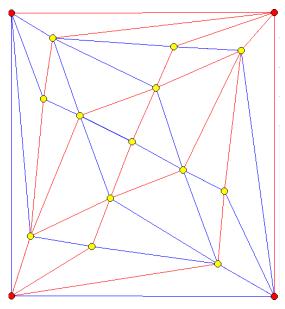
Which combinatorial triangulations can be realized as a L_∞-Delaunay triangulation?

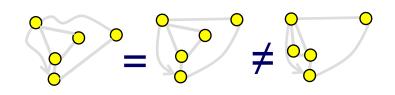


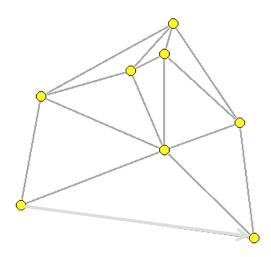
Nicolas Bonichon (Bordeaux U. – Inria CEPAGE-LaBRI) Jit Bose (Carleton U.) Sander Verdonschot (Carleton U.) Work in progress

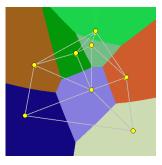
Acknowledgment: LIRCO; ANR JCJC EGOS

Combinatorial Triangulation

- Planar map: planar graph embedded on the sphere with no edge crossings, up to continuous deformation.
- Rooted: one edge is oriented. The face on its right is the outerface.
- Triangulation: each inner face is a triangle.





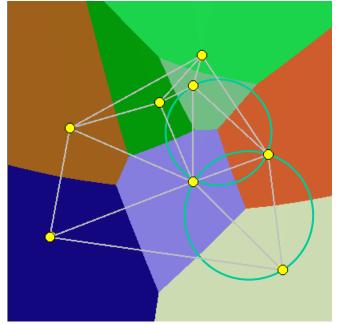


Delaunay Triangulation [Boris Delaunay '34]

Let $S = \{s_1, s_2 \dots\}$ be a set of points in the plane.

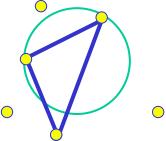
Voronoï cell: $C(s_i) = \{x/d(s_i, x) \le d(s_j, x) \forall i \ne j\}$

Delaunay Triangulation: s_i is a neighbour s_j if f $C(s_i) \cap C(s_j) \neq \emptyset$ General Position: No 3 points collinear No 4 points co-circular.



Alternative def: There is an edge (s_i, s_j) iif there is an empty circle supporting s_i and s_j .

 \Rightarrow : each face is supported by an empty circle.

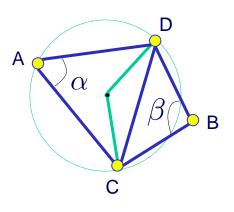


Delaunay realizability

A combinatorial triangulation T is **Delaunay realizable** if it exists S such that T = Delaunay(S).

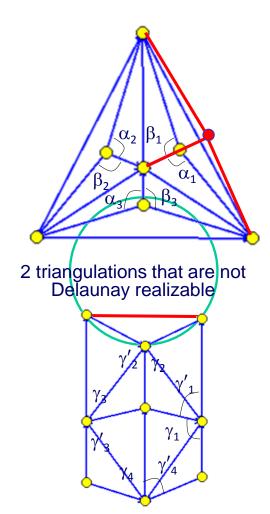
General Lemma: In a Delaunay triangulation, if 2 faces ACD and BCD share an edge then:

 $\alpha + \beta < \pi$



 $\alpha_{i} + \beta_{i-1} < \pi$ $\sum \alpha_{i} + \beta_{i} < 3\pi$ $\exists i/\alpha_{i} + \beta_{i} < \pi$ $\gamma_{i} + \gamma'_{i-1} > \pi$ $\sum \gamma_{i} + \gamma'_{i} > 4\pi$

 $\exists i/\gamma_i + \gamma'_i > \pi$



Why Delaunay realizability is an interesting question?

