
Chapter  5

Sequential Logic



Sequential Circuits (1/2)

Sequential circuits:

a feedback path

outputs depends on present inputs and present states (pre. inputs)

(inputs, current state) ⇒ (outputs, next state)

synchronous: the transition happens at discrete instants of time

asynchronous: at any instant of time

Combinational circuits:
a. contain no memory elements
b. the outputs depends on the current inputs



Sequential Circuits (2/2)

A sequential circuit is specified by a time
sequence of inputs, outputs and internal states

Sequential circuits must be able to
remember the past history

Flip-flops: most commonly used 
memory devices

A function of

- present inputs &
- present state of memory elements   
(the past sequence of inputs)



Clock

Fig. 5.2
Synchronous clocked sequential circuit

Use clock pulses generated by a clock generator



Types of Sequential Circuits

depending on the timing of their signals

Synchronous (同步) sequential circuits
Storage elements are affected at discrete time 
instants

Use clock pulses in the inputs of storage elements

Asynchronous (非同步) sequential circuits
Storage elements are affected at any time 
instant



Synchronous Sequential Circuits (1/2)

Storage elements
• are affected only with the arrival of 

each pulse
• The storage elements used in the 

clocked sequential circuits are called 
“flip-flops”

Synchronous
• Use clock pulses in the inputs of 

storage elements



Synchronous Sequential Circuits (2/2)

Synchronous sequential circuits
a master-clock generator to generate a periodic 
train of clock pulses
the clock pulses are distributed throughout the 
system
clocked sequential circuits (most popular)
no instability problems
the memory elements: flip-flops

binary cells capable of storing one bit of information
two outputs: one for the normal value and one for 
the complement value
maintain a binary state indefinitely until directed by 
an input signal to switch states



Latches (1/3)

The most basic types of flip-flops operate with signal levels latch
All FFs are constructed from the latches introduced here

A FF can maintain a binary state indefinitely until directed 
by an input signal to switch states

Two NOR gates Set 1, Reset 0



Latches (2/3)
1

0

1

0

0
0

1
0

IF
R=0
S=0

1

0

0
0

1
0

1

0

1

0

1
0

1
0

IF
R=1
S=0

1

0

1
0

1
0

0

0

1
0

0
0

0

0

0

0

1
0

0
0

0

1

0

1

1
1

0
0

0

1

0

1

Step 1: red number

Step 2: yellow number

Step 3: green number

Step 4: black number



Latches (3/3)

more complicated types can be built upon it
an asynchronous sequential circuit
(S,R)= (0,0): no operation

 (S,R)=(0,1): reset (Q=0, the clear state)
 (S,R)=(1,0): set (Q=1, the set state)
 (S,R)=(1,1): indeterminate state (Q=Q'=0)

consider (S,R) = (1,1) ⇒ (0,0)

S R P=Q’ Q
0 0 * * // a stable state in the previous state
1 0 0 1 // change to another stable state “Set”
0 0 0 1 // remain in the previous state 
0 1 1 0 // change to another stable state “Reset”
0 0 1 0 // remain in the previous state
1   1         0    0  //  oscillate (unpredictable) if next SR=00 

the condition 
should be avoided

Q



SR Latch with NAND gates

SR latch with NAND gates
reset

set

(c) Graphic symbol

S’R’ latch



SR Latch with Control Input

S_

R_

0/1

1/S'

1/R'

The complement output of the 
previous R’S’ latch. 

(c) Graphic symbol (c) Graphic symbol

EnEn=1, no change
En=0, enable

En

En=0, no change
En=1, enable



D Latch (Transparent Latch)
S_

R_

0/1

1/D'

1/D

eliminate the undesirable conditions of the 
indeterminate state in the RS flip-flop
D: data
gated D-latch
D ⇒ Q when En=1; no change when En=0

QD Q

En

level triggered
(level-sensitive)



Flip-Flops
A trigger

The state of a latch or flip-flop is switched by a change 
of the control input

Level triggered – latches
Edge triggered – flip-flops

Level triggered

Edge triggered

Edge triggered



Problem of Latch

If level-triggered flip-flops are used
the feedback path may cause instability problem (since 
the time interval of logic-1 is too long)
multiple transitions might happen during logic-1 level  

