

J. C. Huang, 2004 Digital Logic Design 63

Realizations of f(w,x,y,z) = Σm(0,1,5,6,7,9,12,15).

J. C. Huang, 2004 Digital Logic Design 64

Using a four-variable Karnaugh map to obtain a Boolean
function realization with a 4-to-1-line multiplexer.

J. C. Huang, 2004 Digital Logic Design 65

Realizations of the Boolean function
f(w,x,y,z) = Σm(0,1,5,6,7,9,13,14).

J. C. Huang, 2004 Digital Logic Design 66

General structure of Programmable Logic
Devices (PLDs)

J. C. Huang, 2004 Digital Logic Design 67

Buffer/inverter. (a) Symbol. (b) Logic equivalent

J. C. Huang, 2004 Digital Logic Design 68

Types of PLDs

Programmable
Programmable
Fixed

Fixed
Programmable
Programmable

PROM
PLA
PAL

OR-arrayAND-arrayDevice

J. C. Huang, 2004 Digital Logic Design 69

Programming by blowing fuses.
(a) Before programming.
(b) After programming.

J. C. Huang, 2004 Digital Logic Design 70

PLD notation

J. C. Huang, 2004 Digital Logic Design 71

Structure of a PROM

J. C. Huang, 2004 Digital Logic Design 72

A 2n × m PROM.
(a) Logic diagram.
(b) Representation in PLD notation.

J. C. Huang, 2004 Digital Logic Design 73

Using a PROM for logic design. (a) Truth table. (b) PROM realization.

J. C. Huang, 2004 Digital Logic Design 74

Logic diagram of
an n × p × m PLA

J. C. Huang, 2004 Digital Logic Design 75

Example of combinational logic design using a PLA. (a) Maps showing the
multiple-output prime implicants. (b) Partial covering of the f1 and f2 maps. (c)
Maps for the multiple-output minimal sum. (d) Realization using a 3 × 4 × 2
PLA.

J. C. Huang, 2004 Digital Logic Design 76

Example of combinational logic design using a PLA. (a) Maps
showing the multiple-output prime implicants. (b) A multiple-
output minimal sum covering. (c) Alternative multiple-output
minimal sum covering. (d) Realization using a 3 × 4 × 2 PLA.

J. C. Huang, 2004 Digital Logic Design 77

Exclusive-or-gate with a programmable fuse.
(a) Circuit diagram. (b) Symbolic representation.

J. C. Huang, 2004 Digital Logic Design 78

General structure of a PLA having true
and complemented output capability

J. C. Huang, 2004 Digital Logic Design 79

Karnaugh maps for the functions f1(x,y,z) = Σm(1,2,3,7)
and f2(x,y,z) = Σm(0,1,2,6)

J. C. Huang, 2004 Digital Logic Design 80

Two realizations of f1(x,y,z) = Σm(1,2,3,7) and f2(x,y,z) = Σm(0,1,2,6).

J. C. Huang, 2004 Digital Logic Design 81

A simple four-input, three-output PAL device.

J. C. Huang, 2004 Digital Logic Design 82

An example of using a PAL device to realize two Boolean
functions. (a) Karnaugh maps. (b) Realization.

J. C. Huang, 2004 Digital Logic Design 83

A PLD programming unit

J. C. Huang, 2004 Digital Logic Design 84

A PLCC package with socket

Printed circuit board

J. C. Huang, 2004 Digital Logic Design 85

Limitations of PLAs and PALs

These chips are limited to fairly modest
size, typically supporting a combined
number of inputs plus outputs of not more
than 32.

Slide 3.31.1

J. C. Huang, 2004 Digital Logic Design 86

Complex Programmable Logic Devices
(CPLDs)

A CPLD comprises multiple PAL-like
blocks on a single chip with internal wiring
resources to connect the circuit blocks.

It is made to implement complex circuits
that cannot be done on a PAL or PLA.

J. C. Huang, 2004 Digital Logic Design 87

I/O
 b

lo
ck

PAL-like

block
PAL-like

block
I/O

 block

Structure of a CPLD

PAL-like
block

I/O
 b

lo
ck

PAL-like
block

I/O
 block

Interconnection wires

J. C. Huang, 2004 Digital Logic Design 88

D Q

D Q

D Q

PAL-like block (details not shown)

PAL-like block

A section of a CPLD

J. C. Huang, 2004 Digital Logic Design 89

CPLD packaging and programming

(a) CPLD in a Quad Flat Pack (QFP) package

Printed
circuit board

To computer

(b) JTAG programming

J. C. Huang, 2004 Digital Logic Design 90

A Measure of Circuit Size

A commonly used measure is the total
number of two-input NAND gates that
would be needed to build the circuit.

It is called the number of equivalent gates.

J. C. Huang, 2004 Digital Logic Design 91

Field-Programmable Gate Arrays (FPGAs)

An FPGA is a PLD that supports
implementation of large logic circuits.

It is different from others in that it does not
contain AND or OR planes. Instead, it
contains logic blocks as depicted in the next
slide.

J. C. Huang, 2004 Digital Logic Design 92

Structure of an FPGA

Logic block Interconnection switches

I/O block

I/O block

I/O
 block I/O
 b

lo
ck

J. C. Huang, 2004 Digital Logic Design 93

Typical FPGAs

FPGAs can be used to implement logic
circuits of more than a few hundred
thousand equivalent gates in size.

The most commonly used logic block is a
lookup table (LUT) as depicted in Fig. 3.36.

Slide 3.35.1

J. C. Huang, 2004 Digital Logic Design 94

0/1

0/1

0/1

0/1

x

f

A two-input lookup table

y

J. C. Huang, 2004 Digital Logic Design 95

f

0/1

0/1

0/1

0/1

0/1

0/1

0/1

0/1

x 2

x 3

x 1

A three-input LUT

J. C. Huang, 2004 Digital Logic Design 96

0
1
0
0

0
1
1
1

0
0
0
1

x 1

x 2

x 2

x 3

f 1

f 2

f 1 f 2

f

x 1

x 2

x 3 f

A section
of a
programmed
FPGA

	Chapter 5
	The complexity of a chip
	Specialized MSI components
	SUM and CARRY functions
	Carry-look-ahead adder
	Carry-Look-ahead Adder
	MUX implementation of a Boolean function
	MUX implementation of a Boolean function
	Types of PLDs
	Limitations of PLAs and PALs
	Complex Programmable Logic Devices (CPLDs)
	A Measure of Circuit Size
	Field-Programmable Gate Arrays (FPGAs)
	Typical FPGAs

