Chapter 5

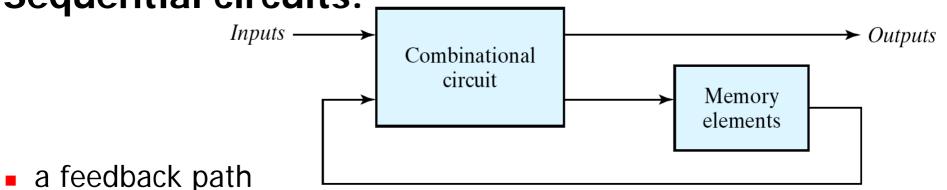
Sequential Logic

Sequential Circuits (1/2)

Combinational circuits:

- a. contain no memory elements
- b. the outputs depends on the current inputs

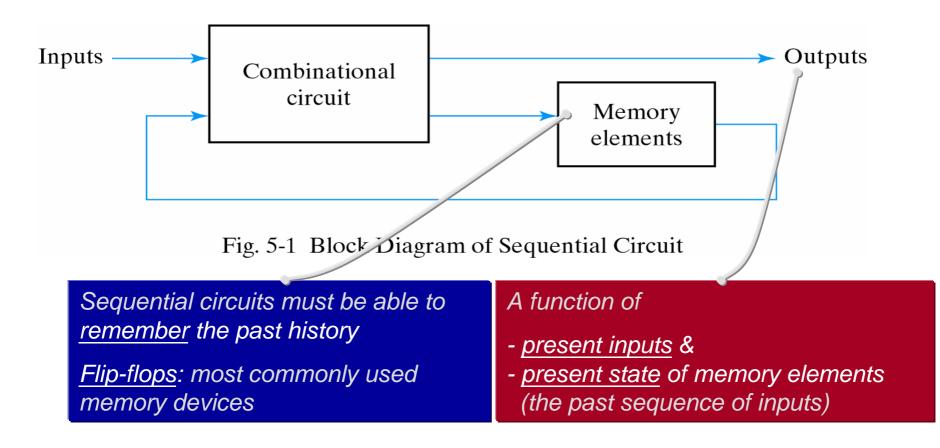
Sequential circuits:

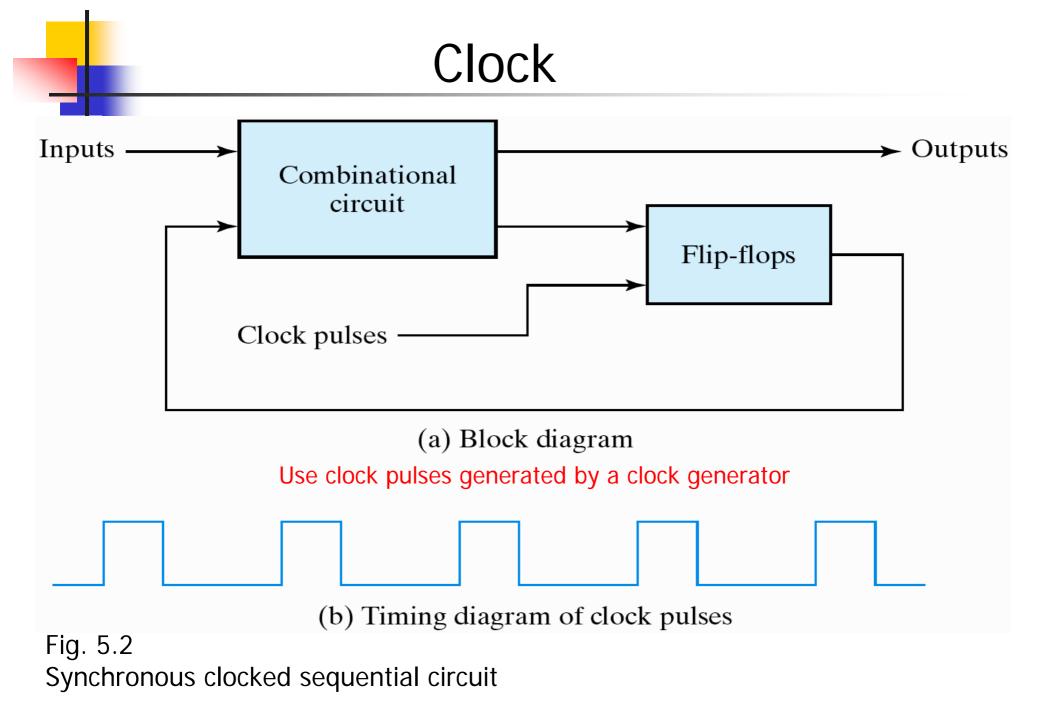


- outputs depends on present inputs and present states (pre. inputs)
- (inputs, current state) \Rightarrow (outputs, next state)
- synchronous: the transition happens at discrete instants of time
- asynchronous: at any instant of time

Sequential Circuits (2/2)

A <u>sequential</u> circuit is specified by a time <u>sequence</u> of inputs, outputs and internal states



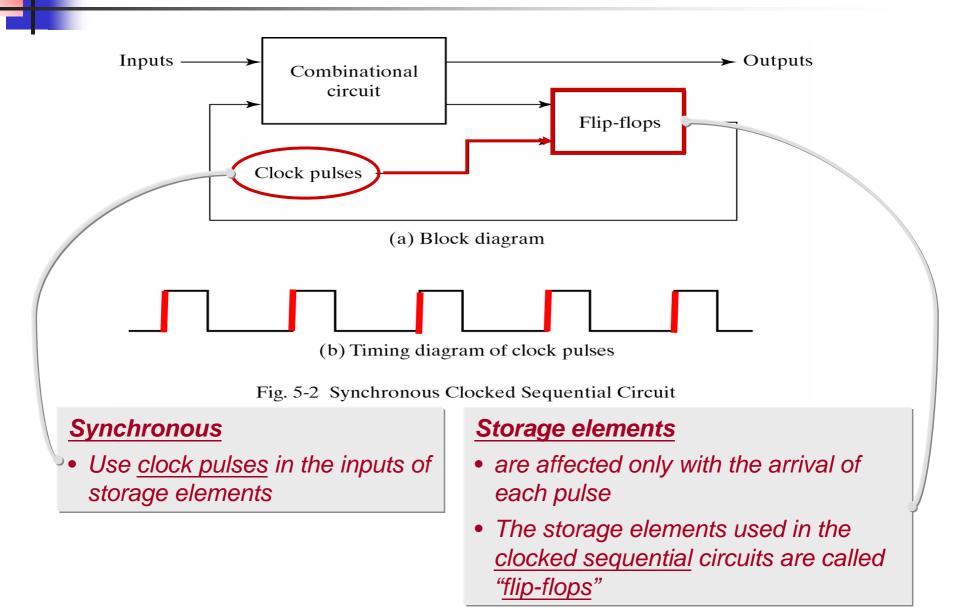


Types of Sequential Circuits

depending on the <u>timing</u> of their signals

- Synchronous (同步) sequential circuits
 - Storage elements are affected at <u>discrete</u> time instants
 - Use <u>clock pulses</u> in the inputs of storage elements
- Asynchronous (非同步) sequential circuits
 - Storage elements are affected at <u>any</u> time instant

Synchronous Sequential Circuits (1/2)

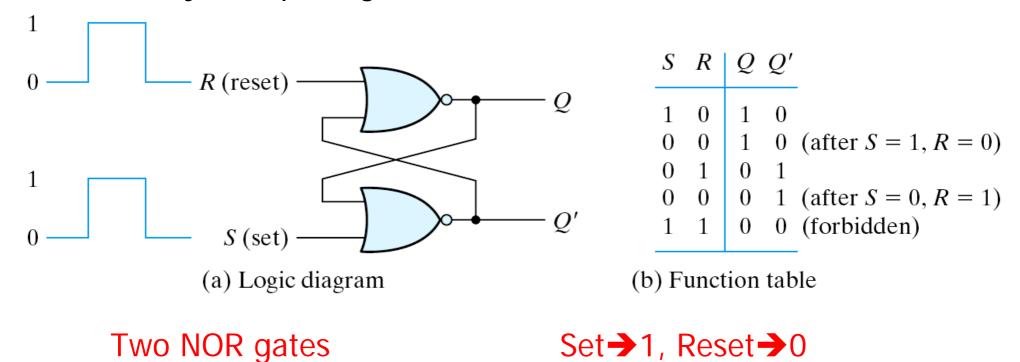


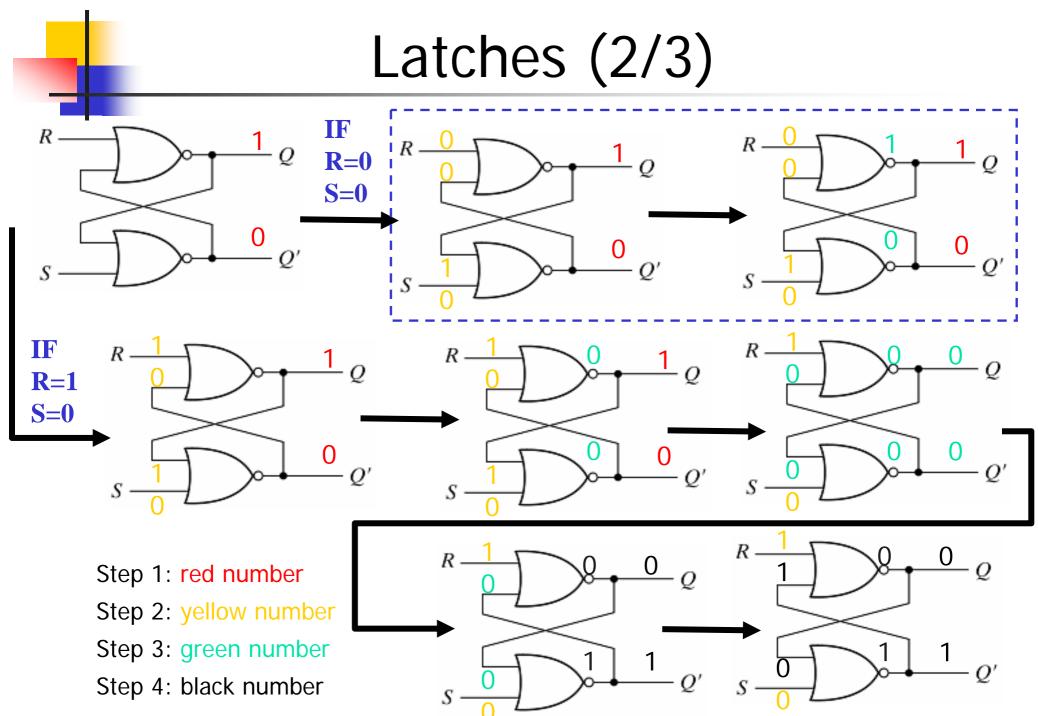
Synchronous Sequential Circuits (2/2)

