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Let them eat cake!

“S’ils n’ont pas de pain, qu’ils mangent de la brioche!”
–Marie Antoinette d’Autriche (1755–1793)



A small motivational example: plane partitions

Theorem (Major MacMahon 1916)

∑
Λ

qVolume(Λ) =
∏
n≥1

1

(1− qn)n
.



Large scale limit: q → 1

Figure: Nienhuis–Hilhorst–Blöte 1984, Cerf–Kenyon 2001, Okounkov–Reshetikhin 2003
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Pyramid partitions

Figure: Piles of 2 × 2 × 1 boxes, each viewed as a pair of dominoes in the 2D projection looking downwards. On the left, the empty

pyramid partition.



More pictures

Figure: Pyramid partitions in 2D, LEGO coloring.



LEGO

Figure: Pyramid partitions in 3D, natural light coloring.



Flips and the volume

I pyramid partition = what’s left after a finite number of box removals from the
empty configuration (introduced by Kenyon and Szendröi)

I removal = flip (adjacent vertical dominoes ↔ adjacent horizontal dominoes)

I Volume = Number of flips

Theorem (Young 2010)

∑
Λ

qVolume(Λ) =
∏
n≥1

(1 + q2n−1)2n−1

(1− q2n)2n
.



How do large pyramid partitions look like?
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Partitions

Figure: Partition (2, 2, 2, 1, 1) in English, French and Russian notation, with associated Maya diagram (particle-hole representation).



Horizontal and vertical strips

Given partitions µ ⊆ λ, we can form skew diagram λ/µ, which we call a

I horizontal strip, and write µ ≺ λ if

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ λ3 . . .

******** / ***** -----***

***** / *** ---**

*** / *** = ---

* / *

I vertical strip, and write µ ≺′ λ, if λ′ ≺ µ′ (′ = conjugate) or

λi − µi ∈ {0, 1}

******** / ******* -------*

***** / ***** -----

***** / **** ----*

***** / **** = ----*

* / * -

* / *

* / *



The Schur process

Let ω = (ω1, ω2, . . . , ωn) ∈ {≺,�,≺′,�′}n be a word. We say a sequence of partitions
Λ = (∅ = λ(0), λ(1), . . . , λ(n) = ∅) is ω-interlaced if λ(i − 1)ωi λ(i), for i = 1, . . . , n.
The Schur process of word ω with parameters Z = (z1, . . . , zn) is the measure on the set
of ω-interlaced sequences of partitions

Λ = (∅ = λ(0), λ(1), . . . , λ(n) = ∅)

given by

Prob(Λ) ∝
n∏

i=1

z
||λ(i)|−|λ(i−1)||
i .

Remark
For a more general definition, see the original work of Okounkov–Reshetikhin 2003, or
Borodin–Rains 2006.



The Schur process is a determinantal point process

Theorem (OR 2003; BR 2006)

Prob(λ(is ) contains a particle at position ks , 1 ≤ s ≤ n) = det
1≤u,v≤n

K(iu , ku ; iv , kv )

where

K(i , k; i ′, k ′) =


[

zk

wk′

]
Φ(z;Z ,ω;i)

Φ(w ;Z ,ω;i′)

√
zw

z−w
, i ≤ i ′,

−
[

zk

wk′

]
Φ(z;Z ,ω;i′)
Φ(w ;Z ,ω;i)

√
zw

w−z
, i > i ′

with

Φ(z; Z , ω; i) =
∏

j : j≤i, ωj∈{≺,≺′}

εj =

{
1, ωj =≺′,
−1, ωj =≺ .

(1 + εj zj z)εj
∏

j : j>i, ωj∈{�,�′}

εj =

{
1, ωj =�′,
−1, ωj =� .

(
1 + εj

zj

z

)−εj
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Pyramid partitions as Schur processes, pictorially
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Figure: A pyramid partition of width 5 corresponding to the sequence

∅ ≺ (1) ≺′ (2) ≺ (2, 2) ≺′ (3, 3) ≺ (3, 3, 2) �′ (2, 2, 1) � (2, 1) �′ (1, 1) � (1) �′ ∅.



