Chapter 6

Flip-Flops and Simple Flip-Flop Applications

Basic bistable element

- It is a circuit having two stable conditions (states).
- It can be used to store binary symbols.

Flip-flops

A flip-flop is a bistable device, with inputs, that remains in a given state as long as power is applied and until input signals are applied to cause its output to change.

Latches vs. flip-flops

- Latches are flip-flops for which the timing of the output changes are not controlled.
- For a latch, the output essentially responds immediately to changes on the input lines (and possibly the presence of a clock pulse).
- A flip-flop is designed to change its output at the edge of a controlling clock signal.

SR (Set-Reset) latch

Inputs		Outputs					
S	R	Q^{+}	\bar{Q}^{+}				
0	0	Q	\bar{Q}				
0	1	0	1				
1	0	1	0				
1	1	0^{*}	0^{*}				
Unpredictable behavior							

will result if inputs
return to 0 simultaneously
(b)

Next state

- If Q denotes the present state of a memory device, i.e., the state at the time the input signals are applied, we shall use Q^{+}or $\mathrm{Q}(\mathrm{t}+1)$ to denote the next state, i.e., the new state assumed by the device in response to the input signals.

R'S' latch

(a)

Inputs		Outputs	
\bar{S}	\bar{R}	Q^{+}	\bar{Q}^{+}
0	0	1^{*}	1^{*}
0	1	1	0
1	0	0	1
1	1	Q	\bar{Q}

*Unpredictable behavior will result if inputs return to 1 simultaneously
(b)

Gated $S R$ latch

(a)

Inputs			Outputs	
S	R	C	Q^{+}	\bar{Q}^{+}
0	0	1	Q	\bar{Q}
0	1	1	0	1
1	0	1	1	0
1	1	1	1^{*}	1^{*}
X	X	0	Q	\bar{Q}

*Unpredictable behavior will result if S and R return to 0 simultaneously or C returns to 0 while S and R are 1
(b)

Gated D latch

(a)

Inputs		Outputs	
D	C	Q^{+}	\bar{Q}^{+}
0	1	0	1
1	1	1	0
X	0	Q	\bar{Q}

(b)

(c)

Timing considerations

- Propagation delays
- Minimum pulse width
- Setup and hold time

Propagation delay

> The time it takes a change in the input signal to produce a change in the output signal.

Minimum pulse width

The minimum amount of time a signal must be applied in order to produce a desired result.

Setup and hold times

- To achieve a satisfactory operation of a gated latch, constraints are normally placed on the time intervals between input changes.
- The minimum time the input signal must be held fixed before and after the latching action is called the setup time and hold time, respectively.

JK- and T-type flip-flops

In addition to the SR-type and D-type flipflops discussed above, there are two other types, viz., JK- and T-type flip-flops.

(a) Circuit

(b) Truth table

(c) Graphical symbol

JK flip-flops

A JK flip-flop works just like an SR flipflop if we consider J input as $S(e t)$ input and K input as R (eset) input, except when both S and R inputs are set to 1 , the output simply flips over.

T-type flip-flops

A T flip-flop is obtained from a JK flip-flop by tying the J and K inputs together to form the T input.

Flip-flops

- There are four different types of flip-flops: SR, D, JK, and T types.
- The properties of these flip-flops are summarized in the following 4 slides.
- The function and application tables are also known as characteristic and excitation tables, respectively.

SR-type flip-flop

Graphic symbol

S	R	$\mathrm{Q}(\mathrm{t}+1)$
0	0	Q
0	1	0
1	0	1
1	1	$?$

Function table

$$
\begin{gathered}
Q(t+1)=S+R^{\prime} Q \\
S R=0
\end{gathered}
$$

Characteristic equation

Q	$\mathrm{Q}(\mathrm{t}+1)$	S	R
0	0	0	X
0	1	1	0
1	0	0	1
1	1	X	0

Application table

D-type flip-flop

Graphic symbol

Function table

$$
\mathrm{Q}(\mathrm{t}+1)=\mathrm{D}
$$

Characteristic equation

Q	$\mathrm{Q}(\mathrm{t}+1)$	D	
0	0	0	
0	1	1	
1	0	0	
1	1	1	
Application table			

JK-type flip-flop

Graphic symbol

J	K	$\mathrm{Q}(\mathrm{t}+1)$
0	0	Q
0	1	0
1	0	1
1	1	Q^{\prime}

Function table

$$
\mathrm{Q}(\mathrm{t}+1)=\mathrm{JQ} \mathrm{Q}^{\prime}+\mathrm{K}^{\prime} \mathrm{Q}
$$

Characteristic equation

Q	$\mathrm{Q}(\mathrm{t}+1)$	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0
Application table			

T-type flip-flop

Graphic symbol

Function table

$$
Q(t+1)=T Q^{\prime}+\mathrm{T}^{\prime} \mathrm{Q}
$$

Characteristic equation

Q	$\mathrm{Q}(\mathrm{t}+1)$	T
0	0	0
0	1	1
1	0	1
1	1	0

Application table

Positive and negative edge

- The transition of a control signal (clock pulse) from its low to high value (0 to 1) in positive logic is called the positive edge of the control signal, while the transition from high to low (1 to 0) is called the negative edge.