- Synchronous sequential circuits
 - a master-clock generator to generate a periodic train of clock pulses
 - the clock pulses are distributed throughout the system
 - clocked sequential circuits (most popular)
 - no instability problems
 - the memory elements: flip-flops
 - binary cells capable of storing one bit of information
 - two outputs: one for the normal value and one for the complement value
 - maintain a binary state indefinitely until directed by an input signal to switch states

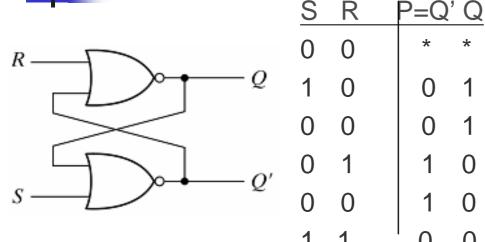
Latches (1/3)

The most basic types of flip-flops operate with signal levels →latch
 All FFs are constructed from the latches introduced here
 A FF can maintain a binary state indefinitely until directed
 by an input signal to switch states



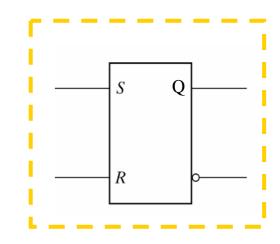


Latches (3/3)

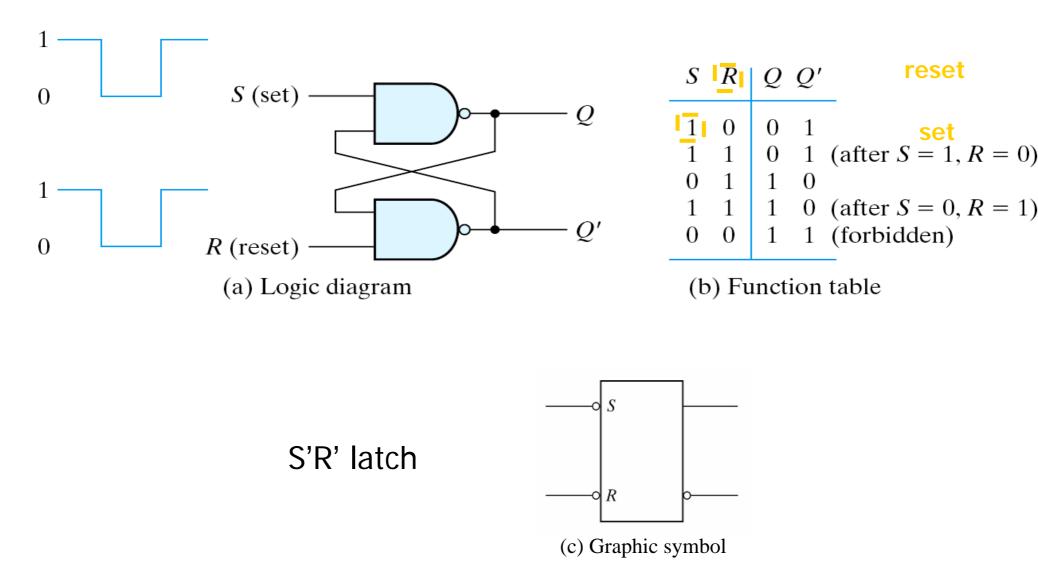


- // a stable state in the previous state
- // change to another stable state "Set"
- 1 // remain in the previous state
- 0 // change to another stable state "Reset"
- 1 0 // remain in the previous state
- 0 0 // oscillate (unpredictable) if next SR=00
- more complicated types can be built upon it
- an asynchronous sequential circuit

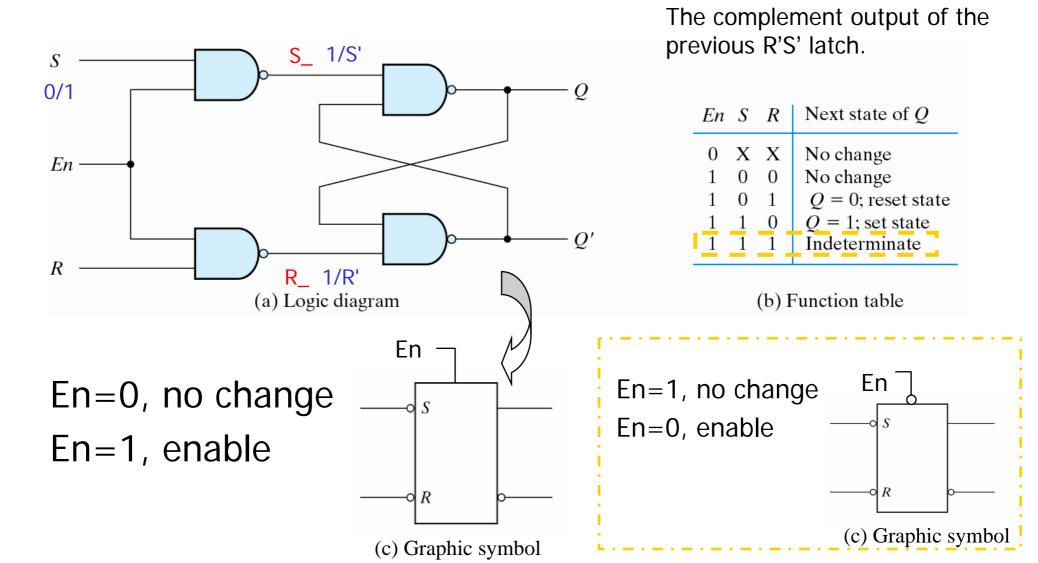
- the condition should be avoided
- (S,R) = (0,0): no operation
 (S,R) = (0,1): reset (Q=0, the clear state)
 (S,R) = (1,0): set (Q=1, the set state)
 (S,R) = (1,1): indeterminate state (Q=Q'=0)
 consider (S,R) = (1,1) ⇒ (0,0)



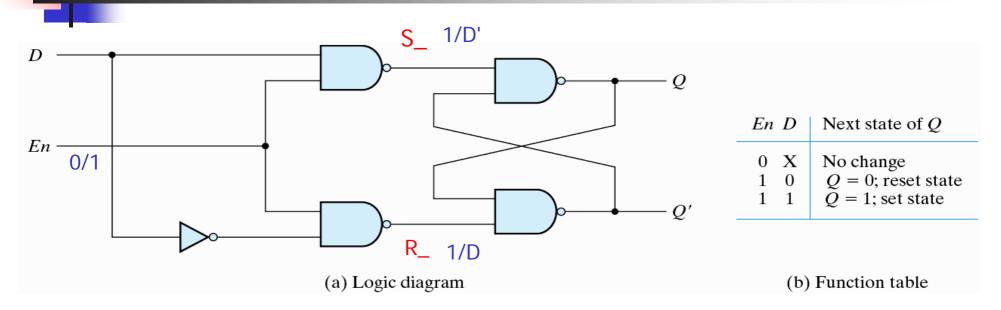
SR Latch with NAND gates



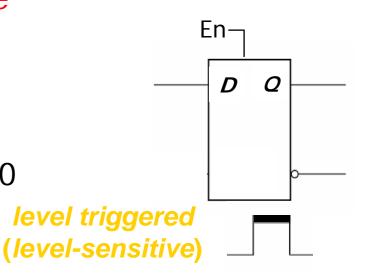
SR Latch with Control Input



D Latch (Transparent Latch)

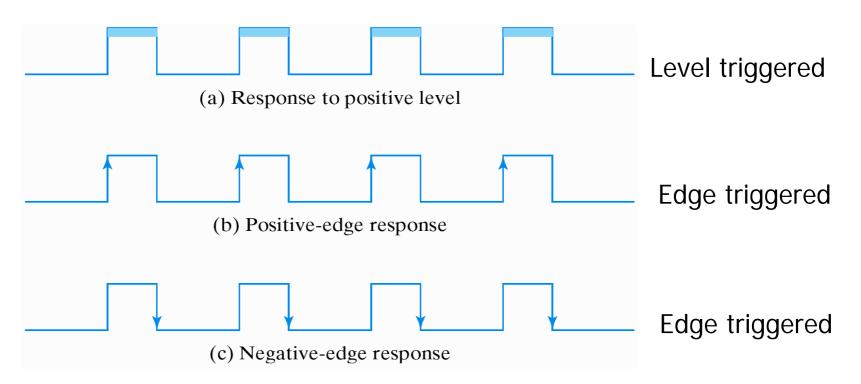


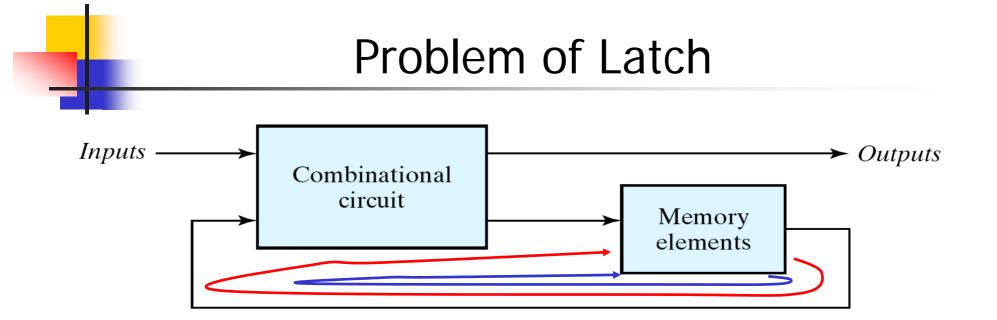
- eliminate the undesirable conditions of the indeterminate state in the RS flip-flop
- D: data
- gated D-latch
- $D \Rightarrow Q$ when En=1; no change when En=0



Flip-Flops

- A trigger
 - The state of a latch or flip-flop is switched by a change of the control input
- Level triggered latches
- Edge triggered flip-flops





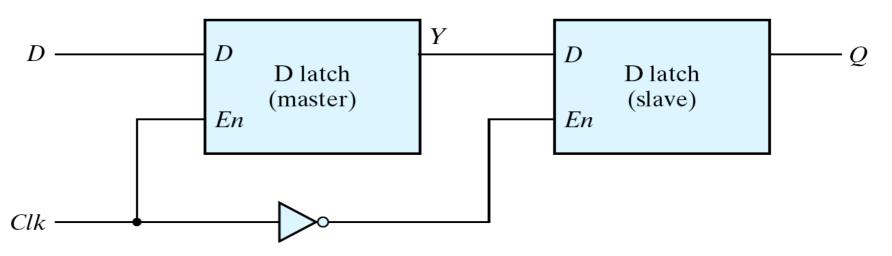
If level-triggered flip-flops are used

- the feedback path may cause instability problem (since the time interval of logic-1 is too long)
- multiple transitions might happen during logic-1 level
- Edge-triggered flip-flops
 - the state transition happens only at the edge
 - eliminate the multiple-transition problem

