Chapter 5

Logic Design with MSI Components and Programmable Logic Devices

The complexity of a chip

Scale of integration:

- SSI 1-10 gates
- MSI 10-100 gates
- LSI 100-1000 gates
- VLSI > 1000 gates

Specialized MSI components

- adders
- comparators
- encoders/decoders
- multiplexers/demultiplexers

Half Adder

x	y	sum	carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$
\begin{aligned}
\text { sum } & =x^{\prime} y+x y^{\prime} \\
\text { carry } & =x y
\end{aligned}
$$

Full Adder

x_{i}	y_{i}	c_{i}	$\mathrm{c}_{\mathrm{i}+1}$	$\mathrm{~s}_{\mathrm{i}}$
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

The Karnaugh maps for a full adder

SUM and CARRY functions

$$
\begin{aligned}
& \text { SUM }=x x^{\prime} y^{\prime}+x x^{\prime} y c '+x y^{\prime} c^{\prime}+x y c \\
& \text { CARRY } x y+y c+c x
\end{aligned}
$$

A realization of the binary full adder

Parallel (ripple) binary adder

Designed to add two binary numbers bit by bit

Parallel binary subtracter constructed by using a parallel binary adder

Difference

Parallel binary adder/subtracter

Sum or difference

Carry-look-ahead adder

- Problem: the time required to do addition is proportional to the number of bits involved.
- Solution: compute the carry for each stage independently by using a carry-look-ahead network.

Carry-Look-ahead Adder

Recall that

$$
c_{i+1}=x_{i} y_{i}+x_{i} c_{i}+y_{i} c_{i}=x_{i} y_{i}+\left(x_{i}+y_{i}\right) c_{i}
$$

Let $g_{i}=x_{i} y_{i} \quad$ be the carry-generate function, and

$$
\mathrm{p}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}+\mathrm{y}_{\mathrm{i}} \quad \text { be the carry-propagate function. }
$$

Then we can write $c_{i+1}=g_{i}+p_{i} c_{i}$ and

$$
\begin{aligned}
& \mathrm{c}_{1}=\mathrm{g}_{0}+\mathrm{p}_{0} \mathrm{c}_{0} \\
& \mathrm{c}_{2}=\mathrm{g}_{1}+\mathrm{p}_{1} \mathrm{~g}_{0}+\mathrm{p}_{1} \mathrm{p}_{0} \mathrm{c}_{0} \\
& \mathrm{c}_{3}=\mathrm{g}_{2}+\mathrm{p}_{2} \mathrm{~g}_{1}+\mathrm{p}_{2} \mathrm{p}_{1} \mathrm{~g}_{0}+\mathrm{p}_{2} \mathrm{p}_{1} \mathrm{p}_{0} \mathrm{c}_{0}
\end{aligned}
$$

We see that all carry signal c_{i} can be computed by a two level logic circuit.

A carry lookahead adder. (a) General organization. (b) Sigma block

(a)

(b)

A 4-bit carry lookahead adder

Cascade connection of 4-bit carry lookahead adders

A 4-bit carry look-ahead generator

A 16-bit high-speed adder

Organization of a single-decade decimal adder

Organization of a single-decade BCD adder

A single-decade BCD adder

Organization of a 1-bit comparator

$$
\left.\begin{array}{l}
\left(A_{i} A_{i-1} \cdots A_{1} A_{0}>B_{i} B_{i-1} \cdots B_{1} B_{0}\right) \stackrel{G_{i+1}}{E_{i+1}}+1 \text { 1-bit } \\
\left(A_{i} A_{i-1} \cdots A_{1} A_{0}=B_{i} B_{i-1} \cdots B_{1} B_{0}\right) \stackrel{G_{i}}{L_{i+1}}\left(A_{i-1} \cdots A_{1} A_{0}>B_{i-1} \cdots B_{1} B_{0}\right) \\
\left(A_{i} A_{i-1} \cdots A_{1} A_{0}<B_{i} B_{i-1} \cdots B_{1} B_{0}\right) \\
\frac{L_{i-1}}{4}\left(A_{i-1} \cdots A_{1} A_{0}=B_{i-1} \cdots B_{1} B_{0}\right) \\
\text { comparator }
\end{array} A_{i-1} \cdots A_{1} A_{0}<B_{i-1} \cdots B_{1} B_{0}\right)
$$