Edge-triggered flip-flops

- Edge triggered flip-flops use just one of the edges of the clock pulse to affect the reading of the input lines.
- These flip-flops are designed to be triggered by either the positive or negative edge.
- In analyzing the behavior of an asynchronous sequential circuit, one often needs to know which edge trigger the flip-flops used.

(a) Circuit

(b) Timing diagram

Serial-in, serial-out unidirectional shift register

Serial-in, parallel-out unidirectional shift register

Parallel-in unidirectional shift register

Universal shift register

4-bit binary ripple (asynchronous) counter with positive-edge triggered flip-flops.

…ЛЛЛЛЛЛЛЛЛЛЛЛЛЛЛ

(b)

A 3-bit up-counter

(a) Circuit

(b) Timing diagram

The flip-flops are triggered by positive going edge of the clock input.

Analysis method:

Construct a list of state changes as follows.

1. Assume that the counter starts with some values, say, 000.
2. Because $T=1$ for Q_{0}, Q_{0} will change at the arrival of every clock pulse. Complete the listing for Q_{0}.
3. Because $\mathrm{T}=\mathrm{Q}_{0}$, , and because the flip-flop is triggered by a positive going clock input, for Q_{1}, Q_{1} changes its content whenever Q_{0} changes from 1 to 0 .
4. Do the same for the listing for Q_{2}.

A 3-bit

down-counter

(a) Circuit

The flip-flops are triggered by positive going edge of the clock input

Analysis method:

Construct a list of state changes as follows.

1. Assume that the counter starts with some values, say, 000.
2. Because $T=1$ for $\mathrm{Q}_{0}, \mathrm{Q}_{0}$ will change at the arrival of every clock pulse. Complete the listing for Q_{0}.
3. Because $\mathrm{T}=\mathrm{Q}_{0}$, and because the flip-flop is triggered by a positive going clock input, for Q_{1}, it changes its content whenever Q_{0} changes from 0 to 1 .
4. Do the same for the listing for Q_{2}.

The following synchronous counter can be analyzed similarly

Q_{2}	Q_{1}	Q_{0}
0	0	0
0	0	1
0	1	0
1	1	1
0	0	0

Four-bit synchronous binary counter

Four-bit synchronous binary counter variation

Four-bit synchronous binary counter with parallel load inputs

Synchronous mod-10 counter

(a)

Q_{3}	Q_{2}	Q_{1}	Q_{0}	
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
$-\frac{1}{0}$	0	0	0	
0	0	0		
etc.				

(b)

8-bit synchronous binary counter constructed from two 4-bit synchronous binary counters

Mod-4 ring counter

(a)
(b)

Mod-8 twisted-ring counter (or Johnson counter)

Mod-7 twisted-ring counter

(a)

$Q_{A} Q_{B} Q_{C} Q_{D}$	And-gate inputs
$\underline{0}$	$\bar{Q}_{A} \bar{Q}_{D}$
$1 \begin{array}{llll}1 & 0 & 0 & 0\end{array}$	$Q_{A} \bar{Q}_{B}$
$1 \quad 10$	$Q_{B} \underline{\underline{Q}}_{C}$
1110	$\underline{Q}_{C} \bar{Q}_{D}$
	$\bar{Q}_{A} Q_{B}$
$0 \quad \underline{0} \quad 1$	$\underline{Q}_{B} Q_{C}$
$00_{0}^{0} 00-1$	$\bar{Q}_{C} Q_{D}$
0 0 0 0 0	

(b)

Control signal generators

- A control signal generator is a sequential circuit that generate a sequence of bit patterns, each of which contains only one 1. It is used to activate various devices in turn.
- Shown in the next slide are the wave forms of 4-bit control signals.

4-bit control pulses

Control-signal generator (continued)

There are three ways to generate control signals (with n bits):

1. Use an n-bit ring counter (need n flip-flops)
2. Use a binary counter and a decoder (need k flip-flops and n AND gates with k inputs, where $\mathrm{n} \leq 2^{\mathrm{k}}$)
3. Use a Johnson counter (need $\mathrm{n} / 2$ flip-flops) and n 2 -input AND gates.

A part of the control circuit for the processor

An n-bit Johnson counter, augmented with 2n AND-gates, will generate 2 n -bit control signals. It uses $\mathrm{n} / 2$ flip-flops, 2 n 2 -input, AND gates.

Figure 7.30 Johnson counter

Figure 7.30 A 3-bit Johnson counter

Counting sequence of a 3-bit Johnson counter

A	B	C
0	0	0
1	0	0
1	1	0
1	1	1
0	1	1
0	0	1
0	0	0

A Johnson counter, augmented with a bank of
 AND gates, becomes a control-signal generator

Synchronous counters

A synchronous counter is a special kind of synchronous sequential circuit, the analysis and design of such a circuit will be discussed in the next chapter.

