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Introduction

Particles propagating under the effect of an external field and interacting
with two reservoirs at different chemical potential p;, pgr
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Introduction

Particles propagating under the effect of an external field and interacting
with two reservoirs at different chemical potential p;, pgr

No detailed balance: Macroscopic particle current
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The Asymmetric Simple Exclusion Process (ASEP)
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One dimensional lattice

Exclusion: at most one particle per site

Asymmetric: jump rate to the right t2, to the left t—2
Particles enter with rate o from left, with rate § from right
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Particles leave with rate v from left, with rate 8 from right
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Applications
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Impurities

Here we want to take into account the presence of impurities that are
NOT EXCHANGED with the reservoirs
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Two species ASEP

The impurity (second-class particle) has the same dynamics as a normal
(first-class particle) , while the first-class particles treat it as a hole.

It is convenient to think at
first class, second class particles . @ O

and empty sites as
three kinds of particles
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Master equation and Markov generator

Probabilities of the configurations {w} evolve under a Master equation

ZMW%W ZMW*}W w(t)

l;éw /#W
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Master equation and Markov generator

Probabilities of the configurations {w} evolve under a Master equation

ZMW%W ZMW*}W w(t)

l;éw /#W

Using a vector representation for the probabilities

PN,m(t) = Z Pw ( )

weQ(N,m)
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Master equation and Markov generator

Probabilities of the configurations {w} evolve under a Master equation

ZMW%W ZMW*}W w(t)

l;éw /#W

Using a vector representation for the probabilities

Pum(t)= Y Pu(t)w

weQ(N,m

\ )‘\Number of impurities

Length of the chain
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Master equation and Markov generator

Probabilities of the configurations {w} evolve under a Master equation

ZMW%W ZMW*}W w(t)

l;éw /#W
Using a vector representation for the probabilities
Pum(t)= Y Pu(t)w

weQ(N,m

\ )‘\Number of impurities

The Master equation reads
Length of the chain

d
EP(t) = MP(t)

Luigi Cantini ASEP-koornwinder



Master equation and Markov generator

Probabilities of the configurations {w} evolve under a Master equation

ZMW%W ZMW*}W w(t)

w!#w w!#w

Using a vector representation for the probabilities

Pum(t)= Y Pu(t)w
weQ(N,m

\ )‘\Number of impurities

The Master equation reads
Length of the chain

d
ZP(e) = MP(2)

Where the Markov generator is given by the sum of local terms

N—-1
MzZe,-—i—fl—i—fN.

i=1
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Stationary measure

MPyN.m =0
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Stationary measure

In this talk I'll focus on the Stationary measure

MPym=0

» Usually dealt with by the Matrix Product Ansatz [Derrida, Evans,
Hakim, Pasquier]

» Rich combinatorics: rhombic alternative and rhombic staircase
tableaux [Corteel, Williams, Mandelshtam, Viennot,.. .]

» Boundary induced phase transitions [Krug,. . .]
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Stationary measure

In this talk I'll focus on the Stationary measure

MPn,m =0
» Usually dealt with by the Matrix Product Ansatz [Derrida, Evans,
Hakim, Pasquier]
» Rich combinatorics: rhombic alternative and rhombic staircase

tableaux [Corteel, Williams, Mandelshtam, Viennot,.. .]

v

Boundary induced phase transitions [Krug,. . .]

v

Here I'll describe an algebraic approach based on:

Exchange/reflection equations.
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Cn Hecke Algebra

Define operators Tg, T1,..., Ty as
To=a 207 +a?s 21

Tw= B3yt + By i1
andfor1<i<N-1 .
Ti=e +t 21

They satisfy the commutation relations of the generators of the affine
Hecke algebra Cy

1 _
T-T=d g
=TTt i > 1
TiTiaTi=TiaTiTipq if i #0,N -1

ToT1ToTi = T1ToT1 7o

TnTy—1TnTn—1 = Tn—1 TnTn—1Tn

Nl

[N

1 1
with tg :a%é_%,t,f,:ﬁ%v_ and t;=tfor1 <i<N-1.
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Integrability

The R matrices
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Integrability

The R matrices i

R(z) =14+ "~~~
(2) Jrtzz—t%

e;.