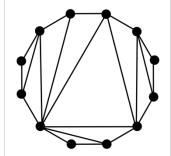
- What is the probability of a random triangulation to be Delaunay realizable?
- Is it enough to test a program on random Delaunay triangulations?
- Can I make an algorithm dedicated to Delaunay triangulations more efficient than for general triangulations?
- For instance can I encode every *n*-vertex Delaunay triangulation with less than 2.34*n* bits?

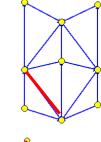
Delaunay realizability (related work)

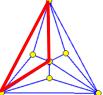
- Sufficient condition:
 - [Dillencourt'90] outerplanar triangulation
 - [Dillencourt Smith'96] triangulation without chords or nonfacial triangles

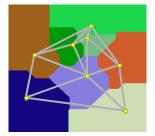
(chord: edge between 2 nonconsecutive vertices of the outerface)

- Recognizability:
 - [Hodgson Rivin Smith '92][Hiroshima Miayamoto Sugihara'00] polynomial time.







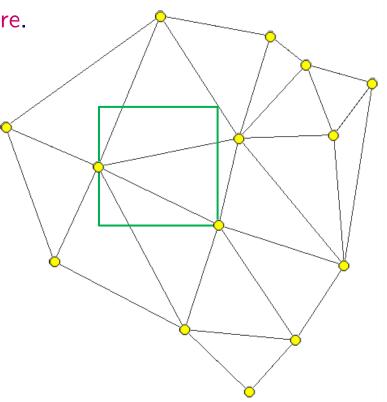


L_∞-Delaunay Triangulation [Chew SoCG'86]

 $d_{\infty}((x_1, y_1), (x_2, y_2)) = \max(|x_1 - x_2|, |y_1 - y_2|)$

Def: There is an edge (i, j) iif there is an empty square supporting i and j. \Leftrightarrow : each face is supported by an empty square.

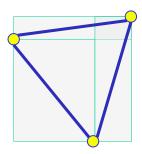
General Position: No 4 points co-"circular". Points have \neq abscissas and ordinates.

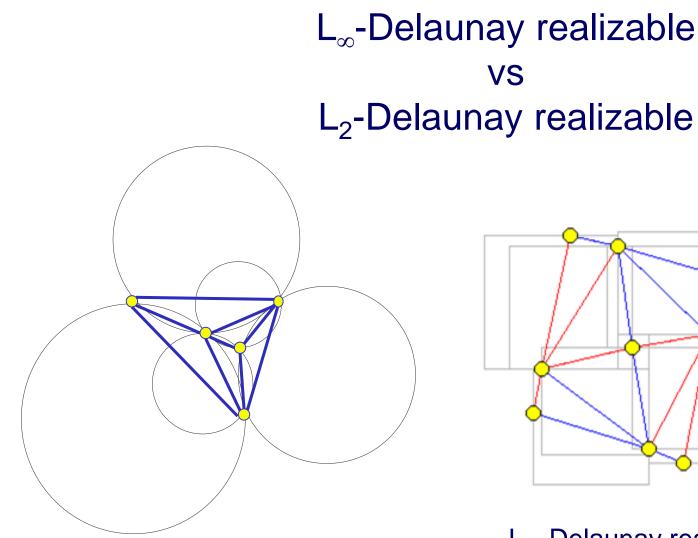


Necessary condition

Prop: If a (combinatorial) triangulation is L_{∞} -Delaunay realizable then it doesn't contain nonfacial triangles.

Proof: the rectangle supporting each edge is empty. The union of the rectangles supporting the edges of a triangle covers the interior of that triangle.





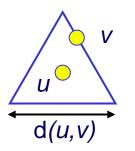
 L_2 -Delaunay realizable but not L_{∞} -Delaunay realizable

 L_{∞} -Delaunay realizable but not L_2 -Delaunay realizable

Let's make a digression through TD-Delaunay triangulations...