From the truth table (Table 5.4) on page 247 we obtained

$$
\begin{aligned}
& \mathrm{G}_{\mathrm{i}+1}=\mathrm{A}_{\mathrm{i}} \mathrm{~B}_{\mathrm{i}}^{\prime}+\mathrm{A}_{\mathrm{i}} \mathrm{G}_{\mathrm{i}}+\mathrm{B}_{\mathrm{i}}^{\prime} \mathrm{G}_{\mathrm{i}} \\
& \mathrm{E}_{\mathrm{i}+1}=\mathrm{A}_{\mathrm{i}}^{\prime} \mathrm{B}_{\mathrm{i}}^{\prime} \mathrm{E}_{\mathrm{i}}+\mathrm{A}_{\mathrm{i}} \mathrm{~B}_{\mathrm{i}} \mathrm{E}_{\mathrm{i}} \\
& \mathrm{~L}_{\mathrm{i}+1}=\mathrm{A}_{\mathrm{i}}^{\prime} \mathrm{B}_{\mathrm{i}}+\mathrm{B}_{\mathrm{i}} \mathrm{~L}_{\mathrm{i}}+\mathrm{A}_{\mathrm{i}}^{\prime} \mathrm{L}_{\mathrm{i}}
\end{aligned}
$$

Comparing two binary numbers A and B. (a) 1-bit comparator network. (b) Cascade connection of 1-bit comparators.

Main function of encoder and decoder
The purpose is to reduce the number of wires required for interconnection.

A 2^{n}-to- n-line encoder symbol

An 8-to-3-line encoder

Symbol for an n-to- 2^{n}-line decoder

A 3-to-8-line decoder
(a) Logic diagram.
(b) Truth table.
(c) Symbol

(a)

Inputs										
x_{2}	x_{1}	x_{0}	z_{0}	z_{1}	z_{2}	z_{3}	z_{4}	z_{5}	z_{6}	z_{7}
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

(b)

(c)

Decoder realization of $f_{l}\left(x_{2}, x_{1}, x_{0}\right)=$ $\Sigma m(1,2,4,5)$ and $f_{2}\left(x_{2}, x_{1}, x_{0}\right)=\Sigma m(1,5,7)$

Decoder realization of Boolean functions

$$
\mathrm{f}_{1}=\Pi \mathrm{M}(2,7) \text { and } \mathrm{f}_{2}=\Pi \mathrm{M}(0,5,7)
$$

A decoder realization of $f_{1}\left(x_{2}, x_{1}, x_{0}\right)=\Pi M(0,1,3,5)$ and $f_{2}\left(x_{2}, x_{1}, x_{0}\right)=$ $\Pi M(1,3,6,7)(a)$ Using output or-gates. (b) Using output nor-gates.

(a)

(b)

A 3-to-8-line decoder using nand-gates

(a)

Inputs									Outputs								
x_{2}	x_{1}	x_{0}	z_{0}	z_{1}	z_{2}	z_{3}	z_{4}	z_{5}	z_{6}	z_{7}							
0	0	0	0	1	1	1	1	1	1	1							
0	0	1	1	0	1	1	1	1	1	1							
0	1	0	1	1	0	1	1	1	1	1							
0	1	1	1	1	1	0	1	1	1	1							
1	0	0	1	1	1	1	0	1	1	1							
1	0	1	1	1	1	1	1	0	1	1							
1	1	0	1	1	1	1	1	1	0	1							
1	1	1	1	1	1	1	1	1	1	0							

(b)

(c)

Realization of the pair of maxterm canonical expressions $f_{1}\left(x_{2}, x_{1}, x_{0}\right)=\Pi M(0,3,5)$ and $f_{2}\left(x_{2}, x_{1}, x_{0}\right)=\Pi M(2,3,4)$ with a 3 -to- 8 -line decoder and two and-gates.

Realization of the Boolean expressions $f_{1}\left(x_{2}, x_{1}, x_{0}\right)=$ $\Pi M(0,1,3,4,7)$ with a 3-to-8-line decoder and two nand-gates.