The boundary scattering matrices

B (22 -1) _
Ki(z|la,b) =1+ ma (6, ),

B (1-2?)
Kn(zlc,d) =1+ (z—1)(dz-1)

Where we assume t # 1 and parametrize the boundary rates as

v (B, 7).

_(t2—t3)ab ot t?
S (a-1)(b-1) S (a-1)(b-1)
(t? —t73)cd t=3 —tl

S Y | ) M P gy
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Stationary measure: exchange/reflection equations

We introduce a vector

Unm(@) = Y. tdu(@)w

weQ(N,m)
solution of the following exchange/reflection equations
Ri(ziz31)Vnm(2) = siVi,m(2)

Kl(Zl)\UN’m(Z) = SO\UN’m(Z)
KN(ZN)WM,,,(Z) = SN\UNJ,-,(Z).

where
S,'f(...,Z,',Z,'+1,...) = f(...,2i+1,2i,...)
Sof(Zl,...) = f(Zl_]',...)
snf(...,zn) = f(...,z,gl)
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Stationary measure: exchange/reflection equations

Consistency of the exchange/reflection equations is ensured by the
Yang-Baxter equations

v v

Ri(yz YRia(xz Ri(xy™ 1) = Ry Rz Y Rija(yz ™)

v

Ri(xy M Ki(y)Ri(x Ty ) Ki(x) =
Ki(x)Ri(xty ) Ki(y)Ru(xy ™),

Rn—10xy ") K (x) Ru—1(xy) Kn(y) =
Kn(y)Ru-10xy)Kn(x)Rn—1(xy ™),

and the so called unitarity condition
R,'(Z)R,‘(Zil) =1.
Ki(x)Ki(x7 1) =1, Kn(x)Kn(x71) = 1.
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Stationary measure: exchange/reflection equations

Theorem

» The exchange equations have unique solution (up to multiplication
by a function invariant under the action of sg,s;, sy)
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Stationary measure: exchange/reflection equations

Theorem

» The exchange equations have unique solution (up to multiplication
by a function invariant under the action of sg,s;, sy)

» Under specialization z; = 1 we get

\UN,m(l) o PN,m
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Exchange/reflection equations in components

Vs, (2) = s0¢s,...(2)
/(/) *(Z) = stm *(Z)




Affine Hecke Again: Noumi representation
Noumi introduced a representation of Cyy depending on 6 parameters

a,b,c,d,t,q, acting on C[z,. .. ,z,f,ﬂ]
fa 1 1 1
T, =1t2 — (tfz,- — t_52f+1) 0; (1)
~ 1 _1 — —b
To=1t —t taza@—b) , (2)
7
~ 1 —1(czy — 1)(dzy — 1
T,V:t;,—t,\,z(z” dzn —1) 5 . (3)
zy
where tg = —g~lab ty = —cd and
1—s; 1-— 1—
al = > 3 a0 = %0 ) aN = SIX
Zi — Zit+1 Z1 —qz; zZy — zy

Where s;, sy are as before but

sof(z1,...) = f(qz; %,...)
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Affine Hecke Again: Noumi representation
Noumi introduced a representation of Cyy depending on 6 parameters

a,b,c,d,t,q, acting on C[z,. .. ,z,f,ﬂ]
fa 1 1 1
T, =1t2 — (tfz,- — t_52f+1) 0; (1)
~ 1 _1 — —b
To=1t —t taza@—b) , (2)
7
~ 1 —1(czy — 1)(dzy — 1
T,V:t;,—t,\,z(z” dzn —1) 5 . (3)
zy
where tg = —g~lab ty = —cd and
1—s; 1-— 1—
al = > 3 a0 = %0 ) aN = SIX
Zi — Zit+1 Z1 —qz; zZy — zy

Where s;, sy are as before but
sof(z1,...) = f(qz; %,...)

For ASEP g =1
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Non-symmetric Koornwinder [Sahi, Noumi, .. .]