Edge-Triggered D Flip-Flop

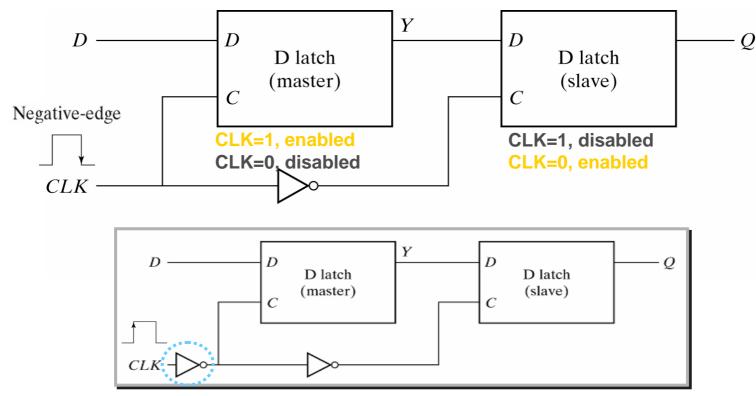
Two designs to solve the problem of latch:

- a. Master-slave D flip-flop
- b. Edge-trigger D flip-Flop
- Master-slave D flip-flop
 - two separate flip-flops
 - a master latch (positive-level triggered)
 - a slave latch (negative-level triggered)



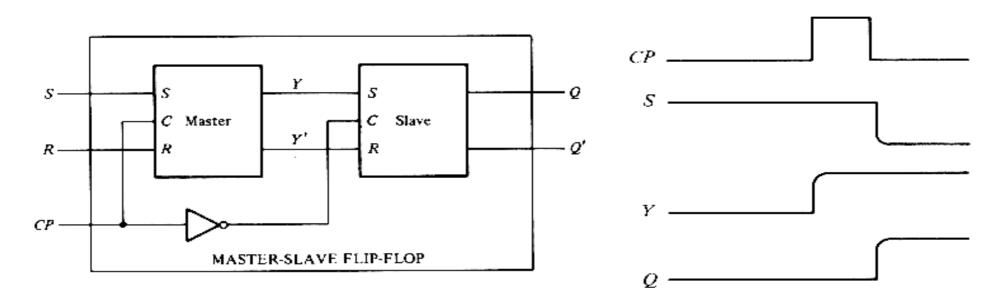
Master-slave D flip-flop (1/2)

- Two D latches and one inverter
- The circuit samples D input and changes its output Q only at the negative-edge of CLK
- <u>isolate</u> the output of FF from being affected while its input is changing



Master-slave D flip-flop (2/2)

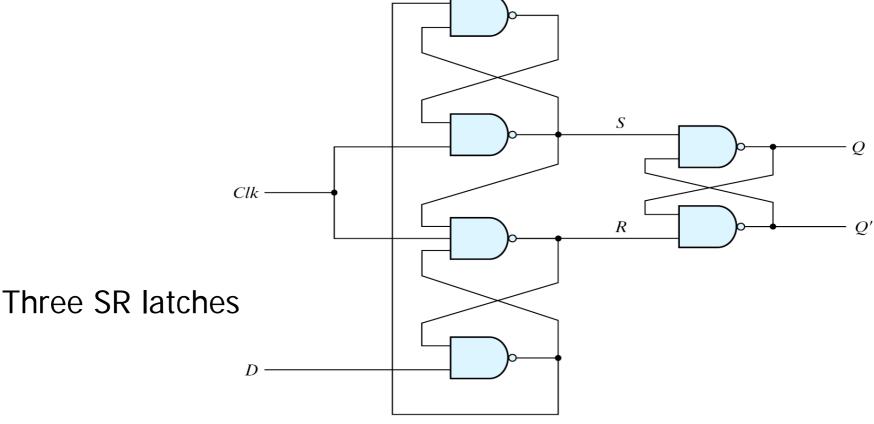
- CP = 1: $(S,R) \Rightarrow (Y,Y')$; (Q,Q') holds
- CP = 0: (Y,Y') holds; (Y,Y') \Rightarrow (Q,Q')
- (S,R) could not affect (Q,Q') directly
- the state changes coincide with the negativeedge transition of CP



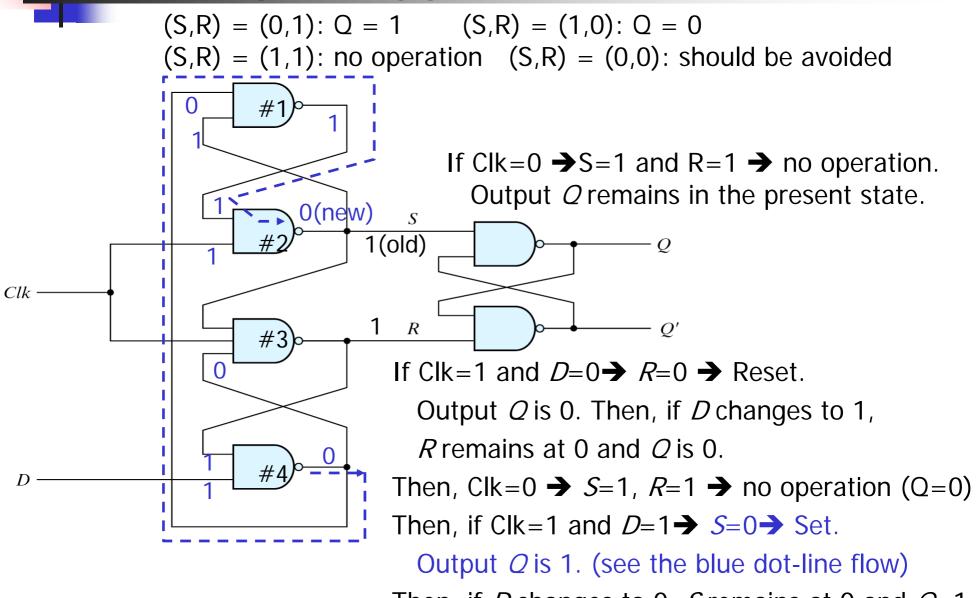
Edge-Triggered Flip-Flops (1/2)

the state changes during a clock-pulse transition

A D-type positive-edge-triggered flip-flop



Edge-Triggered Flip-Flops (2/2)



Then, if *D* changes to 0, *S* remains at 0 and Q=1;

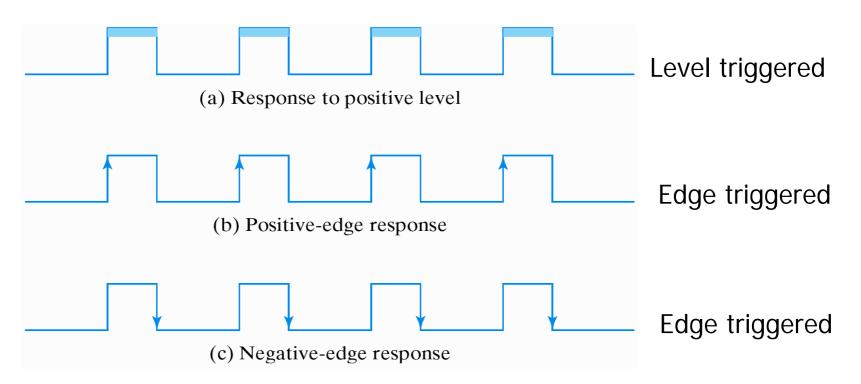
Positive-Edge-Triggered Flip-Flops

Summary

- Clk=0: (S,R) = (1,1), no state change
- Clk=1: state change once
- Clk=1: state holds
- eliminate the feedback problems in sequential circuits
- All flip-flops must make their transition at the same time

Flip-Flops

- A trigger
 - The state of a latch or flip-flop is switched by a change of the control input
- Level triggered latches
- Edge triggered flip-flops

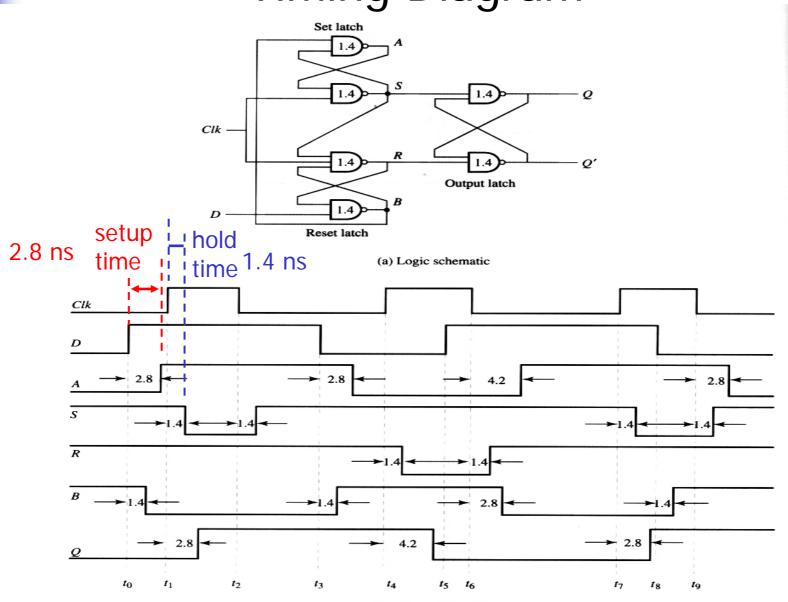


Setup Time and Hold Time

• The setup time

- D input must be maintained at a constant value prior to the application of the positive Clk pulse
- the propagation delay through gates 4 and 1
- data to the internal latches
- The hold time
 - D input must not changes after the application of the positive Clk pulse
 - the propagation delay of gate 3 (try to understand)
 - clock to the internal latch

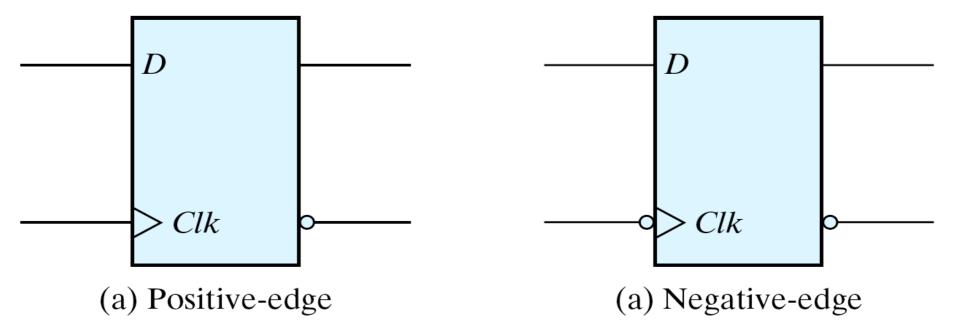
Timing Diagram



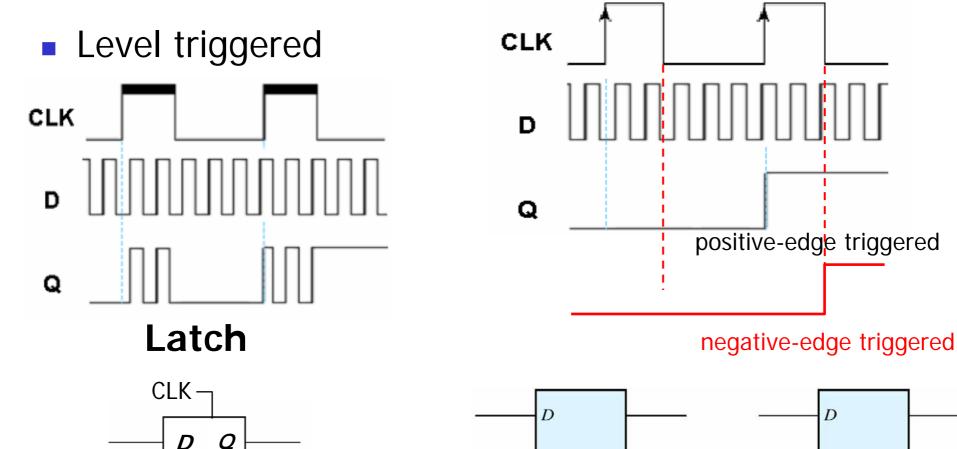
(b) Timing diagram

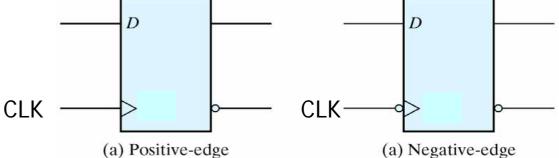
Positive-Edge vs. Negative-Edge

- The edge-triggered D flip-flops
 - The most economical and efficient
 - The most popular flip-flop
 - Positive-edge and negative-edge