Edge-triggered flip-flops
the state transition happens only at the edge
eliminate the multiple-transition problem



Edge-Triggered D Flip-Flop
Two designs to solve the problem of latch:
a. Master-slave D flip-flop
b. Edge-trigger D flip-Flop

Master-slave D flip-flop
two separate flip-flops
a master latch (positive-level triggered)
a slave latch (negative-level triggered)



Master-slave D flip-flop (1/2)
Two D latches and one inverter
The circuit samples D input and changes its output Q 
only at the negative-edge of CLK
isolate the output of FF from being affected while its 
input is changing

CLK=1, enabled
CLK=0, disabled

CLK=1, disabled
CLK=0, enabled



Master-slave D flip-flop (2/2)
CP = 1: (S,R) ⇒ (Y,Y'); (Q,Q') holds
CP = 0: (Y,Y') holds; (Y,Y') ⇒ (Q,Q')
(S,R) could not affect (Q,Q') directly
the state changes coincide with the negative-
edge transition of CP



Edge-Triggered Flip-Flops (1/2)
the state changes during a clock-pulse transition

A D-type positive-edge-triggered 
flip-flop

Three SR latches



(S,R) = (0,1): Q = 1       (S,R) = (1,0): Q = 0
(S,R) = (1,1): no operation   (S,R) = (0,0): should be avoided

Edge-Triggered Flip-Flops (2/2)

If Clk=1 and D=0 R=0 Reset.
Output Q is 0. Then, if D changes to 1,
R remains at 0 and Q is 0.

Then, Clk=0 S=1, R=1 no operation (Q=0)
Then, if Clk=1 and D=1 S=0 Set.

Output Q is 1. (see the blue dot-line flow)  
Then, if D changes to 0, S remains at 0 and Q=1;

If Clk=0 S=1 and R=1 no operation.
Output Q remains in the present state.

1
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0

1

0

1(old)

1
1

1

1

0(new)

#1

#2

#3

#4



Positive-Edge-Triggered Flip-Flops

Summary
Clk=0: (S,R) = (1,1), no state change
Clk=↑: state change once
Clk=1: state holds
eliminate the feedback problems in sequential 
circuits

All flip-flops must make their transition at 
the same time



Flip-Flops
A trigger

The state of a latch or flip-flop is switched by a change 
of the control input

Level triggered – latches
Edge triggered – flip-flops

Level triggered

Edge triggered

Edge triggered



Setup Time and Hold Time

The setup time
D input must be maintained at a constant value prior to 
the application of the positive Clk pulse
= the propagation delay through gates 4 and 1
data to the internal latches

The hold time
D input must not changes after the application of the 
positive Clk pulse
= the propagation delay of gate 3 (try to understand)
clock to the internal latch



Timing Diagram

setup 
time

hold 
time

2.8 ns 1.4 ns



Positive-Edge vs. Negative-Edge
The edge-triggered D flip-flops

The most economical and efficient
The most popular flip-flop
Positive-edge and negative-edge



Latch vs. Flip-Flop

Level triggered

Edge triggered

positive-edge triggered

negative-edge triggeredLatch

QD Q

CLK

CLKCLK



Clock Period
clock period

clock 
width rising 

edge
falling 
edge

Clock period  (measured in micro or nanoseconds) is the time    
between successive transitions in the same direction

Clock frequency (measured in MHz or GHz) is the reciprocal of clock 
period

Clock width is the time interval during which clock is equal to 1

Duty cycle is the ratio of the clock width and clock period

Clock signal is active high if the changes occur at the rising edge or 
during the clock width. Otherwise, it is active low



Latch and Flip-Flop

rising 
edge

falling 
edge

LatchesLatches are level-sensitive since they respond to input changes during clock 
width.               Latches are difficult to work with for this reason.

Flip-Flops respond to input changes only during the change in clock signal
(the rising edge or the falling edge).

They are easy to work with though more expensive than latches.