A decoder realization of $f_{1}\left(x_{2}, x_{1}, x_{0}\right)=\sum m(0,2,6,7)$ and $f_{2}\left(x_{2}, x_{1}, x_{0}\right)=$ $\Sigma m(3,5,6,7)(a)$ Using output and-gates. (b) Using output nand-gates.

(a)

(b)

And-gate 2-to-4-line decoder with an enable input. (a) Logic diagram. (b) Compressed truth table. (c) Symbol.

(a)

(b)

(c)

Nand-gate 2-to-4-line decoder with an enable input

(a)

$\begin{gathered} \text { Inputs } \\ \bar{E} x_{1} x_{0} \end{gathered}$	$\begin{aligned} & \text { Outputs } \\ & z_{0} z_{1} z_{2} z_{3} \end{aligned}$
000	$\begin{array}{lllll}0 & 1 & 1 & 1\end{array}$
$\begin{array}{llll}0 & 0 & 1\end{array}$	$\begin{array}{llll}1 & 0 & 1 & 1\end{array}$
0110	$\begin{array}{llll}1 & 1 & 0 & 1\end{array}$
$\begin{array}{lll}0 & 1\end{array}$	$\begin{array}{llll}1 & 1 & 1 & 0\end{array}$
$1 \times \times$	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$

(b)

(c)

A 4-to-16-line decoder constructed from 2-to-4-line decoder

Main function of multiplexer and demultiplexer
The purpose is to reduce the number of wires required for interconnection by making the signals to time-share the link.

A multiplexer/demultiplexer arrangement for information transmission.

A 4-to-1-line multiplexer

Demultiplexer

A 2^{n}-to-1-line multiplexer symbol

MUX implementation of a Boolean function

- Any Boolean function of n variables can be implemented by a multiplexer with n control inputs in a straightforward manner.

Example: $f(x, y, z)=\Sigma m(2,5,6,7)$

x	y	z	$\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})$	$=$
0	0	0	$\mathrm{f}(0,0,0)$	0
0	0	1	$\mathrm{f}(0,0,1)$	0
0	1	0	$\mathrm{f}(0,1,0)$	1
0	1	1	$\mathrm{f}(0,1,1)$	0
1	0	0	$\mathrm{f}(1,0,0)$	0
1	0	1	$\mathrm{f}(1,0,1)$	1
1	1	0	$\mathrm{f}(1,1,0)$	1
1	1	1	$\mathrm{f}(1,1,1)$	1

MUX implementation of a Boolean function

- Even better, any Boolean function of n variables can be implemented by a multiplexer with $\mathrm{n}-1$ control inputs as illustrated in the following.

Implementing a function of 3 variables with a 4×1 MUX: Method 1

Using a multiplexer to implement a Boolean function: Method 1

Note that the output of a 4×1 multiplexer is
$\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{x}^{\prime} \mathrm{y}^{\prime} \mathrm{I}_{0}+\mathrm{x}^{\prime} \mathrm{yI}_{1}+\mathrm{xy}^{\prime} \mathrm{I}_{2}+\mathrm{xyI}_{3}$

Now, given a Boolean function

$$
\begin{aligned}
\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})= & \mathrm{f}(0,0,0) \mathrm{x}^{\prime} \mathrm{y}^{\prime} z^{\prime}+\mathrm{f}(0,1,0) \mathrm{x}^{\prime} \mathrm{yz}^{\prime}+\mathrm{f}(1,0,0) \mathrm{xy}^{\prime} \mathrm{z}^{\prime}+\mathrm{f}(1,1,0) \mathrm{xyz} \\
& +\mathrm{f}(0,0,1) \mathrm{x}^{\prime} \mathrm{y}^{\prime} \mathrm{z}+\mathrm{f}(0,1,1) \mathrm{x}^{\prime} \mathrm{yz}+\mathrm{f}(1,0,1) \mathrm{xy}^{\prime} z+\mathrm{f}(1,1,1) \mathrm{xyz}
\end{aligned}
$$

The value for input I_{0} is to be determined as follows.