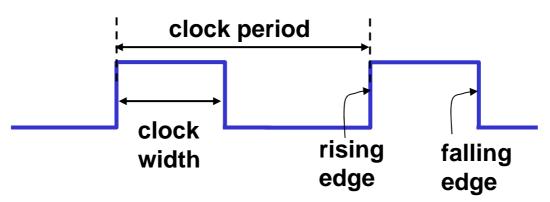


Latch vs. Flip-Flop

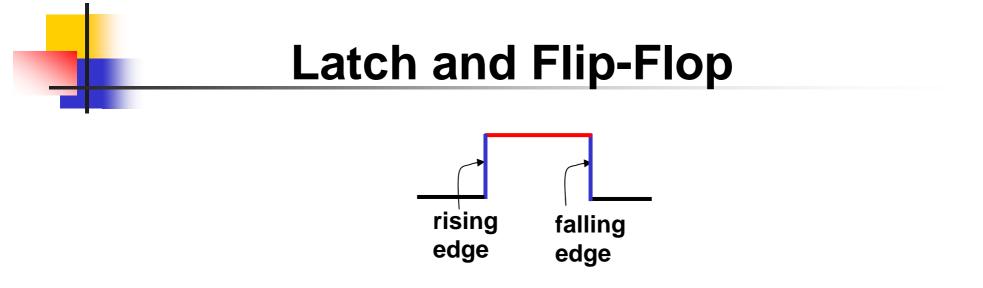




Clock Period



- Clock period (measured in micro or nanoseconds) is the time between successive transitions in the same direction
- Clock frequency (measured in MHz or GHz) is the reciprocal of clock period
- Clock width is the time interval during which clock is equal to 1
- Duty cycle is the ratio of the clock width and clock period
- Clock signal is active high if the changes occur at the rising edge or during the clock width. Otherwise, it is active low



Latches are level-sensitive since they respond to input changes during clock width. Latches are difficult to work with for this reason.

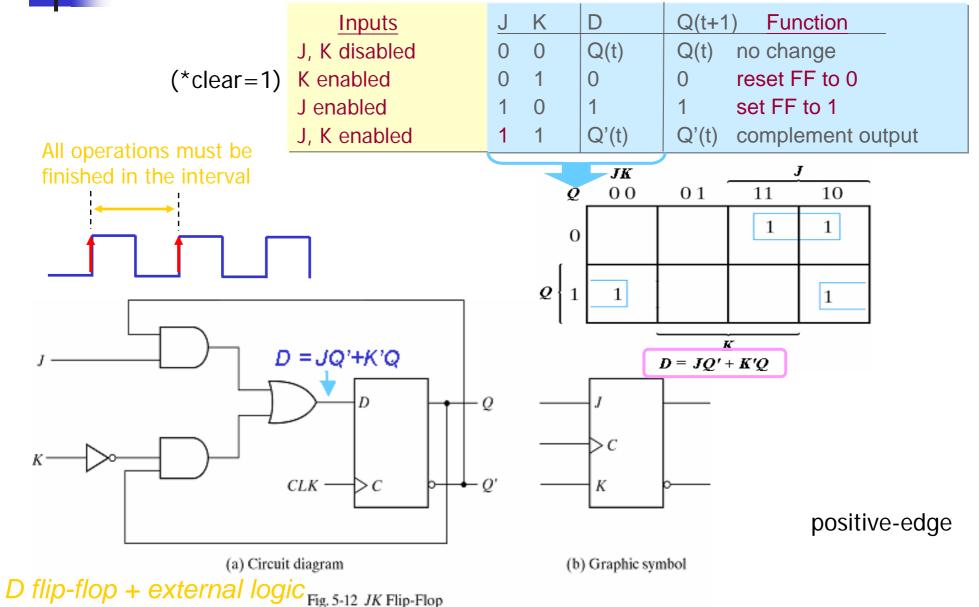
Flip-Flops respond to input changes only during the change in clock signal (the rising edge or the falling edge).

They are easy to work with though more expensive than latches.

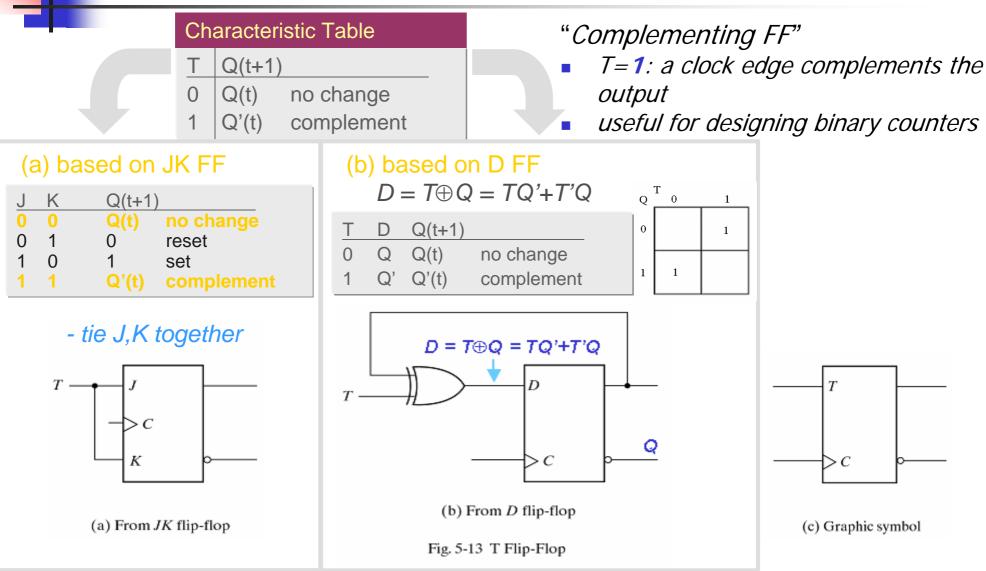
Two basic styles of flip-flops are available:

(1) master-slave (2) edge-triggered

JK Flip-Flop



T(Toggle) Flip-Flop



Characteristic Equations/Tables of FFs

Characteristic Equations

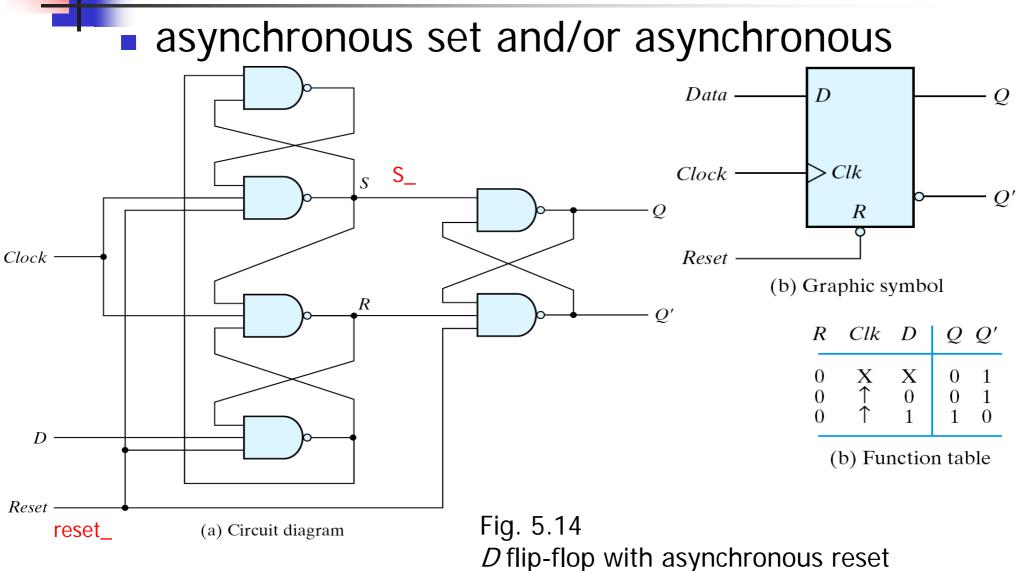
 define next state Q(t+1) as a function of inputs and present state <u>algebraically</u>

Characteristic Tables

 define next state Q(t+1) as a function of inputs and present state Q(t) in <u>tabular</u> form

				le 5.1 Flop		eristi	c Tables		
Q(<i>t</i> +1) = JQ ' + K 'Q			јк	Flip-	Flop				
			J	К	Q(t + 1)				
Q((+1) = 0	чт	· / Q	0	0 1	Q(t)		No change Reset		
			1	0	1	Set			
			1	1	Q'(t)		Complement		
	D FI	ip-Flop					7 Flip-Flop	<i>Q</i> (<i>t</i> +1) = <i>T</i> ⊕	$\Theta \mathbf{Q} = T\mathbf{Q}' + T'$
Q(t+1) = D	D	Q (<i>t</i> +	1)			т	Q(t + 1)		
	0	0		Reset	1	0	Q(t)	No change	
	1	1		Set		1	Q'(t)	Complement	

Direct inputs



Direct Input

- Preset (PRE)
 - an asynchronous input that sets the FF
 - "direct set"
- Clear (CLR)
 - an asynchronous input that clears the FF
 - "direct reset"
- Purpose
 - Can be used to bring all FFs in a system to a known state prior to the clocked operation
- Asynchronous set: Set as soon as preset =1
- Synchronous set: Set when preset=1 and CLK