Triangular Distance Delaunay Triangulation

 Triangular "Distance": d(u,v) = size of the smallest equilateral triangle centred at u touching v.



• Remark: in general $d(u,v) \neq d(v,u)$

Thm [B. Gavoille Hanusse Ilcinckas'10]: Every combinatorial triangulation is TD-Delaunay realizable.

Schnyder woods [Schnyder'89]

 Schnyder wood: coloration and orientation of edges such that around every inner vertex:

 We can define a SW of TD-Delaunay: color and orientation of edges are determined by the slope:

Thm [B. Gavoille Hanusse Ilcinckas'10]: Every Schnyder wood is TD-Delaunay realizable.

+

Why Delaunay realizability is an interesting question?

- What is the probability of a random triangulation to be TD-Delaunay realizable? 1
- Is it enough to test a program on random TD-Delaunay triangulations? Yes
- Can I make an algorithm dedicated to TD-Delaunay triangulations more efficient than for general triangulations? No
- For instance can I encode every *n*-vertex TD-Delaunay triangulation with less than 2.34*n* bits? No

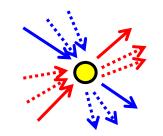
Let's come back to L_{∞} -Delaunay triangulations...

Is there an equivalent to Schnyder woods for $L_\infty\mbox{-}Delaunay triangulations?}$

Regular edge labelings/Transversal structures

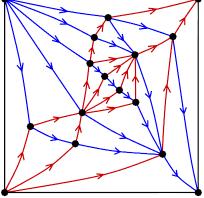
[Kant He '97][Fusy '05]

- Let T be a combinatorial triangulation without nonfacial triangles and with 4 vertices on the outerface.
- Transversal structure: coloration and orientation of edges such that:

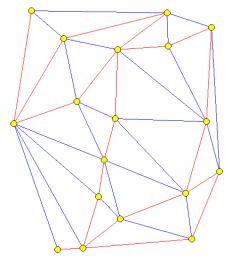


We can define transversal structures of L_{∞} -Delaunay triangulation using the slope of edges.

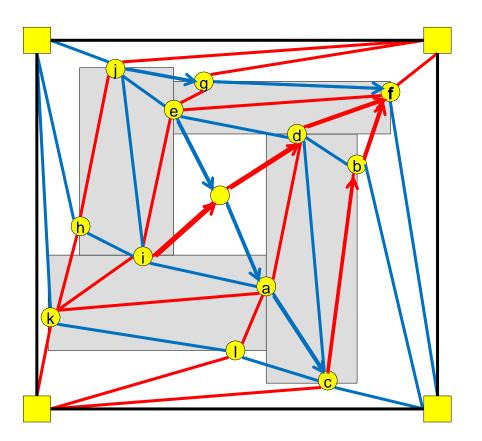
Natural question: Is every transversal structure L_{∞} -Delaunay realizable?



Source: E. Fusy



Is every transversal structure L_{∞} -Delaunay realizable? No \bigotimes



Edge (d,c) is in an empty square $\Rightarrow y_d - y_c < x_b - x_a$

Because of path e,O,a,c,b,f : $x_e < x_a < x_c < x_b < x_f$ $\Rightarrow x_b - x_a < x_f - x_e$

 $\begin{array}{l} \text{Edge (e,f) is in an empty square} \\ \Rightarrow x_{\text{f}}\text{-}x_{\text{e}} < y_{\text{g}}\text{-}y_{\text{d}} \end{array}$

Because of path i,O,d,f,g,j : $y_i < y_d < y_f < y_g < y_j$ $\Rightarrow y_g - y_d < y_j - y_i$