if $\mathrm{f}(0,0,0)=$	and $\mathrm{f}(0,0,1)=$	then $\mathrm{f}(0,0,0) \mathrm{x}^{\prime} y^{\prime} z^{\prime}+$ $\mathrm{f}(0,0,1) \mathrm{x}^{\prime} \mathrm{y}^{\prime} \mathrm{z}=$	and thus we should let $\mathrm{I}_{0}=$
0	0	$0=x^{\prime} \mathrm{y}^{\prime} 0$	0
0	1	$x^{\prime} y^{\prime} z$	z
1	0	$x^{\prime} y^{\prime} z^{\prime}$	z^{\prime}
1	1	$x^{\prime} y^{\prime}=x^{\prime} y^{\prime} 1$	1

The value for $\mathrm{I}_{1}, \mathrm{I}_{2}$, and I_{3} are to be determined in a similar manner.

Implementing a function of 3 variables with a 4×1 MUX: Method 2

Using a multiplexer to implement a Boolean function: Method 2

Note that the output of a 4×1 multiplexer is
$\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{I}_{0} \mathrm{y}^{\prime} \mathrm{z}^{\prime}+\mathrm{I}_{1} \mathrm{y}^{\prime} \mathrm{z}+\mathrm{I}_{2} \mathrm{yz} \mathrm{z}^{\prime}+\mathrm{I}_{3} \mathrm{yz}$

Now, given a Boolean function

$$
\begin{aligned}
\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z}) & =\mathrm{f}(0,0,0) \mathrm{x}^{\prime} \mathrm{y}^{\prime} \mathrm{z}+\mathrm{f}(0,0,1) \mathrm{x}^{\prime} \mathrm{y}^{\prime} \mathrm{z}+\mathrm{f}(0,1,0) \mathrm{x}^{\prime} \mathrm{yz} z^{\prime}+\mathrm{f}(0,1,1) \mathrm{x}^{\prime} \mathrm{yz} \\
& (1,0,0) \mathrm{y}^{\prime} z^{\prime}+\mathrm{f}(1,0,1) \mathrm{y}^{\prime} \mathrm{f}+\mathrm{f}(1,1,0) \mathrm{xyz}+\mathrm{f}(1,1,1) \mathrm{xyz}
\end{aligned}
$$

The value for input I_{0} is to be determined as follows.

if $\mathrm{f}(0,0,0)=$	and $\mathrm{f}(0,0,1)=$	then $\mathrm{f}(0,0,0) \mathrm{x}^{\prime} \mathrm{y}^{\prime} z^{\prime}+$ $\mathrm{f}(1,0,0) \mathrm{xy}^{\prime} z^{\prime}=$	and thus we should let $\mathrm{I}_{0}=$
0	0	$0=0 \mathrm{y}^{\prime} z^{\prime}$	0
0	1	$x^{\prime} \mathrm{z}^{\prime}$	x
1	0	$x^{\prime} y^{\prime} z^{\prime}$	x^{\prime}
1	1	$y^{\prime} z^{\prime}=1 y^{\prime} z^{\prime}$	1

The value for $\mathrm{I}_{1}, \mathrm{I}_{2}$, and I_{3} are to be determined in a similar manner.

A multiplexer tree to form a

 16-to-1-line multiplexer

Realization of a three-variable function using a 8 -to- 1 -line multiplexer.
(a) Three-variable truth tohlo (b) General realization.

x	y	z	f
0	0	0	f_{0}
0	0	1	f_{1}
0	1	0	f_{2}
0	1	1	f_{3}
1	0	0	f_{4}
1	0	1	f_{5}
1	1	0	f_{6}
1	1	1	f_{7}

(a)

(b)

Example: realization of $f(x, y, z)=\Sigma m(0,2,3,5)$

(a)

(b)

Realizing a 3-variable Boolean function with a 4-to-1 multiplexer

Realization of $f(x, y, z)=\Sigma m(0,2,3,5)$ using a 4-to-1-line multiplexer

Obtaining multiplexer realizations using Karnaugh maps. (a) Cell groupings corresponding to the data line functions. (b) Karnaugh maps for the I_{i} subfunctions.