Pyramid partitions as Schur processes II

Let n = 2n0 be an even integer. A pyramid partition is (bijectively) a sequence of 2n + 1
partitions

Λ = (∅ = λ(−n) ≺ λ(−n+1) ≺′ λ(−n+2) ≺ · · · ≺′ λ(0) � λ(1) �′ λ(2) � · · · �′ λ(n) = ∅).

It is this a Schur process for the word ωpyr = (≺,≺′)n0 (�,�′)n0 and parameters
Z = (z−n, . . . , z−1, z1, . . . , zn).

Remark
For volume weighting, z−i = zi = qi− 1

2 , 1 ≤ i ≤ n.



YMP

Figure: Pyramid partitions in 2D (LEGO coloring), with partitions as Maya diagrams on left: empty process top and

· · · ≺′ 0 ≺ (3) ≺′ (4, 1, 1) � (2) �′ (1) � (1) �′ (1) � (1) �′ 0 � . . . process bottom.



A simple word on asymptotics

Everything we’d like to know about asymptotics of large pyramid partitions can be
translated into asymptotics of large particle–hole systems associated to the

corresponding Schur process.



How to compute the limit shape

Let t = 2t0 < n, k ∈ Z + 1
2

. A weak Wick lemma shows that:

Lemma (db–Boutillier–Vuletić 2016)

Prob(λ(−t) contains a particle at position k) =

=

[
zk

wk

]
J(z; t0)

J(w ; t0)

√
zw

z − w

=

∫ ∫
J(z; t0)

J(w ; t0)

1

zk− 1
2 w−k− 1

2

1

z − w

dz

2πiz

dw

2πiw

where (with (u; q)m =
∏m−1

i=0 (1− qi u))

J(z; t0) =
(−q2t0+ 1

2 z; q2)n0−t0 ( q
1
2

z
; q2)n0

(q2t0+ 3
2 z; q2)n0−t0 (− q

3
2

z
; q2)n0

.



Asymptotics regime

We let the size of the partition grow with q → 1 as ε→ 0 like so:

q(ε) = exp(−γε),
n0(ε) = a0/ε,

t0(ε) = x0/ε,

k(ε) = y/ε.



A few limit formulas

If q = exp(−r) and r → 0+, we have

log(z; q)∞ ∼ −
Li2(z)

r

and furthermore,

log(z; q) A
r
∼

1

r
(Li2(e−Az)− Li2(z))

where

Li2(z) =
∑
n≥1

z2

n2
, |z| < 1

with analytic continuation given by

Li2(z) = −
∫ z

0

log(1− u)

u
du, z ∈ C\[1,∞).



Asymptotics of the kernel

Lemma (db–Boutillier–Vuletić 2016)
In the limit (x = 2x0 is rescaled t, y is rescaled k),

Prob(λ(−t) contains a particle at position k) ∼
∫ ∫

eS(z;x,y)−S(w ;x,y)) dT
z − w

where

S(z; x , y) =
1

2γ

(
Li2(−Az)− Li2(−Xz) + Li2(

A

z
)− Li2(

1

z
)+

+Li2(Xz)− Li2(Az) + Li2(−
1

z
)− Li2(−

A

z
)

)
− y log z

and X = exp(−γx),A = exp(−2γa0).



The arctic curve

To compute the arctic curve, one solves for (x , y) (or X = exp(−γx),Y = exp(2γy))
corresponding to double critial points of S(z; x , y). That is,

Theorem (db–Boutillier–Vuletić 2016)
The arctic curve is the locus (x , y) satisfying:

f (z; X ) = Y ,

f ′(z; X ) = 0

where f (z; X ) = (z+1)(z−A)(z−1/A)(z+1/X )
(z−1)(z+A)(z+1/A)(z−1/X )

.

