
Chapter 5

Sequential Logic

Sequential Circuits (1/2)

Sequential circuits:

a feedback path

outputs depends on present inputs and present states (pre. inputs)

(inputs, current state) ⇒ (outputs, next state)

synchronous: the transition happens at discrete instants of time

asynchronous: at any instant of time

Combinational circuits:
a. contain no memory elements
b. the outputs depends on the current inputs

Sequential Circuits (2/2)

A sequential circuit is specified by a time
sequence of inputs, outputs and internal states

Sequential circuits must be able to
remember the past history

Flip-flops: most commonly used
memory devices

A function of

- present inputs &
- present state of memory elements
(the past sequence of inputs)

Clock

Fig. 5.2
Synchronous clocked sequential circuit

Use clock pulses generated by a clock generator

Types of Sequential Circuits

depending on the timing of their signals

Synchronous (同步) sequential circuits
Storage elements are affected at discrete time
instants

Use clock pulses in the inputs of storage elements

Asynchronous (非同步) sequential circuits
Storage elements are affected at any time
instant

Synchronous Sequential Circuits (1/2)

Storage elements
• are affected only with the arrival of

each pulse
• The storage elements used in the

clocked sequential circuits are called
“flip-flops”

Synchronous
• Use clock pulses in the inputs of

storage elements

Synchronous Sequential Circuits (2/2)

Synchronous sequential circuits
a master-clock generator to generate a periodic
train of clock pulses
the clock pulses are distributed throughout the
system
clocked sequential circuits (most popular)
no instability problems
the memory elements: flip-flops

binary cells capable of storing one bit of information
two outputs: one for the normal value and one for
the complement value
maintain a binary state indefinitely until directed by
an input signal to switch states

Latches (1/3)

The most basic types of flip-flops operate with signal levels latch
All FFs are constructed from the latches introduced here

A FF can maintain a binary state indefinitely until directed
by an input signal to switch states

Two NOR gates Set 1, Reset 0

Latches (2/3)
1

0

1

0

0
0

1
0

IF
R=0
S=0

1

0

0
0

1
0

1

0

1

0

1
0

1
0

IF
R=1
S=0

1

0

1
0

1
0

0

0

1
0

0
0

0

0

0

0

1
0

0
0

0

1

0

1

1
1

0
0

0

1

0

1

Step 1: red number

Step 2: yellow number

Step 3: green number

Step 4: black number

Latches (3/3)

more complicated types can be built upon it
an asynchronous sequential circuit
(S,R)= (0,0): no operation

 (S,R)=(0,1): reset (Q=0, the clear state)
 (S,R)=(1,0): set (Q=1, the set state)
 (S,R)=(1,1): indeterminate state (Q=Q'=0)

consider (S,R) = (1,1) ⇒ (0,0)

S R P=Q’ Q
0 0 * * // a stable state in the previous state
1 0 0 1 // change to another stable state “Set”
0 0 0 1 // remain in the previous state
0 1 1 0 // change to another stable state “Reset”
0 0 1 0 // remain in the previous state
1 1 0 0 // oscillate (unpredictable) if next SR=00

the condition
should be avoided

Q

SR Latch with NAND gates

SR latch with NAND gates
reset

set

(c) Graphic symbol

S’R’ latch

SR Latch with Control Input

S_

R_

0/1

1/S'

1/R'

The complement output of the
previous R’S’ latch.

(c) Graphic symbol (c) Graphic symbol

EnEn=1, no change
En=0, enable

En

En=0, no change
En=1, enable

D Latch (Transparent Latch)
S_

R_

0/1

1/D'

1/D

eliminate the undesirable conditions of the
indeterminate state in the RS flip-flop
D: data
gated D-latch
D ⇒ Q when En=1; no change when En=0

QD Q

En

level triggered
(level-sensitive)

Flip-Flops
A trigger

The state of a latch or flip-flop is switched by a change
of the control input

Level triggered – latches
Edge triggered – flip-flops

Level triggered

Edge triggered

Edge triggered

Problem of Latch

If level-triggered flip-flops are used
the feedback path may cause instability problem (since
the time interval of logic-1 is too long)
multiple transitions might happen during logic-1 level