The commutative sub-algebra )V generated by elements Ylil, ceey Yﬁl
[Lusztig]

Yi=(Ti... Tnoa) (T To) (T T,

Its common eigenfunctions are the non-symmetric Koornwinder
polynomials E,(z) (o € ZN)

E.(z) =z" + Z cp2”,
28 <z

YiEo(z) = wi(a)Eq(2).
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Non-symmetric Koornwinder [Sahi, Noumi, .. .]

The commutative sub-algebra )V generated by elements Ylil, ceey Yﬁl
[Lusztig]
Yi=(Tioo . Tne) (T To) (T . T2Y).

Its common eigenfunctions are the non-symmetric Koornwinder
polynomials E,(z) (o € ZN)

E.(z) =z" + Z cp2?,

2P <z

YiEn(z) = wi(e)Ea(2).

By using the exchange/reflection relations it is easy to show that

coeox---x(z)=E_1..._10...0(z
Yo ox---x(2) 1 10---0(2)
N—m m N—m m
(Actually E_q1... _10...0(z) doesn't depend on q).
——— N —
N—m m
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Symmetric Macdonald-Koornwinder polynomials
[Koornwinder|

Koornwinder g-difference operator
D, = Z‘D (2)(Taz — 1)+ ®i(z7 )Tz — 1)

where T, ;. is the i-th g-shif operator

Tozf(z1,.. .z, 2n) = f(21,...,92Z, ..., 2ZN)

(1—az)(1-bz)(1—cz)(1—dz) — tzz;)( tzzj_l)
o) = T )= e) H T ——

J#l
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Symmetric Macdonald-Koornwinder polynomials

The symmetric Macdonald-Koornwinder polynomials Py(z)
» Laurent polynomials in N variables

» Labeled by a partition )\, coefficient of z* in Py(z) is 1
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Symmetric Macdonald-Koornwinder polynomials

The symmetric Macdonald-Koornwinder polynomials Py(z)
» Laurent polynomials in N variables
» Labeled by a partition )\, coefficient of z* in Py(z) is 1
» Eigenfunctions of D ;

Dq.:PA(z) = d\Px(2)

N
dy =Y [q tabedt®> gV — 1)+t (g = 1)]

i=1
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Symmetric Macdonald-Koornwinder polynomials

The symmetric Macdonald-Koornwinder polynomials Py(z)
» Laurent polynomials in N variables
» Labeled by a partition )\, coefficient of z* in Py(z) is 1
» Eigenfunctions of D ;

Dq.:PA(z) = d\Px(2)

N
dy =Y [q tabedt®> gV — 1)+t (g = 1)]

i=1

» They are multivariables generalization of the Askey-Wilson
polynomials
P(my(z) < pm(x; a, b, c, d|q).
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Symmetric Macdonald-Koornwinder polynomials

» Orthogonality

<P>\7P;L>:O if AF p

fﬂ o Ar(t, G 2)p(2)a(2 )

where the contour of integration C encircles the poles in
agk, bq*, cq®, dg* (k € 7, ) and excludes all the others.

( i 62 q)oo ( 2 q)oo
An(t,q;z) =
(t.9:2) 1<i1<_J[_<N (tzflzj62 H (azf, bzf, czf, dzf; q) o
€1,e0="+1
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Weighted partition function

Let o(w) be the number of first class particles in configuration w.
We define the weighted partition function as

Zn(&zia, byc,d) = Y 2, (2).

weQ(N,m)
Theorem

The generating function for the number of particles in the system is given
by

Znm(& 232, b, c,d) = V" Pin-mon (£2|€2; ag, be, ce, de)
Wlth ag = fa, b§ = gb, Cﬁ = g_]'c? df — f_ld_
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Weighted partition function

Let o(w) be the number of first class particles in configuration w.
We define the weighted partition function as

Zy(&zia bcd):= Y £y (2).

weQ(N,m)
Theorem
The generating function for the number of particles in the system is given
by