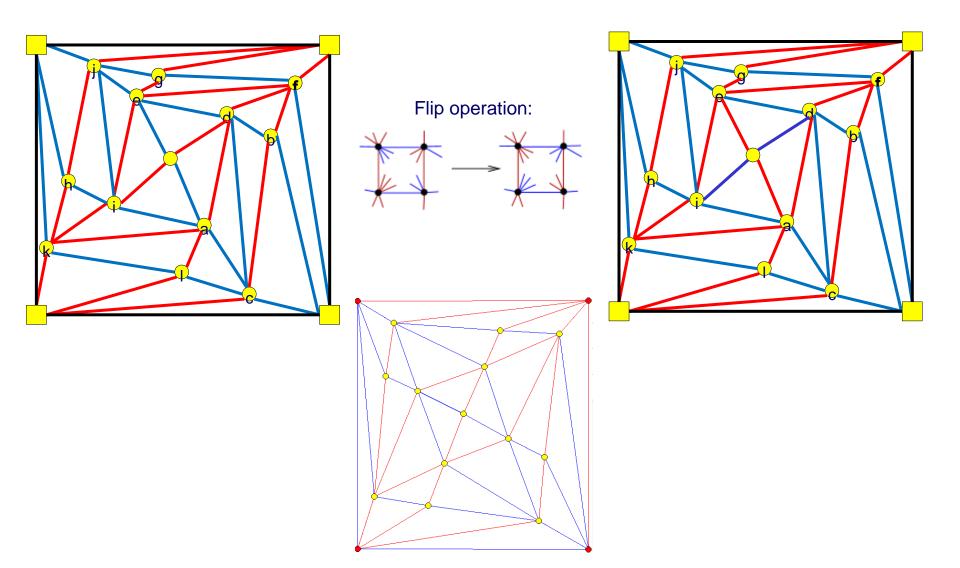
Edge (i,j) is in an empty square $\Rightarrow y_j \cdot y_i < x_e \cdot x_h$ Because of path k,h,j,e,O,a: $x_k < x_h < x_j < x_e < x_a$ $\Rightarrow x_e \cdot x_h < x_a \cdot x_k$ Ege (k,a) is in an empty square $\Rightarrow x_a \cdot x_k < y_i \cdot y_l$ Because of path c,l,k,i,O,d: $y_c < y_l < y_k < y_i < y_d$ $\Rightarrow y_i \cdot y_l < y_d \cdot y_c$

Putting all together:

 $y_d - y_c < x_b - x_a < x_f - x_e < y_g - y_d < y_j - y_i < x_e - x_h < x_a - x_k < y_i - y_l < y_d - y_c$

Contradiction: $y_d - y_c < y_d - y_c$

Is every transversal structure L_{∞} -Delaunay realizable? No \bigotimes But...



Sufficient condition

Thm: Every transversal structure without blue anti-N or red N is L_{∞} -Delaunay realizable.

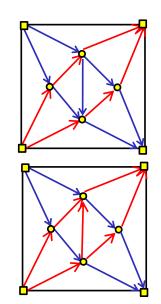
Remarks:

- Not every 4-connected triangulation admits a transversal structure without blue anti-N or red N.
- Every 4-connected triangulation admits a transversal structure without blue N or red N.

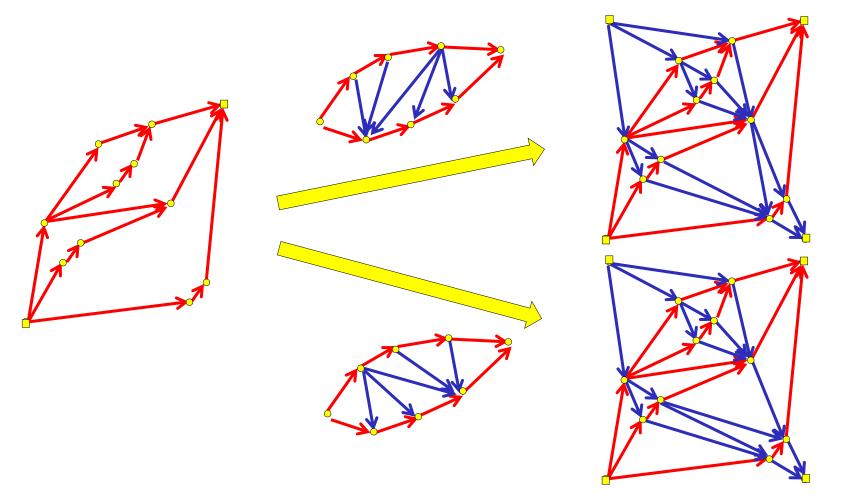
Thm [Fusy 08]: The following objects are in bijection:

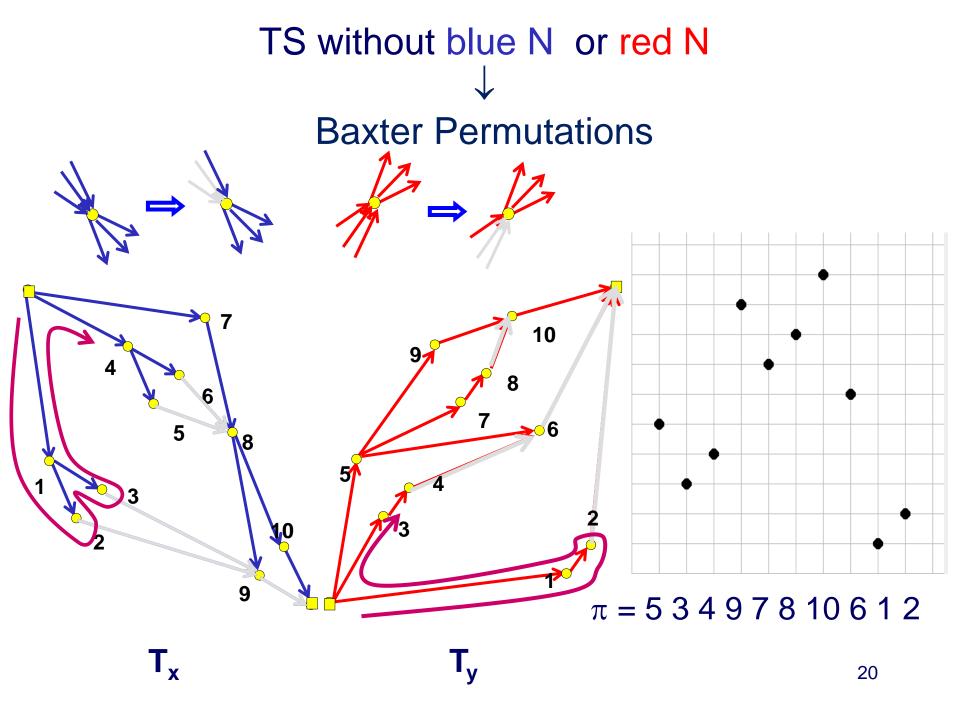
- Transversal structures without blue N or red N
- Transversal structures without blue anti-N or red N
- Baxter permutations.

We will use this bijection to obtain L_{∞} -Delaunay realization.