Edge-triggered flip-flops
the state transition happens only at the edge
eliminate the multiple-transition problem

Edge-Triggered D Flip-Flop
Two designs to solve the problem of latch:
a. Master-slave D flip-flop
b. Edge-trigger D flip-Flop

Master-slave D flip-flop
two separate flip-flops
a master latch (positive-level triggered)
a slave latch (negative-level triggered)

Master-slave D flip-flop (1/2)
Two D latches and one inverter
The circuit samples D input and changes its output Q
only at the negative-edge of CLK
isolate the output of FF from being affected while its
input is changing

CLK=1, enabled
CLK=0, disabled

CLK=1, disabled
CLK=0, enabled

Master-slave D flip-flop (2/2)
CP = 1: (S,R) ⇒ (Y,Y'); (Q,Q') holds
CP = 0: (Y,Y') holds; (Y,Y') ⇒ (Q,Q')
(S,R) could not affect (Q,Q') directly
the state changes coincide with the negative-
edge transition of CP

Edge-Triggered Flip-Flops (1/2)
the state changes during a clock-pulse transition

A D-type positive-edge-triggered
flip-flop

Three SR latches

(S,R) = (0,1): Q = 1 (S,R) = (1,0): Q = 0
(S,R) = (1,1): no operation (S,R) = (0,0): should be avoided

Edge-Triggered Flip-Flops (2/2)

If Clk=1 and D=0 R=0 Reset.
Output Q is 0. Then, if D changes to 1,
R remains at 0 and Q is 0.

Then, Clk=0 S=1, R=1 no operation (Q=0)
Then, if Clk=1 and D=1 S=0 Set.

Output Q is 1. (see the blue dot-line flow)
Then, if D changes to 0, S remains at 0 and Q=1;

If Clk=0 S=1 and R=1 no operation.
Output Q remains in the present state.

1
1

0

0

1

0

1(old)

1
1

1

1

0(new)

#1

#2

#3

#4

Positive-Edge-Triggered Flip-Flops

Summary
Clk=0: (S,R) = (1,1), no state change
Clk=↑: state change once
Clk=1: state holds
eliminate the feedback problems in sequential
circuits

All flip-flops must make their transition at
the same time

Flip-Flops
A trigger

The state of a latch or flip-flop is switched by a change
of the control input

Level triggered – latches
Edge triggered – flip-flops

Level triggered

Edge triggered

Edge triggered

Setup Time and Hold Time

The setup time
D input must be maintained at a constant value prior to
the application of the positive Clk pulse
= the propagation delay through gates 4 and 1
data to the internal latches

The hold time
D input must not changes after the application of the
positive Clk pulse
= the propagation delay of gate 3 (try to understand)
clock to the internal latch

Timing Diagram

setup
time

hold
time

2.8 ns 1.4 ns

Positive-Edge vs. Negative-Edge
The edge-triggered D flip-flops

The most economical and efficient
The most popular flip-flop
Positive-edge and negative-edge

Latch vs. Flip-Flop

Level triggered

Edge triggered

positive-edge triggered

negative-edge triggeredLatch

QD Q

CLK

CLKCLK

Clock Period
clock period

clock
width rising

edge
falling
edge

Clock period (measured in micro or nanoseconds) is the time
between successive transitions in the same direction

Clock frequency (measured in MHz or GHz) is the reciprocal of clock
period

Clock width is the time interval during which clock is equal to 1

Duty cycle is the ratio of the clock width and clock period

Clock signal is active high if the changes occur at the rising edge or
during the clock width. Otherwise, it is active low

Latch and Flip-Flop

rising
edge

falling
edge

LatchesLatches are level-sensitive since they respond to input changes during clock
width. Latches are difficult to work with for this reason.

Flip-Flops respond to input changes only during the change in clock signal
(the rising edge or the falling edge).

They are easy to work with though more expensive than latches.