Remark
Alternatively, it can be seen as given by the algebraic equation

∆ [(z + 1)(z − A)(z − 1/A)(z + 1/X )− Y (z − 1)(z + A)(z + 1/A)(z − 1/X )] = 0

where ∆ represents taking the discriminant.



The arctic curve, pictorially

Notice the cusps (which correspond to the double critical point of S at z = 0).



Arctic curve in the infinite regime

What happens when a0 →∞, or equivalently, A→ 0?

The cusps move to ∞ and the arctic curve becomes

(1 + Z + W − ZW )(1 + Z −W + ZW )(1− Z + W + ZW )(1− Z −W − ZW ) = 0

where (Z ,W ) = (
√

X ,
√

Y ) which is the boundary of the amoeba of the (square lattice
determined) polynomial

P(Z ,W ) = 1 + Z + W − ZW .



Arctic curve in the infinite regime, pictorially
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A large sample in the infinite regime, up to affine transformations



A word on what happens on the arctic curve

Everywhere but at the cusps and tangency points, fluctuations are of Airy type (cf., for
example, Okounkov–Reshetikhin 2006). At the turning points, one has two correlated
GUE minors processes. At the cusps, one (conjecturally as of yet) gets the cusp Airy

process of Duse–Johansson–Metcalfe (2015).



A slide on details: fermionic vertex operators cf. the Kyoto School

Γ+(x)Γ−(y) =
1

1− xy
Γ−(y)Γ+(x),

Γ̃+(x)Γ̃−(y) =
1

1− xy
Γ̃−(y)Γ̃+(x),

Γ̃+(x)Γ−(y) = (1 + xy)Γ−(y)Γ̃+(x),

Γ+(x)Γ̃−(y) = (1 + xy)Γ̃−(y)Γ+(x),

Γ+(x)ψ(z) =
1

1− xz
ψ(z)Γ+(x),

Γ+(x)ψ∗(w) = (1− xw)ψ∗(w)Γ+(x),

Γ−(y)ψ(z) =
1

1− y
z

ψ(z)Γ−(y),

Γ−(y)ψ∗(w) = (1−
y

w
)ψ∗(w)Γ−(y),

Γ̃+(x)ψ(z) = (1 + xz)ψ(z)Γ̃+(x),

Γ̃+(x)ψ∗(w) =
1

1 + xw
ψ∗(w)Γ̃+(x),

Γ̃−(y)ψ(z) = (1 +
y

z
)ψ(z)Γ̃−(y),

Γ̃−(y)ψ∗(w) =
1

1 + y
w

ψ∗(w)Γ̃−(y).



Other stuff: “skew pyramid partitions”

Figure: Skew pyramid partitions: word (≺,≺′)50(�,�′)50(≺,≺′)50(�,�′)50, q = 0.99. The analogue in pyramid partition land

of OR 2006’s skew plane partitions. Vertical cusps should have Pearcey fluctuations generically, cusp Airy if symmetric.



Other stuff: symmetric “pyramid partitions”



Symmetric “pyramid partitions” as plane overpartitions

This limit shape seems to be the same that Vuletić 2009 analyzed in the context of strict
plane partitions and Pfaffian processes. Work in progress with M. Vuletić and J. Bouttier.
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The Aztec diamond

Figure: Two tilings of the size n = 4 Aztec diamond. One can define the volume of a tiling as the number of flips needed to reach it from

the all horizontal (zero volume) tiling.

There are 2

(
n+1

2

)
tilings of the n × n Aztec diamond (Elkies–Kuperberg–Larsen–Propp

1992).



The original arctic circle theorem (Jockush–Propp–Shor 1998)



The Aztec diamond as a Schur process

The order n Aztec diamond is (bijectively equivalent to) the sequence of 2n + 1 partitions

Λ = (∅ = λ(0) ≺ λ(1) �′ λ(2) ≺ · · · �′ λ(2n − 1) ≺ λ(n) �′ λ(2n) = ∅).