D Flip-Flop with Asynchronous Reset

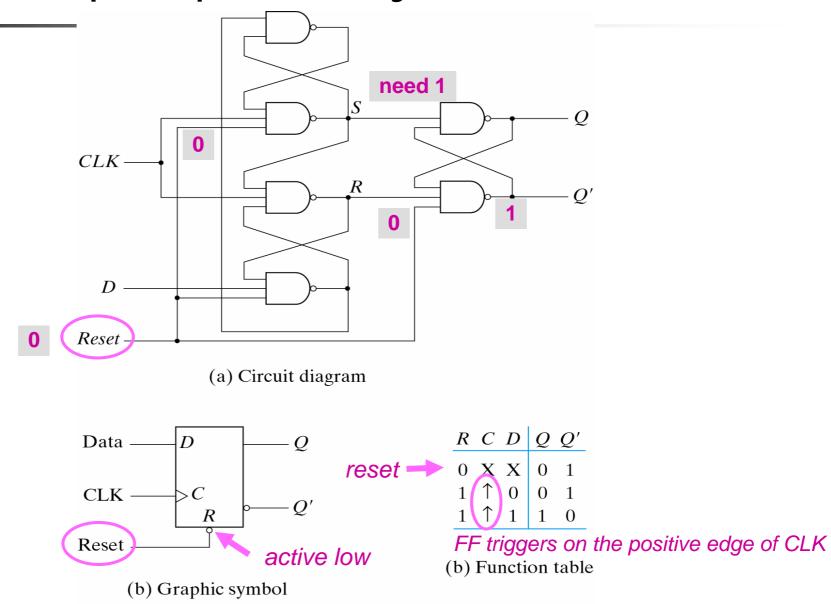
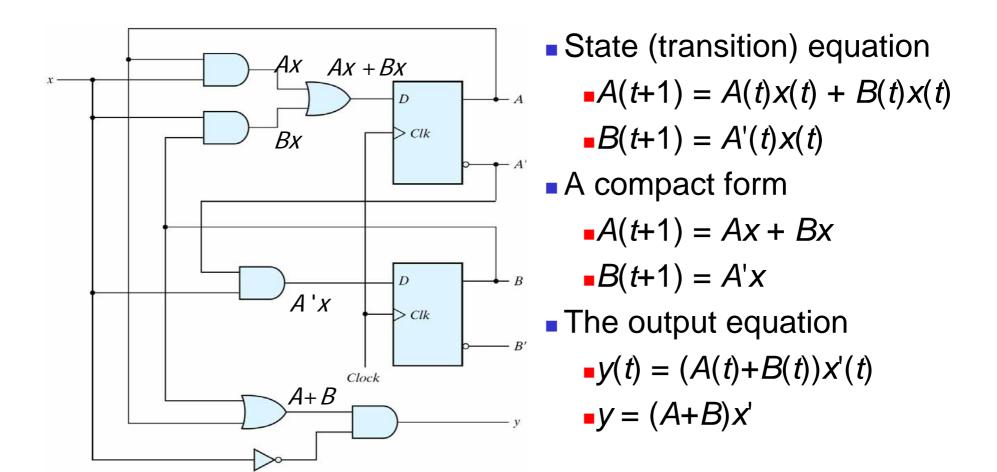


Fig. 5-14 D Flip-Flop with Asynchronous Reset

Analysis of Clocked Sequential Ckts

- A sequential circuit
 - (inputs, current state) \Rightarrow (output, next state)
 - a state transition table or state transition diagram



State table 1

Table 5.2

State Table for the Circuit of Fig. 5.15

Present State		Input		ext ate	Output
A	В	x	A	В	y
0	0	0	0	0	0
(0)	0	$(\overline{1})$	0	(1)	0
0	1	0	0	0	1
0	$\langle 1 \rangle$	1	(1)	1	0
$\langle \overline{1} \rangle$	0	$\langle \hat{0} \rangle$	0	0	(1)
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

A(t+1) = Ax + BxB(t+1) = A'xy = Ax' + Bx'

State table 2

$$A(t + 1) = Ax + Bx$$
$$B(t + 1) = A'x$$
$$y = Ax' + Bx'$$

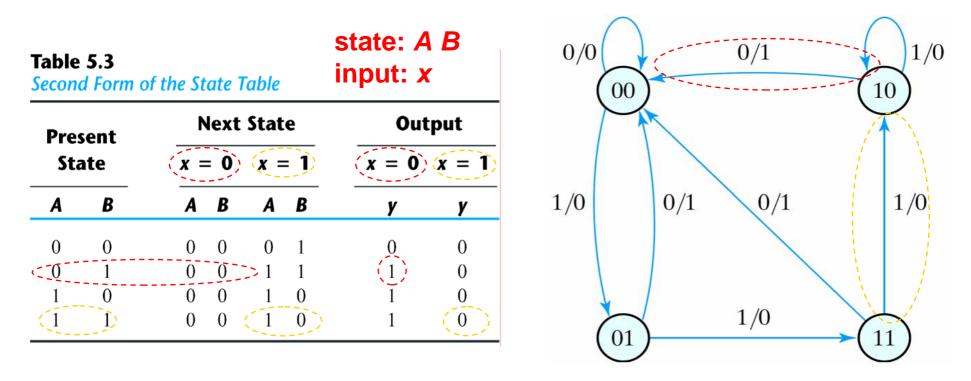
Table 5.3Second Form of the State Table

Present		N	lext	Stat	e	Out	put
	ate	X =	= 0	x =	1 >	$\mathbf{x} = 0$	x = 1
A	B	A	B	A	B	у	y
0	0	0	0	0	1	0	0
0	1	0	0	1	1	1	0
1	0	0	0	1	0	1	0
1	1	0	0	1	0	1	0

State diagram

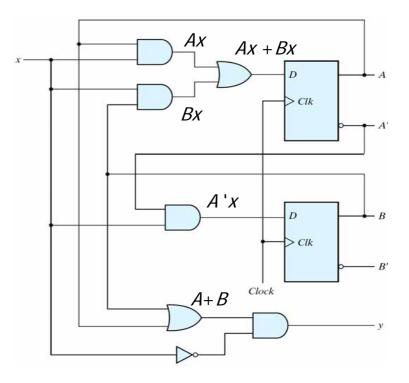
State transition diagram

- a circle: a state
- a directed lines connecting the circles: the transition between the states
 - Each directed line is labeled "inputs/outputs"

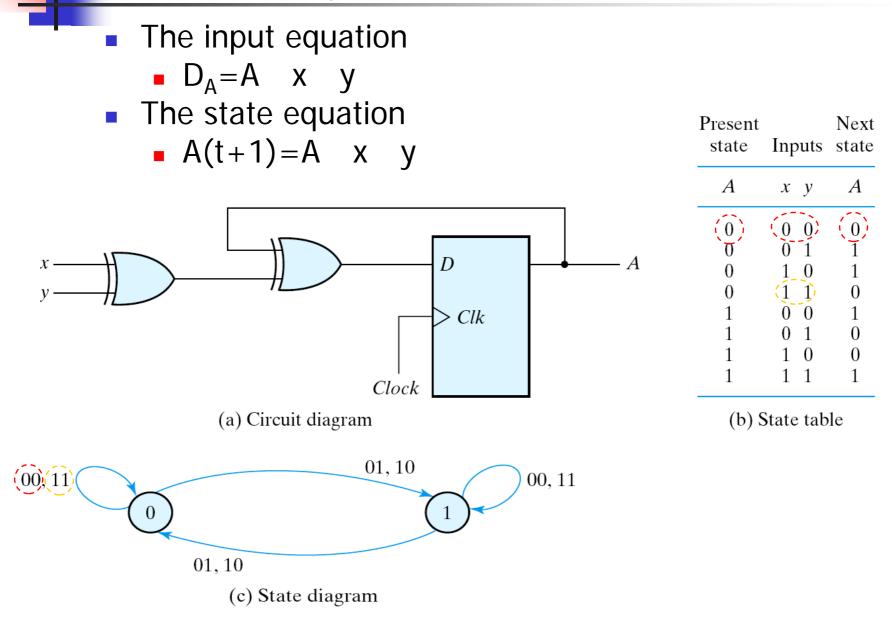


Flip-Flop Input Equations

- The part of circuit that generates the inputs to flip-flops
 - Also called excitation functions
 - DA = Ax + Bx
 - DB = A'x
- The output equations
 - to fully describe the sequential circuit
 - y = (A+B)x'

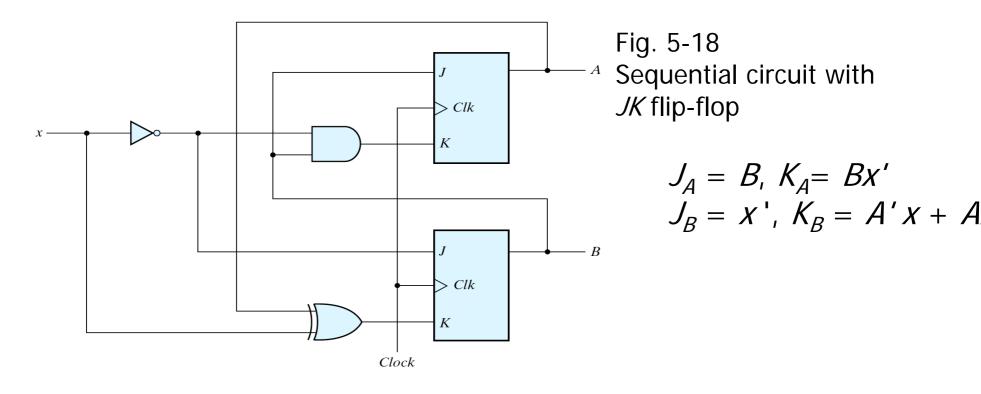


Analysis with D flip-flops



Analysis with JK flip-flops

- Determine the flip-flop input function in terms of the present state and input variables
- Used the corresponding flip-flop characteristic table to determine the next state



State Table for Fig. 5-18

$$J_{A} = B, K_{A} = Bx'$$
$$J_{B} = x', K_{B} = A'x + Ax'$$

Table 5.4

State Table for Sequential Circuit with JK Flip-Flops

Present State		Input	Next State			Flip-F Inpu	lop its	
A	В	<u>x</u>	A	B	JA	K _A	J _B	K _B
0	0	0	0	1	0	0	1	0
0	0	1	0	0	0	0	0	1
0	1	0	1	1	1	1	1	0
0	1	1	1	0	1	0	0	1
1	0	0	1	1	0	0	1	1
1	0	1	1	0	0	0	0	0
1	1	0	0	0	1	1	1	1
1	1	1	1	1	1	0	0	0

State Transition Diagram for Fig. 5-18

Table 5.4

The characteristic equation of JK FF is

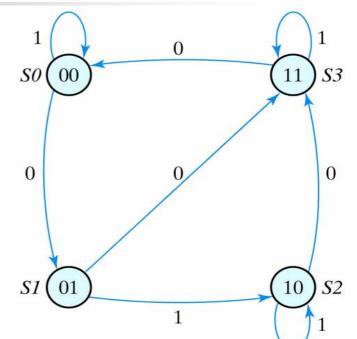
Method 1

$$A(t+1) = J_A A' + K' A_A$$
$$B(t+1) = J_B B' + K' B_B$$

State equation for A and B:

$$A(t+1) = BA' + (Bx')'A = A'B + AB' + Ax$$

$$B(t+1) = x'B + (A \oplus x)'B = B'x + ABx + A'Bx$$



Method 2 x
$$AB_{00}$$
 01 11 10
 $A(t+1)$
 $\begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ A'B \\ AX \\ AX \\ AX \\ AB'$