Two basic styles of flip-flops are available:
(1) master-slave (2) edge-triggered

JK Flip-Flop
Inputs

J, K disabled
K enabled
J enabled
J, K enabled

J K D Q(t+1) Function
0 0 Q(t) Q(t) no change
0 1 0 0 reset FF to 0
1 0 1 1 set FF to 1
1 1 Q’(t) Q’(t) complement output

D flip-flop + external logic

(*clear=1)

All operations must be
finished in the interval

positive-edge

T(Toggle) Flip-Flop

T Q(t+1)
0 Q(t) no change
1 Q’(t) complement

Characteristic Table

(a) based on JK FF (b) based on D FF

“Complementing FF”
T=1: a clock edge complements the
output
useful for designing binary counters

T D Q(t+1)
0 Q Q(t) no change
1 Q’ Q’(t) complement

D = T⊕Q = TQ’+T’QJ K Q(t+1)
0 0 Q(t) no change
0 1 0 reset
1 0 1 set
1 1 Q’(t) complement

- tie J,K together

Characteristic Equations/Tables of FFs
Characteristic Equations

define next state Q(t+1) as a
function of inputs and present
state algebraically

• Characteristic Tables
define next state Q(t+1) as a
function of inputs and present state
Q(t) in tabular form

Q(t+1) = D

Q(t+1) = JQ ’ + K ’Q

Q(t+1) = T ⊕ Q = TQ ’ + T ’Q

Direct inputs
asynchronous set and/or asynchronous
reset

S_

reset_ Fig. 5.14
D flip-flop with asynchronous reset

Direct Input

Preset (PRE)
an asynchronous input that sets the FF

“direct set”

Clear (CLR)
an asynchronous input that clears the FF

“direct reset”

Purpose
Can be used to bring all FFs in a system to a known
state prior to the clocked operation

Asynchronous set: Set as soon as preset =1

Synchronous set: Set when preset=1 and CLK

D Flip-Flop with Asynchronous Reset

active low

reset

FF triggers on the positive edge of CLK

0

need 1

0 1

0

Analysis of Clocked Sequential Ckts
A sequential circuit

(inputs, current state) ⇒ (output, next state)
a state transition table or state transition diagram

State (transition) equation
A(t+1) = A(t)x(t) + B(t)x(t)
B(t+1) = A'(t)x(t)

A compact form
A(t+1) = Ax + Bx
B(t+1) = A'x

The output equation
y(t) = (A(t)+B(t))x'(t)
y = (A+B)x'

Ax +BxAx

Bx

A 'x

A+B

State table 1

A(t + 1) =Ax + Bx
B(t + 1) = A′x
y = Ax′ + Bx′

State table 2

A(t + 1) =Ax + Bx
B(t + 1) = A′x
y = Ax′ + Bx′

State diagram
State transition diagram

a circle: a state
a directed lines connecting the circles: the
transition between the states

Each directed line is labeled “inputs/outputs”

state: A B
input: x

Flip-Flop Input Equations

The part of circuit that generates the inputs to
flip-flops

Also called excitation functions

DA = Ax +Bx

DB = A'x

The output equations
to fully describe the

sequential circuit

y = (A+B)x'

Ax +BxAx

Bx

A 'x

A+B

Analysis with D flip-flops
The input equation

DA=A⊕x⊕y
The state equation

A(t+1)=A⊕x⊕y

Analysis with JK flip-flops
Determine the flip-flop input function in terms of the
present state and input variables
Used the corresponding flip-flop characteristic table to
determine the next state

Fig. 5-18
Sequential circuit with
JK flip-flop

JA = B, KA= Bx'
JB = x ', KB = A' x + Ax

State Table for Fig. 5-18

JA = B, KA= Bx'
JB = x ', KB = A' x + Ax '

State Transition Diagram for Fig. 5-18

(1)
(1)

A t JA K A
B t JB K B

′ ′+ = +
′ ′+ = +

The characteristic equation of JK FF is

State equation for A and B:

(1) ()A t BA Bx A A B AB Ax′ ′ ′ ′ ′+ = + = + +

(1) ()B t x B A x B B x ABx A Bx′ ′ ′ ′ ′+ = + ⊕ = + +

A A

B B

Method 1

x AB 00 01 11 10

0 1 0 1

0 1 1 1

0

1
A(t +1)

A’B

AB’