Two basic styles of flip-flops are available:
(1) master-slave             (2) edge-triggered



JK Flip-Flop
Inputs

J, K disabled
K enabled
J enabled 
J, K enabled

J    K D Q(t+1) Function
0    0 Q(t) Q(t) no change
0    1 0 0 reset FF to 0
1    0 1 1 set FF to 1
1    1 Q’(t) Q’(t) complement output 

D flip-flop + external logic

(*clear=1)

All operations must be 
finished in the interval

positive-edge



T(Toggle)  Flip-Flop

T Q(t+1)
0   Q(t)   no change
1 Q’(t) complement

Characteristic Table         

(a) based on JK FF                  (b) based on D FF 

“Complementing FF”
T=1: a clock edge complements the 
output
useful for designing binary counters

T D Q(t+1)
0   Q Q(t)   no change
1 Q’ Q’(t) complement

D = T⊕Q = TQ’+T’QJ    K Q(t+1)
0    0 Q(t) no change
0    1 0 reset
1    0 1 set
1    1 Q’(t) complement

- tie J,K together



Characteristic Equations/Tables of FFs
Characteristic Equations

define next state Q(t+1) as a 
function of inputs and present 
state algebraically

• Characteristic Tables
define next state Q(t+1) as a 
function of inputs and present state 
Q(t) in tabular form

Q(t+1) = D

Q(t+1) = JQ ’ + K ’Q

Q(t+1) = T ⊕ Q = TQ ’ + T ’Q



Direct inputs
asynchronous set and/or asynchronous 
reset

S_

reset_ Fig. 5.14
D flip-flop with asynchronous reset



Direct Input

Preset  (PRE)
an asynchronous input that sets the FF

“direct set”

Clear (CLR)
an asynchronous input that clears the FF

“direct reset”

Purpose
Can be used to bring all FFs in a system to a known 
state prior to the clocked operation

Asynchronous set: Set as soon as preset =1

Synchronous set: Set when preset=1 and CLK



D Flip-Flop with Asynchronous Reset

active low

reset

FF triggers on the positive edge of CLK

0

need 1

0 1

0



Analysis of Clocked Sequential Ckts
A sequential circuit

(inputs, current state) ⇒ (output, next state)
a state transition table or  state transition diagram

State (transition) equation
A(t+1) = A(t)x(t) + B(t)x(t)
B(t+1) = A'(t)x(t)

A compact form
A(t+1) = Ax + Bx
B(t+1) = A'x

The output equation
y(t) = (A(t)+B(t))x'(t)
y = (A+B)x'

Ax +BxAx

Bx

A 'x

A+B



State table 1

A(t + 1) =Ax + Bx
B(t + 1) = A′x
y = Ax′ + Bx′



State table 2

A(t + 1) =Ax + Bx
B(t + 1) = A′x
y = Ax′ + Bx′



State diagram
State transition diagram

a circle: a state
a directed lines connecting the circles: the 
transition between the states

Each directed line is labeled “inputs/outputs”

state: A B
input: x



Flip-Flop Input Equations

The part of circuit that generates the inputs to 
flip-flops

Also called excitation functions

DA = Ax +Bx

DB = A'x

The output equations
to fully describe the 

sequential circuit 

y = (A+B)x'

Ax +BxAx

Bx

A 'x

A+B



Analysis with D flip-flops
The input equation

DA=A⊕x⊕y
The state equation

A(t+1)=A⊕x⊕y



Analysis with JK flip-flops
Determine the flip-flop input function in terms of the 
present state and input variables
Used the corresponding flip-flop characteristic table to 
determine the next state

Fig. 5-18
Sequential circuit with 
JK flip-flop

JA = B, KA= Bx'
JB = x ', KB = A' x + Ax



State Table for Fig. 5-18

JA = B, KA= Bx'
JB = x ', KB = A' x + Ax '



State Transition Diagram for Fig. 5-18

( 1)
( 1)

A t JA K A
B t JB K B

′ ′+ = +
′ ′+ = +

The characteristic equation of JK FF is

State equation for A and B:

( 1) ( )A t BA Bx A A B AB Ax′ ′ ′ ′ ′+ = + = + +

( 1) ( )B t x B A x B B x ABx A Bx′ ′ ′ ′ ′+ = + ⊕ = + +

A            A

B            B

Method 1

x     AB 00      01      11     10

0      1      0     1

0      1      1     1

0

1
A(t +1)

A’B

AB’