Using *K*-map, we also can derive A(t+1). A(t+1)=A'B+AB'+AX

Present State		Input	Next State			Flip-F Inpu		
A	В	x	A	B	JA	K _A	JB	K
0	0	0	0	1	0	0	1	0
0	0	1	0	0	0	0	0	1
0	1	0	1	1	1	1	1	0
0	1	1	1	0	1	0	0	1
1	0	0	1	1	0	0	1	1
1	0	1	1	0	0	0	0	0
1	1	0	0	0	1	1	1	1
1	1	1	1	1	1	0	0	0

State Table for Sequential Circuit with IK Flin, Flons

Analysis with T Flip-Flops

The characteristic equation
 Q(t+1) = T Q = TQ'+T'Q

Table 5.5

Drocont

State Table for Sequential Circuit with T Flip-Flops

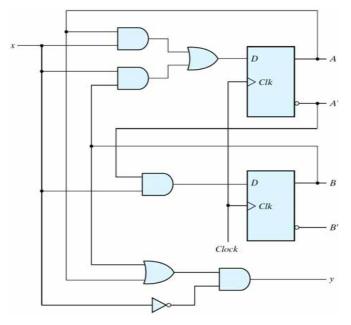
Novt

x + f + f + f + f + f + f + f + f + f +	• $Q(t+1) = 1$ $Q = 1Q'+1'Q$	+ O Present State		Input	Ne Sta		Output
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		A	B	<u>x</u>	A	B	y
y = 0 = 0 + 1 + 0 + 1 + 0 + 1 + 0 + 1 + 0 + 1 + 0 + 0		0	0	0	0	0	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0	0	1	0	1	0
$\begin{array}{c} \begin{array}{c} 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 \end{array}$		0	1	0	0	1	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	1	1	1	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\sim Clk	1	0	0	1	0	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1	0	1	1	1	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1	1	0	1	1	1
$ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		1	1	1	0	0	1
)	1	1			
(a) Circuit diagram (b) State diagram	(a) Circuit diagram	(b) St	ate diagr	am			

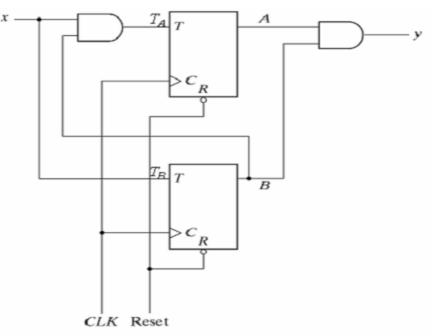
Finite State Machine (FSM)

The inputs, outputs and states of a sequential circuit can be described as the FSM. There are two different FSMs:

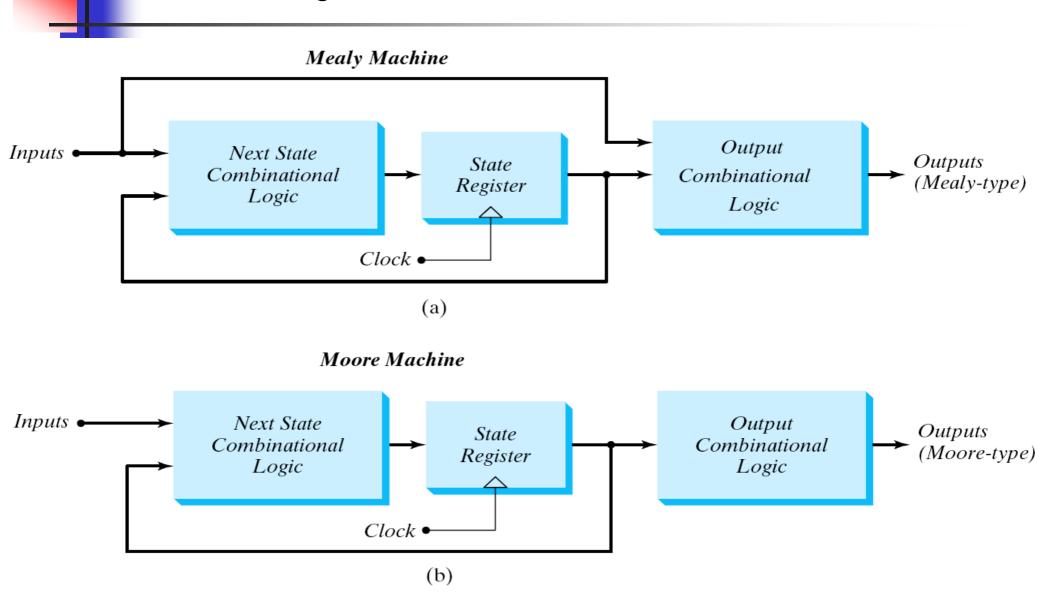
(a) Mealy machine: the outputs are functions of both the present state and inputs



(b) Moore machine: the outputs are functions of the present state only



Mealy Machine vs. Moore Machine



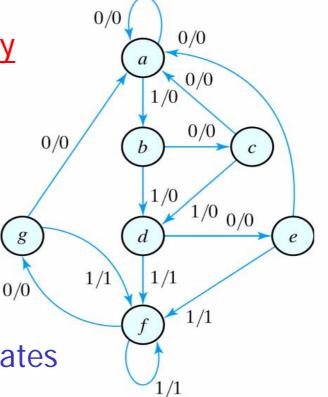
State Reduction and Assignment

State Reduction

- reductions on the number of flip-flops and the number of gates
- a reduction in the number of states <u>may</u> result in a reduction in the number of flip-flops
- How to reduce the necessary states?

State reduction:

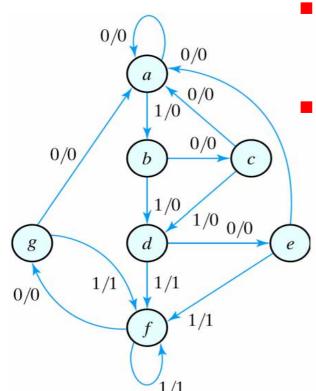
does not guarantee a saving in #FFs or #gates



State Reduction

- state a a b c d e f f g f g a input 01010110100
 output 00000110100
- only the input-output sequences are important
- two circuits are equivalent
 - have identical outputs for all input sequences
 - the number of states is not important

Fig. 5.25 State diagram

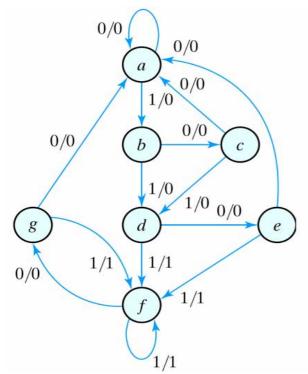


Equivalent States

Two states are said to be equivalent

 for each member of the set of inputs, they give exactly the same output and send the circuit to the same state or to an equivalent state

one of them can be removed



	Next	State	Ou	tput
Present State	x = 0	<i>x</i> = 1	x = 0	x = 1
а	а	Ь	0	0
b	с	d	0	0
С	а	d	0	0
d	е	f	0	1
e	(a	f	$\langle 0 \rangle$	1
f	8	f	0	1
g	(a	f	0	1

Reducing State Table

Table 5.7Reducing the State Table

	Next	State	Output		
Present State	x = 0	<i>x</i> = 1	x = 0	<i>x</i> = 1	
a	а	b	0	0	
b	С	d	0	0	
С	а	d	0	0	
d	(e	f	$\langle 0$	1)>	
e	a	f	0	1	
f	e	f	$\langle 0 \rangle$	1	

Reduced Finite State Machine

Table 5.8Reduced State Table

	Next 9	State	Output		
Present State	x = 0	<i>x</i> = 1	x = 0	<i>x</i> = 1	
a	а	b	0	0	
b	С	d	0	0	
С	a	d	0	0	
d	e	d	0	1	
e	а	d	0	1	

state a a b c d e d e d e a input 01010110100 output00000110100

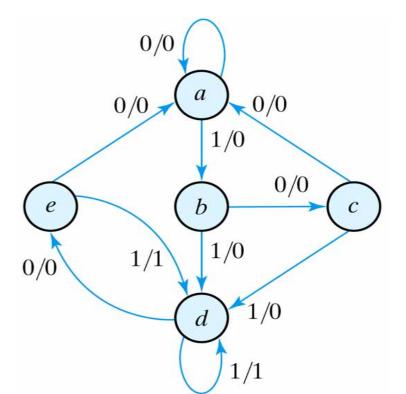
State Reduction

- the checking of each pair of states for possible equivalence can be done systematically (9-5)
- the unused states are treated as don't-care condition ⇒ fewer combinational gates

reduce to

7 states \rightarrow 5 states

This example:



State Assignment

- to minimize the cost of the combinational circuits (not easy certainly ??)
- three possible binary state assignments

Table 5.9Three Possible Binary State Assignments

State	Assignment 1, Binary	Assignment 2, Gray Code	Assignment 3, One-Hot	
а	000	000	00001	
b	001	001	00010	
с	010	011	00100	
d	011	010	01000	
е	100	110	10000	

Binary Assignment

any binary number assignment is satisfactory as long as each state is assigned a unique number

Table 5.10

Reduced State Table with Binary Assignment 1

	Next	State	Out	put
Present State	x = 0	<i>x</i> = 1	x = 0	<i>x</i> = 1
000	000	001	0	0
001	010	011	0	0
010	000	011	0	0
011	100	011	0	1
100	000	011	0	1

The Three Assignments

- Binary code
 - <u>n-bit</u> code for m states, $2^n \ge m$ (n FFs)
- Gray code
 - <u>n-bit</u> code for m states, $2^n \ge m$ (n FFs)
 - More suitable for K-map simplification (more possible lower power)
- One-hot
 - <u>m-bit</u> code for m states (m FFs)

often used in control design

State	Assignment 1, Binary	Assignment 2, Gray Code	Assignment 3, One-Hot
а	000	000	00001
b	001	001	00010
С	010	011	00100
d	011	010	01000
е	100	110	10000

Design Procedure

- specification a state diagram (most challenging)
- state reduction if necessary
- assign binary values to the states
- obtain the binary-coded state table
- choose the type of flip-flops
- derive the simplified flip-flop input equations and output equations
- draw the logic diagram

Synthesis

The part of design that follows a well-defined procedure is called <u>synthesis</u> Once a <u>spec</u> has been set down and the <u>state diagram</u> obtained, it is possible to use known synthesis procedure to complete the design

Synthesis using D flip-flops (1/2)

An example state diagram and state table
 Design a circuit that detects one to three or more consecutive 1's in a input string