It is a Schur process of word (≺,�′)n and parameters (z1, . . . , zn).

• • • • • •
•
•
• • •

•
•
•
•
•

•
•◦

◦
◦ ◦ ◦ ◦ ◦ ◦

◦
◦
◦

◦
◦
◦
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◦
◦

432

1

0

Figure: A 2 × 2 Aztec diamond corresponding to the sequence ∅ ≺ (2) �′ (1) ≺ (1, 1) �′ ∅.

Remark
If z2i−1 = q−2i+1, z2i = q2i , one obtains a qVolume weighting on the Aztec diamond
where volume = number of flips from the all horizontal tiling.



Periodic weights, arbitrary parameters

For (say) k < l , pick z parameters as follows: z1 = a1, z2 = b1, z3 = a2, z4 =
b2, . . . , z2k−1 = ak , z2k = bk , z2k+1 = a1, z2k+2 = bk+1, . . . , z2l = bl , repeat

•λ(0) = ∅ • λ(1)

•λ(2) • λ(3)

•λ(4) • λ(5)

•λ(6) • λ(7)

•λ(8)

a1,≺

b
1
,
�
′

a2,≺

b
2
,
�
′

a3,≺

b
1
,
�
′

a1,≺

b
2
,
�
′

. . .

Figure: k = 3, l = 2 a, b parameters.

Similar weights have been considered before (Mkrtchyan 2013, case of plane partitions),
but note here there is no need for any of the parameters to be < 1.



How do such large Aztec diamonds look?

Figure: A random 150 × 150 Aztec diamond with a, b parameters a1 = 4, a2 = 1/4, b1 = 1.



More fingers

Figure: A random 200 × 200 Aztec diamond with a, b parameters (a1, a2, a3, b1, b2) = (8, 1, 1/8, 3, 1/3).



Snake

Figure: A random 150 × 150 Aztec diamond with a, b parameters a1, a2, b1, b2 = (48, 1, 16, 1/8).



Compare with Kenyon–Okounkov 2003 (another snake)

Simple (uniform) measure and (moderately) complicated boundary conditions vs.
(moderately) complicated measure and simple boundary conditions (limit shapes look
similar, but there are equally important differences).



Something like the tacnode process

Figure: 100 × 100 Aztec diamond with a, b parameters (a1, a2) = (b1, b2) = (α, 1/α), α = 30.



Particle–hole view, up to affine transformations

Compare this to the work of Borodin–Duits 2011 (maybe!).



Non–intersecting paths picture



The S function, and what can we say ’bout the model

S(z; x , y) =
x

k
log

(
k∏

i=1

(1 + ai z)

)
+ (1−

x

l
) log

(
l∏

i=1

(1−
bi

z
)

)
− y log z

Analyzing S , we can obtain:

I formula for the arctic curve, as before

I location of the points of tangency to the boundary

I angle made by the cusps

I fluctuations
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Some pictures of things we can’t yet do using our methods. Some are harder than others.



Partial Aztec diamonds, uniformly weighted

Figure: Half an n = 100 Aztec diamond with final partition fixed ∅ ≺ λ(1) �′ · · · ≺ λ(n − 1) �′ λ(50) = 2550

This corresponds to the Gelfand–Tsetlin polygons of Petrov 2012 (special case of
Kenyon–Okounkov 2007). In our case:

∅ ≺ λ(1) �′ · · · ≺ λ(n − 1) �′ λ(n) = fixed λ.



Compare with GT polygons – KO 2007 and P 2012



Aztec diamond with frozen corner

Work of Colomo–Sportiello, initially on the 6 vertex model. There is some Painlevé
interpretation of the partition function here, a la Borodin–Arinkin 2009 (work of Pronko
2015 and Kniezel – 2015).



2–Periodic Aztec diamond

Studied by Chhita–Johansson 2014 and Chhita–Young 2013 using the inverse Kasteleyn
matrix approach.



Thank you!