Ax

Method 2

Using K-map, we also can derive A(t+1). 
A(t +1)=A ’B+AB ’+Ax



Analysis with T Flip-Flops
The characteristic equation

Q(t+1)= T⊕Q = TQ'+T'Q



Finite State Machine (FSM)
The inputs, outputs and states of a sequential 
circuit can be described as the FSM. There are 
two different FSMs: 

(a) Mealy machine: the outputs 
are functions of both the 
present state and inputs

(b) Moore machine: the outputs 
are functions of the present 
state only



Mealy Machine vs. Moore Machine



State Reduction and Assignment

State Reduction
reductions on the number of flip-flops 
and the number of gates

a reduction in the number of states may
result in a reduction in the number of 
flip-flops

How to reduce the necessary states?

State reduction:

does not guarantee a saving in #FFs or #gates



State Reduction
state a a b c d e  f  f g f  g a
input 0 1 0 1 0 1 1 0 1 0 0
output 0 0 0 0 0 1 1 0 1 0 0
only the input-output sequences are 
important
two circuits are equivalent

have identical outputs for all input sequences
the number of states is not important

Fig. 5.25   State diagram



Equivalent States

Two states are said to be equivalent
for each member of the set of inputs, they give 
exactly the same output and send the circuit to the 
same state or to an equivalent state
one of them can be removed



Reducing State Table



state a a b c d e d d e d e a
input 0 1 0 1 0 1 1 0 1 0 0
output 0 0 0 0 0 1 1 0 1 0 0

Reduced Finite State Machine



State Reduction

the checking of each pair of states for possible 
equivalence can be done systematically (9-5)
the unused states are treated as don't-care 
condition ⇒ fewer combinational gates

This example:

7 states  5 states
reduce to



State Assignment
to minimize the cost of the combinational 
circuits (not easy certainly ??)
three possible binary state assignments



Binary Assignment
any binary number assignment is satisfactory as long 
as each state is assigned a unique number

both OK   000,001,010,011,100 (OK v)
011,100,101,110,111 (OK v)



The Three Assignments
Binary code

n-bit code for m states, 2n >= m  (n FFs)
Gray code  

n-bit code for m states, 2n >= m  (n FFs)
More suitable for K-map simplification 
(more possible lower power) 

One-hot 
m-bit code for m states              (m FFs)
often used in control design



Design Procedure
specification a state diagram (most challenging) 

state reduction if necessary

assign binary values to the states

obtain the binary-coded state table

choose the type of flip-flops

derive the simplified flip-flop input equations and 
output equations 

draw the logic diagram
Synthesis

The part of design that follows a well-defined procedure is called synthesis
Once a spec has been set down and the state diagram obtained, it is 
possible to use known synthesis procedure to complete the design



Synthesis using D flip-flops (1/2)
An example state diagram and state table
Design a circuit that detects one to three or more 
consecutive 1’s in a input string  

m0
m1
m2
m3
m4
m5
m6
m7



Synthesis using D flip-flops (2/2)
The flip-flop input equations

(1)  A(t+1) = DA(A,B,x) = Σ(3,5,7)
(2)  B(t+1) = DB(A,B,x) = Σ(1,5,7)

The output equation
(3) y(A,B,x) = Σ(6,7)

Logic minimization using three K maps



Logic Diagram of Sequence Detector with D FF

• FF Input eqs.
DA(A,B,x) = Ax+Bx
DB(A,B,x) = Ax+B’x

• Output eq.
y(A,B,x) = AB

Ax+Bx

Ax+B’x

AB

back



Synthesis using JK flip-flops (1/4)
A state diagram ⇒ flip-flop input functions

straightforward for D flip-flops
we need excitation tables for JK and T flip-flops

J    K D Q(t+1) Function
0    0 Q(t) Q(t) no change
0    1 0 0 reset FF to 0
1    0 1 1 set FF to 1
1    1 Q’(t) Q’(t) complement output 

T D Q(t+1)
0   Q Q(t)   no change
1 Q’ Q’(t) complement



Synthesis using JK flip-flops (2/4)
The same example
The state table and JK flip-flop inputs



Synthesis using JK flip-flops (3/4)



Synthesis using JK flip-flops (4/4)

Compare with D flip-flop



Synthesis using T flip-flops
A n-bit binary counter

the state diagram

no inputs (except for the clock input)



The state table and the flip-flop inputs

No inputs (except for the clock input)



Logic Simplification using the K map



The Logic Diagram

0                                         0                     0
0                                         0                     1
0                                         1                     0
0                                         1                     1
1                                         0                     0   

How to trace?