Znm(& 232, b, c,d) = V" Pin-mon (£2|€2; ag, be, ce, de)
Wlth ag = fa, b§ = gb, Cﬁ = g_]'c? d§ — f_ld_

Remark: the Macdonald-Koornwinder polynomials P;v—mgn(z) associated
to single column diagrams A = 1V=™0™ are independent of the

parameter q.
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Current and density

We define an inhomogenous version of the current of particles

Iom(@) = o S athon(z) — e (2),

ZN,m(g =1 Z) weQ(N,m)
which under specialization z = 1 reduces to the homogeneous case,

(Inv,m) = In,m(1).
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Current and density

We define an inhomogenous version of the current of particles

Iom(@) = o S athon(z) — e (2),

ZN,m(g =1 Z) weQ(N,m)
which under specialization z = 1 reduces to the homogeneous case,
(Iv,m) = Inm(1).

Using the recursion relations we get

Iuml@) =~ leﬁ" = ZN_zl&mm(?z\) 2. J
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Current and density

» After specialization z = 1, we obtain

= 1 =222 J
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Current and density

» After specialization z = 1, we obtain

() = (¢} = - Zactn),

» For the density of first class particles we have

1 0
hon) = (5 5¢ e Zunl&D) |
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Current and density

» After specialization z = 1, we obtain

() = (¢} = - Zactn),

» For the density of first class particles we have

1 0
hon) = (5 5¢ e Zunl&D) |

> In order to determine their asymptotic behavior N — oo, p. = m/N,
we use an integral representation of the Macdonald-Koornwinder
polynomials.
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Integral representation
Using the Cauchy identity for Macdonald-Koornwinder polynomials

[Mimachi] and assuming t < 1, we can write
Zm(&:2) = 1y (a, be, ce, de|t)

_ dx
£N mﬁmﬂ(gz,x)w(x; ag, be, ce, de|t) pm(X; ag, be, e, de|t)

pm(x; a, b, ¢, d|t) is the m-th Askey-Wilson polynomial of base ¢t in the

) —1
variable *&—

(X27 X72; t)OO
(ax, ax=1, bx, bx~1 ex, ex71 dx, dx—1; t) oo

MN(z,x) = H (zi+z7 ' —x—x71)

1<i<N

w(x; a, b, c,d|t) =

(abcdt?™; t) o
(tmt1 abt™ act™, adt™, bct™, bdt™, cdt™; t) s

rm(aa b? C? d|t) =
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Integral representation

Using the Cauchy identity for Macdonald-Koornwinder polynomials
[Mimachi] and assuming t < 1, we can write

Zn,m(&2) = ry"(ae, be, ce, de|t) x

—m dx
& ?ﬁ 2 (62, X)w(x; ag, be, ce, de|t)pm(x; ag, b, ce, de|t)

Remarks

» This formula at z = 1 generalizes the result of Uchiyama, Sasamoto
and Wadati obtained for m = 0.

» At z =1 improves a much more complicated formula obtained by
Uchiyama.

» Comparison with results of Corteel, Mandelshtam and Williams:
combinatorial representations of P,, in terms of Rhombic Staircase
Tableaux?
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Phase diagram

1 1
) t3 —t72)(1—p? _ 1—p,
w<acs Jo e i
a(t~2—t2 1—p.
a<Xxp,C: J:W’ Pt =2 e >
1 1
t72—t32 1 1—p.
c < Xp,a: J:;((].*C)z ), P'Zl = < 2p
C X0 1
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Conclusion

» The approach to the study of the stationary measure through
exchange relations can be applied to any Yang-Baxter integrable
stochastic process.
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Conclusion

» The approach to the study of the stationary measure through
exchange relations can be applied to any Yang-Baxter integrable
stochastic process.

> Relations with multivariate orthogonal polynomials.
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Conclusion

» The approach to the study of the stationary measure through
exchange relations can be applied to any Yang-Baxter integrable
stochastic process.

> Relations with multivariate orthogonal polynomials.

» Work backward: find Matrix Product representations of
Macdonald-Koornwinder polynomials.

» Work with several species of particles — general Koornwinder
polynomials at g = 1.
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