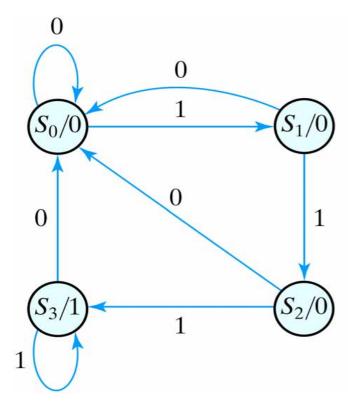
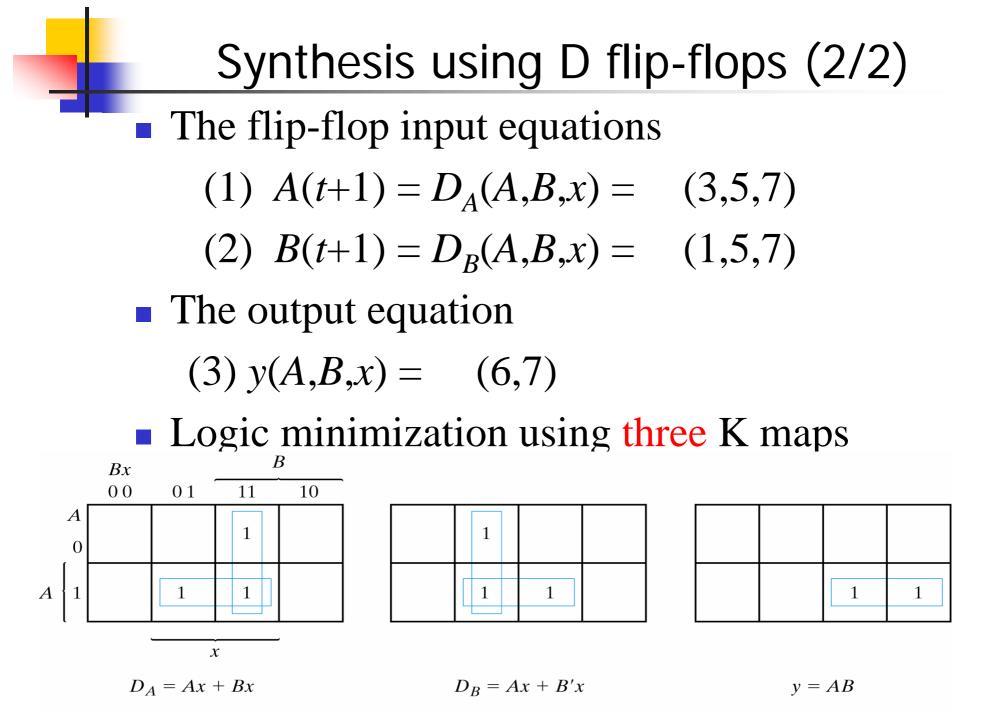
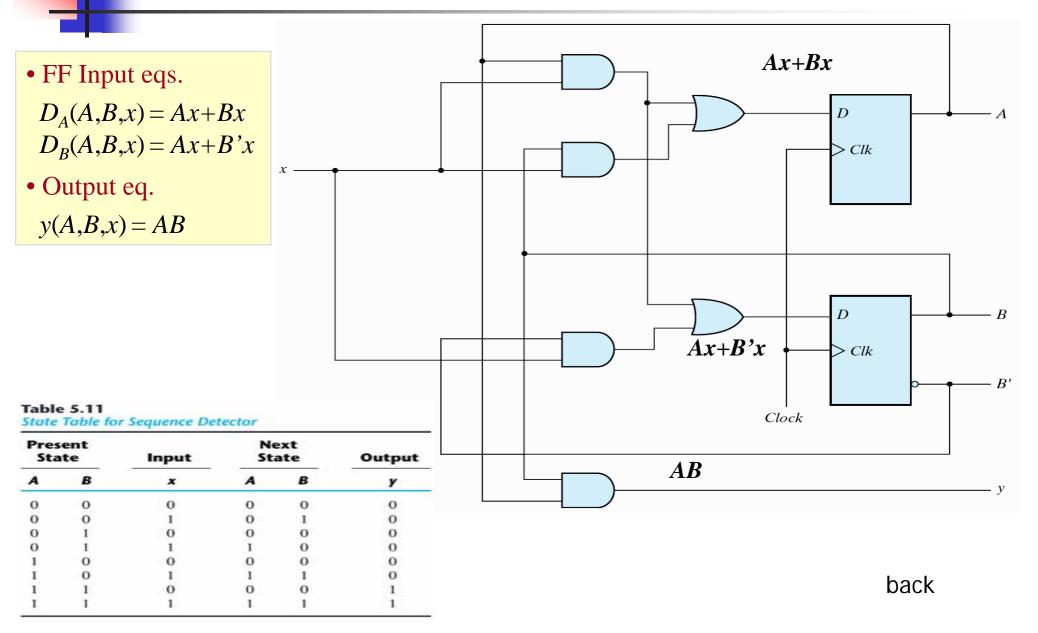


Table 5.11 State Table for Sequence Detector

Pres Sta		Input		Next Input State		Output
A	В	x		A	B	y
0	0	0	m_0	0	0	0
0	0	1	m_1°	0	1	0
0	1	0	m_2	0	0	0
0	1	1	m_3^-	1	0	0
1	0	0	m_4	0	0	0
1	0	1	m_5	1	1	0
1	1	0	m_6	0	0	1
1	1	1	m_7	1	1	1



Logic Diagram of Sequence Detector with D FF



Synthesis using JK flip-flops (1/4)

■ A state diagram ⇒ flip-flop input functions

- straightforward for D flip-flops
- we need excitation tables for JK and T flip-flops

J	Κ	D	Q(t+1) Function
0	0	Q(t)	Q(t)	no change
0	1	0	0	reset FF to 0
1	0	1	1	set FF to 1
1	1	Q'(t)	Q'(t)	complement output

Т	D	Q(t+1)	
0	Q	Q(t)	no change
1	Q'	Q'(t)	complement

Table 5.12 Flip-Flop Excitation Tables

Q(t)	Q(t = 1)	J	к	Q(t)	Q(t = 1)	Т
0	0	50	x	0	0	0
0	1	1	Х	0	1	1
1	0	X	1	1	0	1
1	1	X	0	1	1	0
	(a) <i>JK</i>			•	(b) <i>T</i>	

Synthesis using JK flip-flops (2/4)

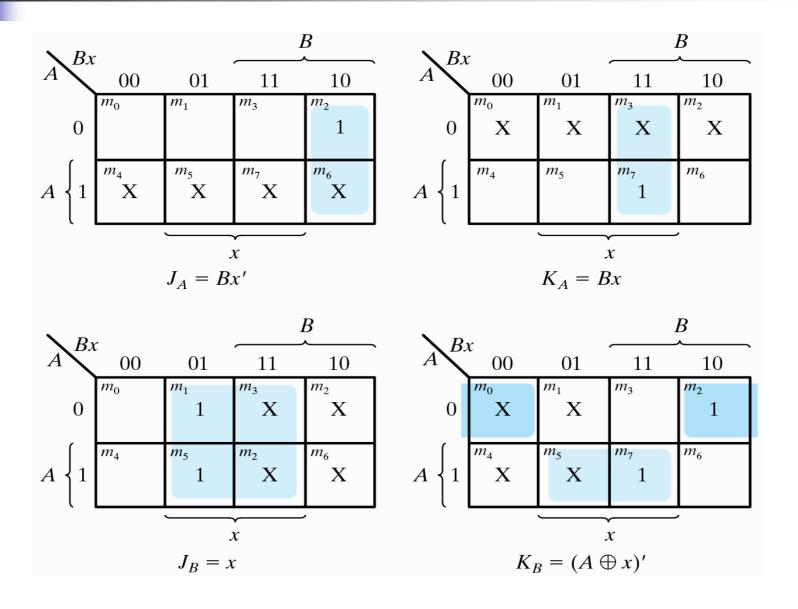
- The same example
- The state table and JK flip-flop inputs

Table 5.13

State Table and JK Flip-Flop Inputs

Present State		Input	Next State		Flip-Flop Inputs				
Α	B x		Α	В	JA	K _A	J _B	K _B	
(0)	0	0	(0)	0	0	X.	0	х	
0	0	1	0	1	0	X	1	Х	
0	1	0	1	0	1	X	X	1	
0	1	1	0	1	0	Х	X	0	
1	0	0	1	0	Х	0	0	Х	
1	0	1	1	1	Х	0	1	Х	
1	1	0	1	1	X	0	Х	0	
<u>(</u>])	1	1	(0)	0	Х	1	Х	1	

Synthesis using JK flip-flops (3/4)



Synthesis using JK flip-flops (4/4)

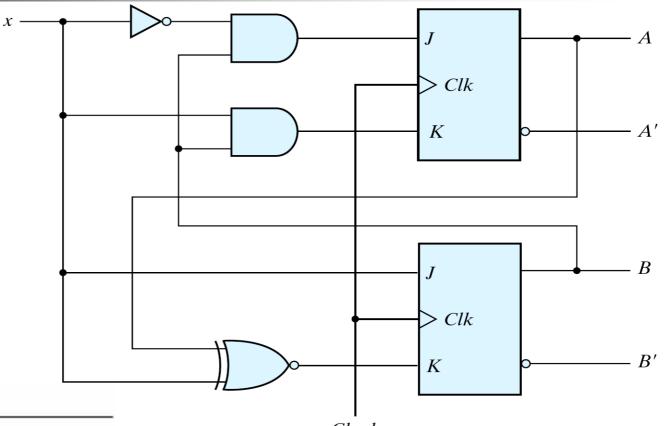


 Table 5.13
 State Table and JK Flip-Flop Inputs

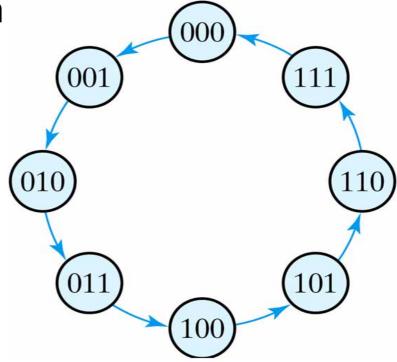
Present State		Input	Next put State		Flip-Flop Inputs					
A	B	x	A	В	JA	KA	JB	K _B		
0	0	0	0	0	0	x	0	х		
0	0	1	0	1	0	x	1	X		
0	1	0	1	0	1	X	X	1		
0	1	1	0	1	0	х	x	0		
1	0	0	1	0	x	0	0	х		
1	0	1	1	1	x	0	1	х		
1	1	0	1	1	x	0	x	0		
1	1	1	0	0	X	1	X	1		

Clock

Compare with D flip-flop

Synthesis using T flip-flops

A n-bit binary counter the state diagram



no inputs (except for the clock input)