Note: 



Moore Machine (1/4)

Next State Output

I=0 I=1 I=0 I=1

0

1

1

0

S0 S0 S2 0

S1 S0 S2 1

1

0

S2 S2 S3

S3 S3 S1

Present 
State

output :  state :    OSOS →

Next-state and output tables (I=input)
Design description or

timing diagram

Develop
state diagram

Develop next-state 
and output tables

Minimize states

Encode input, states, 
and outputs

Decide the 
memory elements

Derive 
excitation equation

Optimize
logic circuit

Derive logic schematic 
and timing diagram  

Simulation

Functional verification 
and timing analysis

Optimization flow

S0

S1 S2

S3

0/0

1/0
0/1

0/0

0/1

1/0 1/1

1/1



Moore Machine (2/4)
Assume that we use JK flip-flops for storage
4 states      need 2 flip-flops (named M and N)Next State Output

I=0 I=1 I=0 I=1

0

1

1

0

S0 S0 S2 0

S1 S0 S2 1

1

0

S2 S2 S3

S3 S3 S1

Present 
State

00X1X10111

00X0X11110

1X10X11011

1X00X01010

11XX101101

11XX000100

0X0X101001

0X0X000000

NKNJMKMJN(t+1)M(t+1)N(t)M(t)
Output

N(JK)M(JK)Next StatePresent State

I

J
Clk

K

Q J
Clk

K

Q
M N

1

0

1

0

Q(t+1)

0X1

1X1

X10

X00

KJQ(t)

original state table

Q’(t)11

101

010

Q(t)00

Q(t+1)K J

characteristic table

excitation table



Moore Machine (3/4)
 MN 

I 00 01 11 10

0 0 0 X X

1 1 1 X X

MN  
I 00 01 11 1

0 0 X 0

1 0 X 1

0

X

X
MJ=IMJ=I

MN  
I 00 01 11 10

0 X X 0 0

1 X X 1 0

NJ=MINJ=MI

0

X

X

MK=NIMK=NI

MN  
I 00 01 11 1

0 X 1 0

1 X 1 0
MN  

I 00 01 11 10

0 0 1 0 1

1 0 1 0 1

NK=MNK=M’’

Output=MOutput=M’’N+MNN+MN’

J
Clk

K

QM

J
Clk K QN

II

OutputOutput

State register

Next
state
logic Output

logic



Moore Machine (4/4)
DA

Clk
QDHow about D Flip-Flop?

Present State Next State

A B A B

0

1

0

1

1

1

1

0

Output

0 0 0 0 0

0

0

0

0

1

1

1

0

1

1

1

1

0

0

1 0 0

0 0 1

1 0 1

0 1 0

1 1 0

0 1 1

1 1 1

I

DB
Clk
D QWhich implementation is better?

10111

11000

10110100
AB  

I

So, DA=

11001

01000

10110100
AB  

I

So, DB=

Output is the same as JK implementation.



Stop_Button

Pause_Button

Forward_Button

Rewind_Button

Play_Button

Record_Button

Stop_Tape

Pause_Tape

Forward_Tape

Rewind_Tape

Play_Tape

Record_Tape

Video
Tape

Player

Video Tape Player (1/2)

Reset
clk



Video Tape Player (2/2)

Stop 
Reset=‘1’ Stop_Button=‘1’

Stop_Tape =‘1’

Will_Forward

Forward_Button=‘1’

Forward

Stop_Tape=‘1’

Forward_Tape=‘1’

Will_Rewind

Rewind_Button=‘1’

Rewind Rewind_Tape=‘1’

Will_Record

Record_Button=‘1’ & Play_Button=‘1’

Record Record_Tape=‘1’

Will_Play

Play_Button=‘1’

Play Play_Tape =‘1’

Pause Pause_Tape =‘1’

Pause_Button=‘1’Pause_Button=‘1’

Stop_Tape=‘1’

Stop_Tape=‘1’Stop_Tape=‘1’