(b)

Realization of $f(x, y, z)=\Sigma m(0,2,3,5)$.
(a) Karnaugh map.
(b) I_{0}, I_{1}, I_{2}, and I_{3} submaps.

(a)

(b)

Using Karnaugh maps to obtain multiplexer realizations under various assignments to the select inputs.
(a) Applying input variables y and z to the S_{1} and S_{0} select lines. (b) Applying input variables x and y to the S_{0} and S_{1} select lines.

(a)

(b)

Alternative realizations of $f(x, y, z)=\Sigma m(0,2,3,5)$.

A select line assignment and corresponding data line functions for a multiplexer realization of a four-variable function.

Realizations of $f(w, x, y, z)=\Sigma m(0,1,5,6,7,9,12,15)$.

Using a four-variable Karnaugh map to obtain a Boolean function realization with a 4-to-1-line multiplexer.

Realizations of the Boolean function $f(w, x, y, z)=\Sigma m(0,1,5,6,7,9,13,14)$.

General structure of Programmable Logic Devices (PLDs)

Buffer/inverter. (a) Symbol. (b) Logic equivalent

Types of PLDs

Device	AND-array	OR-array		
PROM	Fixed	Programmable		
PLA				
PAL			\quad	Programmable
:---				
Programmable	\quad	Programable		
:---				
Fixed				

Programming by blowing fuses.
(a) Before programming.
(b) After programming.

(a)

(b)

PLD notation

(a)

(b)

(c)

(d)

(e)

(g)

Structure of a PROM

A $2^{n} \times m$ PROM.
(a) Logic diagram.
(b) Representation in PLD notation.

Using a PROM for logic design. (a) Truth table. (b) PROM realization.

Logic diagram of an $n \times p \times m$ PLA

Example of combinational logic design using a PLA. (a) Maps showing the multiple-output prime implicants. (b) Partial covering of the f_{1} and f_{2} maps. (c) Maps for the multiple-output minimal sum. (d) Realization using a $3 \times 4 \times 2$ PLA.

Example of combinational logic design using a PLA. (a) Maps showing the multiple-output prime implicants. (b) A multipleoutput minimal sum covering. (c) Alternative multiple-output minimal sum covering. (d) Realization using a $3 \times 4 \times 2$ PLA.

Exclusive-or-gate with a programmable fuse. (a) Circuit diagram. (b) Symbolic representation.

General structure of a PLA having true and complemented output capability

Karnaugh maps for the functions $f_{1}(x, y, z)=\Sigma m(1,2,3,7)$ and $f_{2}(x, y, z)=\Sigma m(0,1,2,6)$

Two realizations of $f_{1}(x, y, z)=\Sigma m(1,2,3,7)$ and $f_{2}(x, y, z)=\Sigma m(0,1,2,6)$.

A simple four-input, three-output PAL device.

J. C. Huang, 2004

Digital Logic Design

An example of using a PAL device to realize two Boolean functions. (a) Karnaugh maps. (b) Realization.

A PLD programming unit

A PLCC package with socket

Limitations of PLAs and PALs

These chips are limited to fairly modest size, typically supporting a combined number of inputs plus outputs of not more than 32.

Complex Programmable Logic Devices (CPLDs)

A CPLD comprises multiple PAL-like blocks on a single chip with internal wiring resources to connect the circuit blocks.

It is made to implement complex circuits that cannot be done on a PAL or PLA.

CPLD packaging and programming

(a) CPLD in a Quad Flat Pack (QFP) package

(b) JTAG programming

A Measure of Circuit Size

A commonly used measure is the total number of two-input NAND gates that would be needed to build the circuit.

It is called the number of equivalent gates.

Field-Programmable Gate Arrays (FPGAs)

An FPGA is a PLD that supports implementation of large logic circuits.

It is different from others in that it does not contain AND or OR planes. Instead, it contains logic blocks as depicted in the next slide.

Typical FPGAs

FPGAs can be used to implement logic circuits of more than a few hundred thousand equivalent gates in size.

The most commonly used logic block is a lookup table (LUT) as depicted in Fig. 3.36.

A two-input lookup table

A three-input LUT

A section of a programmed PGA