Table 5.14

State Table for Three-Bit Counter

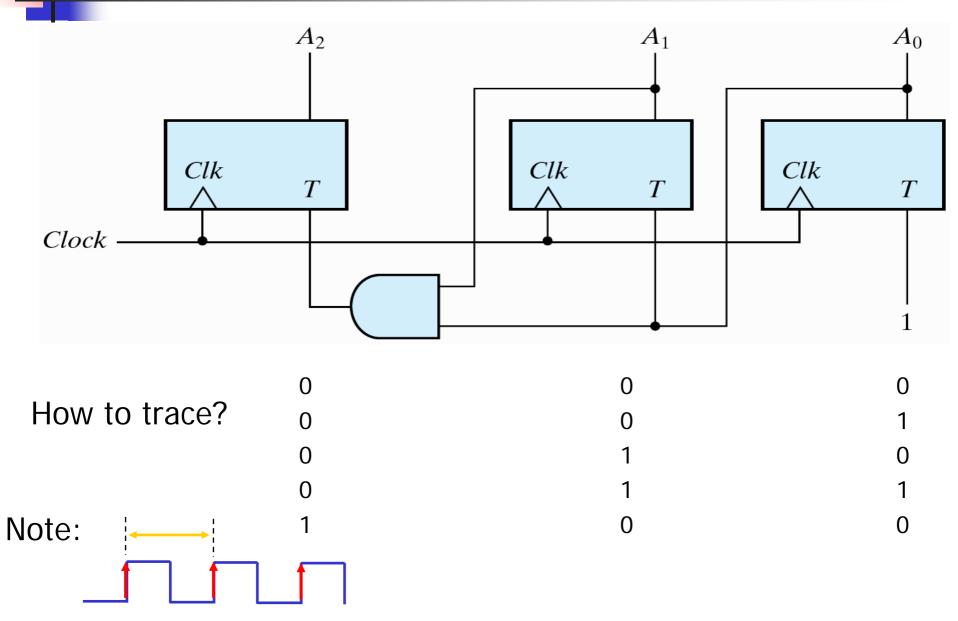
Pres	ent St	tate	N	ext St	tate	Flip-Flop Inputs			
A ₂	A 1	Ao	A2	A 1	Ao	T _{A2}	T _{A1}	T _{A0}	
0	0	0	0	0	1	0	0	1	
0	0	1	0	1	0	0	1	1	
0	1	0	0	1	1	0	0	1	
0	1	1	1	0	0	1	1	1	
1	0	0	1	0	1	0	0	1	
1	0	1	1	1	0	0	1	1	
1	1	0	1	1	1	0	1	1	
1	1	1	0	0	0	1	1	1	

No inputs (except for the clock input)

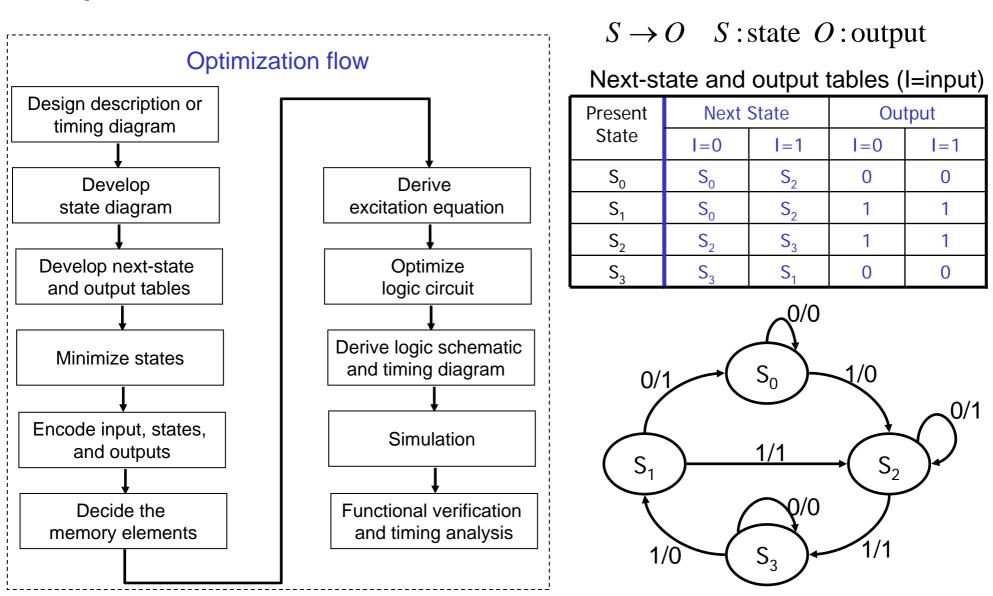
Logic Simplification using the K map



The Logic Diagram



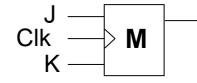
Moore Machine (1/4)

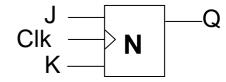


Moore Machine (2/4)

original state table											
Present	Next	State	Output								
State	I=0	I=1	I=0	I=1							
S ₀	S ₀	S ₂	0	0							
S ₁	S ₀	S ₂	1	1							
S ₂	S ₂	S ₃	1	1							
S ₃	S ₃	S ₁	0	0							

Assume that we use JK flip-flops for storage 4 states index and 2 flip-flops (named M and N)

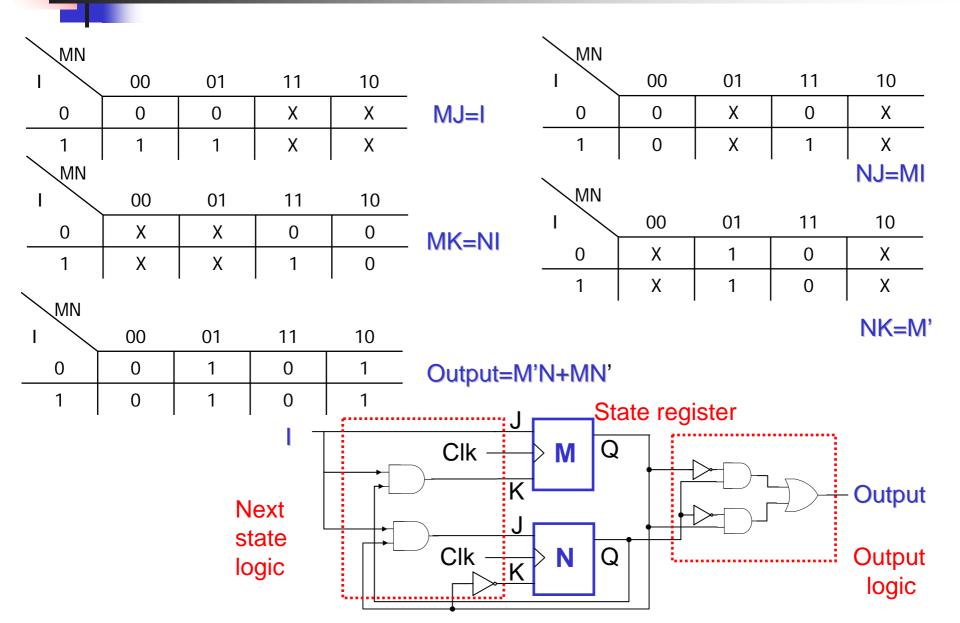




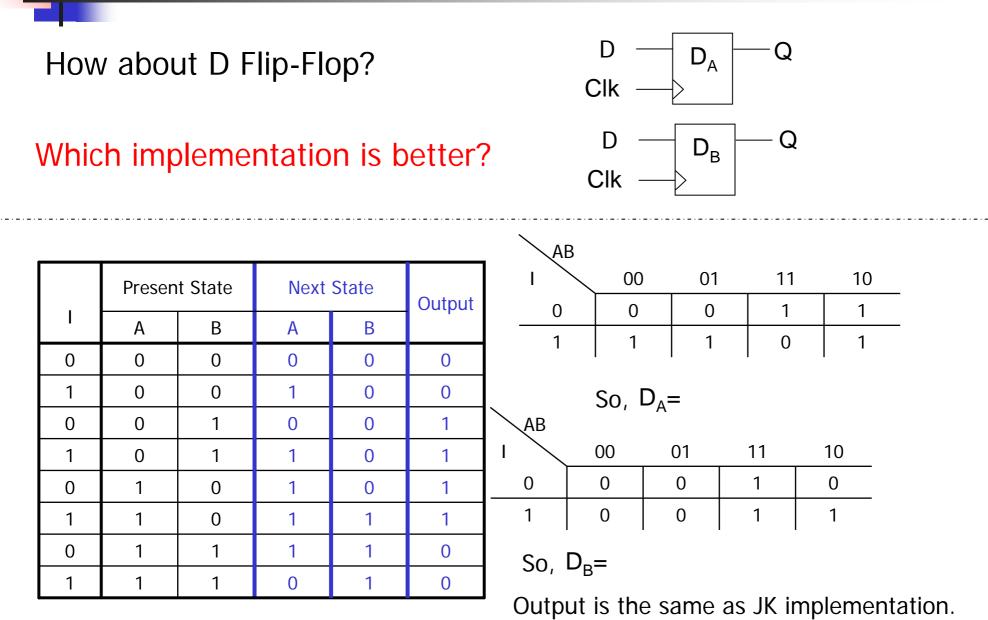
characteristic table

J	K	Q(t+	1)			Dresse	t Ctata	Movt	Ctata	N.4.(NL		
0	0	Q(t)			Presen	t State	Next	State	IVI (JK)	IN (.	JK)	Output
0	1	0				M(t)	N(t)	M(t+1)	N(t+1)	MJ	MK	NJ	NK	
1	0	1			0	0	0	0	0	0	Х	0	X	0
1	1	Q'(1	t)		1	0	0	1	0	1	X	0	X	0
exci	tation				0	0	1	0	0	0	Х	Х	1	1
Q(t)	Q(t+1) J	K		1	0	1	1	0	1	Х	Х	1	1
0	0	0	X	(0	1	0	1	0	Х	0	0	X	1
0	1	1	X	(1	1	0	1	1	Х	0	1	X	1
1	0	Х	1		0	1	1	1	1	Х	0	Х	0	0
1	1	Х	C)	1	1	1	0	1	Х	1	Х	0	0

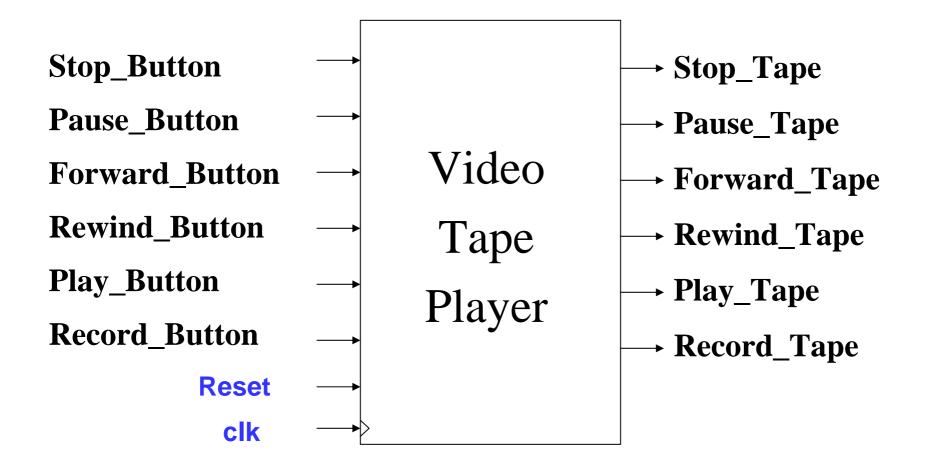
Moore Machine (3/4)



Moore Machine (4/4)



Video Tape Player (1/2)



Video Tape Player (2/2)