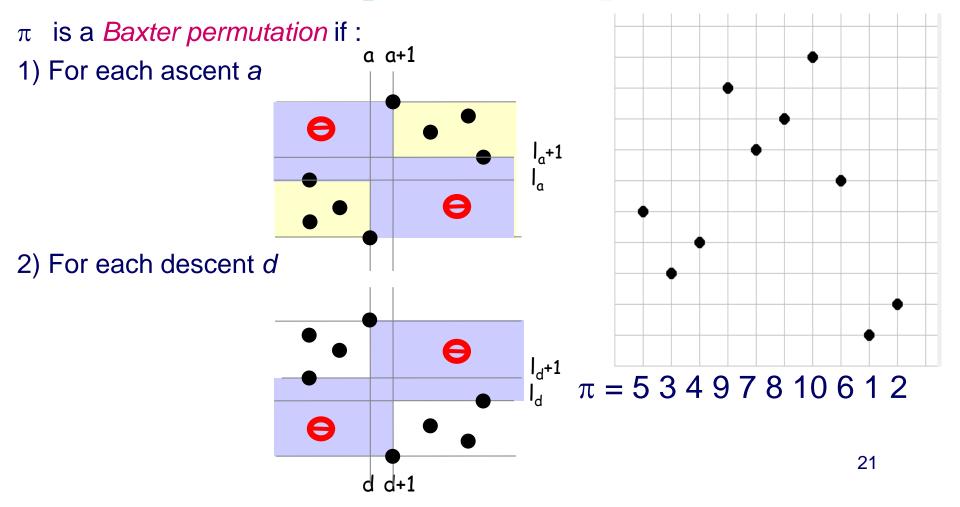


Given the red edges, there is a unique to add blue edges without creating a blue N (or a blue anti-N)

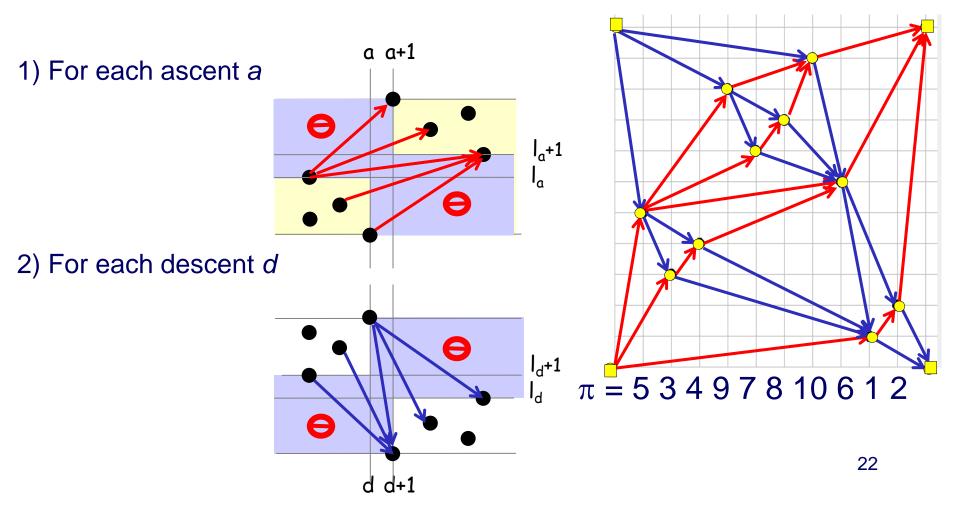




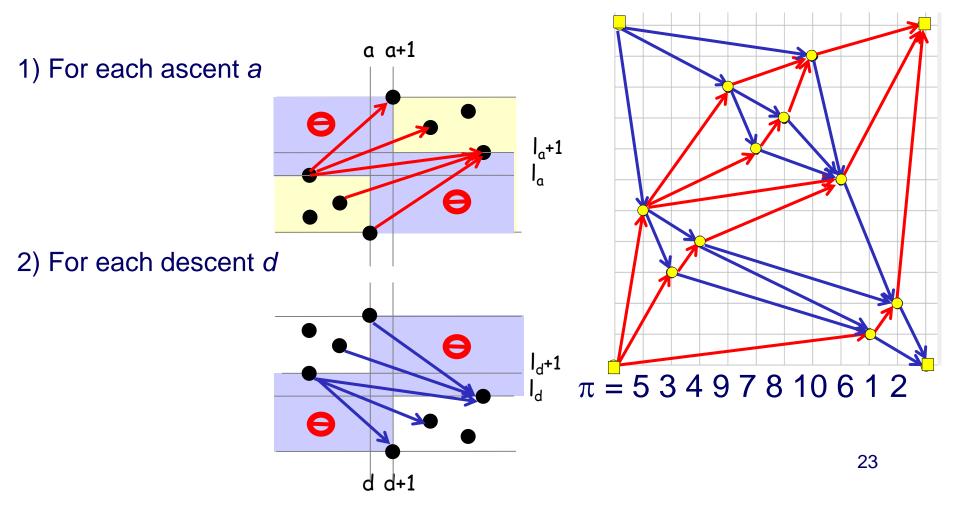
Baxter Permutation [Baxter'64]