Ax

Method 2

Using K-map, we also can derive A(t+1).
A(t +1)=A ’B+AB ’+Ax

Analysis with T Flip-Flops
The characteristic equation

Q(t+1)= T⊕Q = TQ'+T'Q

Finite State Machine (FSM)
The inputs, outputs and states of a sequential
circuit can be described as the FSM. There are
two different FSMs:

(a) Mealy machine: the outputs
are functions of both the
present state and inputs

(b) Moore machine: the outputs
are functions of the present
state only

Mealy Machine vs. Moore Machine

State Reduction and Assignment

State Reduction
reductions on the number of flip-flops
and the number of gates

a reduction in the number of states may
result in a reduction in the number of
flip-flops

How to reduce the necessary states?

State reduction:

does not guarantee a saving in #FFs or #gates

State Reduction
state a a b c d e f f g f g a
input 0 1 0 1 0 1 1 0 1 0 0
output 0 0 0 0 0 1 1 0 1 0 0
only the input-output sequences are
important
two circuits are equivalent

have identical outputs for all input sequences
the number of states is not important

Fig. 5.25 State diagram

Equivalent States

Two states are said to be equivalent
for each member of the set of inputs, they give
exactly the same output and send the circuit to the
same state or to an equivalent state
one of them can be removed

Reducing State Table

state a a b c d e d d e d e a
input 0 1 0 1 0 1 1 0 1 0 0
output 0 0 0 0 0 1 1 0 1 0 0

Reduced Finite State Machine

State Reduction

the checking of each pair of states for possible
equivalence can be done systematically (9-5)
the unused states are treated as don't-care
condition ⇒ fewer combinational gates

This example:

7 states 5 states
reduce to

State Assignment
to minimize the cost of the combinational
circuits (not easy certainly ??)
three possible binary state assignments

Binary Assignment
any binary number assignment is satisfactory as long
as each state is assigned a unique number

both OK 000,001,010,011,100 (OK v)
011,100,101,110,111 (OK v)

The Three Assignments
Binary code

n-bit code for m states, 2n >= m (n FFs)
Gray code

n-bit code for m states, 2n >= m (n FFs)
More suitable for K-map simplification
(more possible lower power)

One-hot
m-bit code for m states (m FFs)
often used in control design

Design Procedure
specification a state diagram (most challenging)

state reduction if necessary

assign binary values to the states

obtain the binary-coded state table

choose the type of flip-flops

derive the simplified flip-flop input equations and
output equations

draw the logic diagram
Synthesis

The part of design that follows a well-defined procedure is called synthesis
Once a spec has been set down and the state diagram obtained, it is
possible to use known synthesis procedure to complete the design

Synthesis using D flip-flops (1/2)
An example state diagram and state table
Design a circuit that detects one to three or more
consecutive 1’s in a input string

m0
m1
m2
m3
m4
m5
m6
m7

Synthesis using D flip-flops (2/2)
The flip-flop input equations

(1) A(t+1) = DA(A,B,x) = Σ(3,5,7)
(2) B(t+1) = DB(A,B,x) = Σ(1,5,7)

The output equation
(3) y(A,B,x) = Σ(6,7)

Logic minimization using three K maps

Logic Diagram of Sequence Detector with D FF

• FF Input eqs.
DA(A,B,x) = Ax+Bx
DB(A,B,x) = Ax+B’x

• Output eq.
y(A,B,x) = AB

Ax+Bx

Ax+B’x

AB

back

Synthesis using JK flip-flops (1/4)
A state diagram ⇒ flip-flop input functions

straightforward for D flip-flops
we need excitation tables for JK and T flip-flops

J K D Q(t+1) Function
0 0 Q(t) Q(t) no change
0 1 0 0 reset FF to 0
1 0 1 1 set FF to 1
1 1 Q’(t) Q’(t) complement output

T D Q(t+1)
0 Q Q(t) no change
1 Q’ Q’(t) complement

Synthesis using JK flip-flops (2/4)
The same example
The state table and JK flip-flop inputs

Synthesis using JK flip-flops (3/4)

Synthesis using JK flip-flops (4/4)

Compare with D flip-flop

Synthesis using T flip-flops
A n-bit binary counter

the state diagram

no inputs (except for the clock input)

The state table and the flip-flop inputs

No inputs (except for the clock input)

Logic Simplification using the K map

The Logic Diagram

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0

How to trace?

Note:

Moore Machine (1/4)

Next State Output

I=0 I=1 I=0 I=1

0

1

1

0

S0 S0 S2 0

S1 S0 S2 1

1

0

S2 S2 S3

S3 S3 S1

Present
State

output : state : OSOS →

Next-state and output tables (I=input)
Design description or

timing diagram

Develop
state diagram

Develop next-state
and output tables

Minimize states

Encode input, states,
and outputs

Decide the
memory elements

Derive
excitation equation

Optimize
logic circuit

Derive logic schematic
and timing diagram

Simulation

Functional verification
and timing analysis

Optimization flow

S0

S1 S2

S3

0/0

1/0
0/1

0/0

0/1

1/0 1/1

1/1

Moore Machine (2/4)
Assume that we use JK flip-flops for storage
4 states need 2 flip-flops (named M and N)Next State Output

I=0 I=1 I=0 I=1

0

1

1

0

S0 S0 S2 0

S1 S0 S2 1

1

0

S2 S2 S3

S3 S3 S1

Present
State

00X1X10111

00X0X11110

1X10X11011

1X00X01010

11XX101101

11XX000100

0X0X101001

0X0X000000

NKNJMKMJN(t+1)M(t+1)N(t)M(t)
Output

N(JK)M(JK)Next StatePresent State

I

J
Clk

K

Q J
Clk

K

Q
M N

1

0

1

0

Q(t+1)

0X1

1X1

X10

X00

KJQ(t)

original state table

Q’(t)11

101

010

Q(t)00

Q(t+1)K J

characteristic table

excitation table

Moore Machine (3/4)
 MN

I 00 01 11 10

0 0 0 X X

1 1 1 X X

MN
I 00 01 11 1

0 0 X 0

1 0 X 1

0

X

X
MJ=IMJ=I

MN
I 00 01 11 10

0 X X 0 0

1 X X 1 0

NJ=MINJ=MI

0

X

X

MK=NIMK=NI

MN
I 00 01 11 1

0 X 1 0

1 X 1 0
MN

I 00 01 11 10

0 0 1 0 1

1 0 1 0 1

NK=MNK=M’’

Output=MOutput=M’’N+MNN+MN’

J
Clk

K

QM

J
Clk K QN

II

OutputOutput

State register

Next
state
logic Output

logic

Moore Machine (4/4)
DA

Clk
QDHow about D Flip-Flop?

Present State Next State

A B A B

0

1

0

1

1

1

1

0

Output

0 0 0 0 0

0

0

0

0

1

1

1

0

1

1

1

1

0

0

1 0 0

0 0 1

1 0 1

0 1 0

1 1 0

0 1 1

1 1 1

I

DB
Clk
D QWhich implementation is better?

10111

11000

10110100
AB

I

So, DA=

11001

01000

10110100
AB

I

So, DB=

Output is the same as JK implementation.

Stop_Button

Pause_Button

Forward_Button

Rewind_Button

Play_Button

Record_Button

Stop_Tape

Pause_Tape

Forward_Tape

Rewind_Tape

Play_Tape

Record_Tape

Video
Tape

Player

Video Tape Player (1/2)

Reset
clk

Video Tape Player (2/2)

Stop
Reset=‘1’ Stop_Button=‘1’

Stop_Tape =‘1’

Will_Forward

Forward_Button=‘1’

Forward

Stop_Tape=‘1’

Forward_Tape=‘1’

Will_Rewind

Rewind_Button=‘1’

Rewind Rewind_Tape=‘1’

Will_Record

Record_Button=‘1’ & Play_Button=‘1’

Record Record_Tape=‘1’

Will_Play

Play_Button=‘1’

Play Play_Tape =‘1’

Pause Pause_Tape =‘1’

Pause_Button=‘1’Pause_Button=‘1’

Stop_Tape=‘1’

Stop_Tape=‘1’Stop_Tape=‘1’