Baxter Permutations ↓ TS without blue N or red N

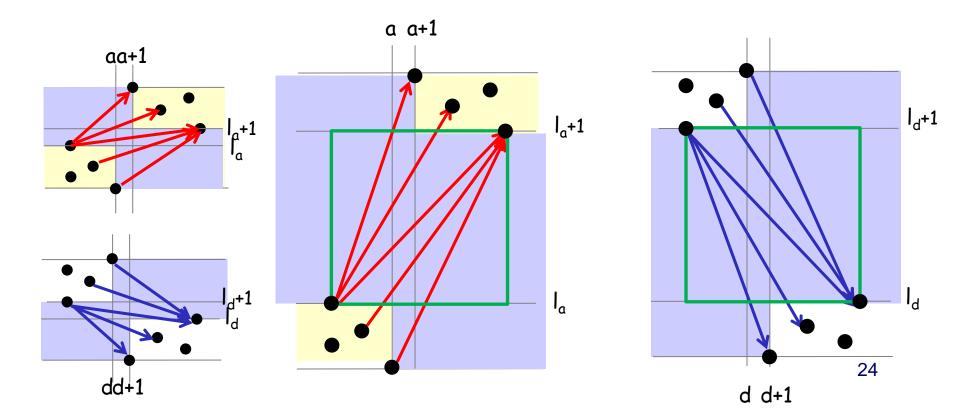


Baxter Permutations ↓ TS without blue anti-N or red N



TS without blue anti-N or red N \downarrow L_m-Delaunay triangulations

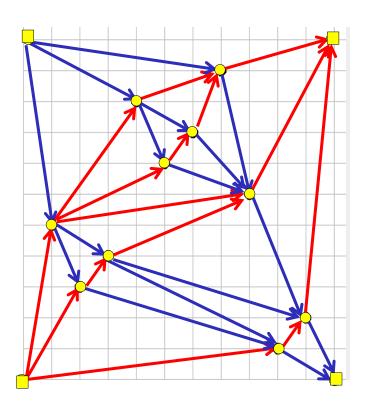
For each ascent a (resp. descent d), inflate the corresponding row I_a (resp. I_d) such that the diagonal edge has slope +/-45°.

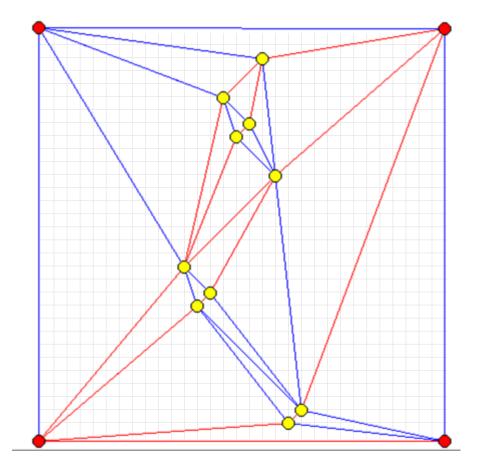


TS without blue anti-N or red N L_{∞} -Delaunay triangulations l_d+1 a a+1 L+1 a

d d+1

TS without blue anti-N or red N \downarrow L_∞-Delaunay triangulations





Conclusion

- Is every triangulation without non-facial triangle L_{∞} -Delaunay realizable?
 - Not so many progress on this question \otimes
- If yes, can we compute efficiently a corresponding L_∞-Delaunay triangulation?
- If not can we decide in polynomial time if a triangulation is L_{∞} -Delaunay realizable?
- If not can we decide in polynomial time if a transversal structure is L_{∞} -Delaunay realizable?