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Introduction

Integer partitions

Definition

A partition of a positive integer n is a finite non-increasing sequence of
positive integers A1, ..., Ay such that Ay + - - - + A\, = n. The integers
A1, ..., Am are called the parts of the partition.

Example
There are 5 partitions of 4:

434+1,2+2,2+1+1and14+1+1+1.

Let p(n) denote the number of partitions of n.
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Introduction

Generating functions

Question of Naudé (1740): How many partitions of 50 into 7 distinct
parts?
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Introduction

Generating functions

Question of Naudé (1740): How many partitions of 50 into 7 distinct
parts?

Solution of Euler: generating functions

Let n, k be positive integers and let Q(n, k) denote the number of
partitions of n into k distinct parts. Then

143 > Qnk)Z¢" = (14 29)(1+ 28*) (1 + z¢°)(1 + z¢*) - -
n>1k>1

=[] +z.

n>1
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Introduction

Generating functions

Question of Naudé (1740): How many partitions of 50 into 7 distinct
parts?

Solution of Euler: generating functions

Let n, k be positive integers and let Q(n, k) denote the number of
partitions of n into k distinct parts. Then

143 > Qnk)Z¢" = (14 29)(1+ 28*) (1 + z¢°)(1 + z¢*) - -
n>1k>1

=[] +z.

n>1

Recurrence relation: Q(n, k) = Q(n— k, k) + Q(n — k, k —1).
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Introduction

Generating functions

Question of Naudé (1740): How many partitions of 50 into 7 distinct
parts?

Solution of Euler: generating functions

Let n, k be positive integers and let Q(n, k) denote the number of
partitions of n into k distinct parts. Then

143 > Qnk)Z¢" = (14 29)(1+ 28*) (1 + z¢°)(1 + z¢*) - -
n>1k>1

=[] +z.

n>1

Recurrence relation: Q(n, k) = Q(n— k, k) + Q(n — k, k —1).

= There are 522 partitions of 50 into 7 distinct parts.
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Introduction

Generating functions

Let p(n, k) denote the number of partitions of n into k parts. Then

14> ) p(nk)z"q"=(1+ 29+ 22+ )1+ 2> + 2°¢* +---) -+
n>1k>1

:H(1+an+z2q2n+”.)
n>1

1
Uiy

n>1
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Introduction

Partition identities

Theorem (Euler 1748)

For every integer n, the number of partitions of n into distinct parts equals
the number of partitions of n into odd parts.
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Introduction

Partition identities

Theorem (Euler 1748)

For every integer n, the number of partitions of n into distinct parts equals
the number of partitions of n into odd parts.

Proof.
(1+4q")(1-q")
[Ta+a =152
n>1 n>1
H 1— q2n
n>1 1-q"
~11 1
- _ g2n-1"
n>1 1 q !
DJ
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Introduction

The Rogers-Ramanujan identities

The first Rogers-Ramanujan identity is the following g-series identity:

Theorem (Rogers 1894, Rogers-Ramanujan 1919)

2

) q B . .
;) (1 — q)(l — q2) .. (]_ _ qn) - kl:[) (]_ _ q5k+1)(1 — q5k+4)’
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The Rogers-Ramanujan identities

The first Rogers-Ramanujan identity is the following g-series identity:

Theorem (Rogers 1894, Rogers-Ramanujan 1919)

2

q
nz_(:)(]-—q)(l—q2)(]_— H(]__ 5k+1 1_ 5k+4)

Theorem (Partition version)

For every positive integer n, the number of partitions of n such that the
difference between two consecutive parts is at least 2 is equal to the
number of partitions of n into parts congruent to 1 or 4 modulo 5.
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Introduction

The Rogers-Ramanujan identities

The first Rogers-Ramanujan identity is the following g-series identity:

Theorem (Rogers 1894, Rogers-Ramanujan 1919)

2

q
,,z_;)(l—Q)(l—q2). H (1_ 5kT1) (1_ P

Theorem (Partition version)

For every positive integer n, the number of partitions of n such that the
difference between two consecutive parts is at least 2 is equal to the
number of partitions of n into parts congruent to 1 or 4 modulo 5.

Rogers-Ramanujan type identity: “for all n, the number of partitions of n
satisfying some difference conditions is equal to the number of partitions
of n satisfying some congruence conditions.”
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Outline

© Schur's theorem and its generalisations
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Schur's theorem and its generalisations Schur’s theorem

Theorem (Schur 1926)

For any positive integer n, let A(n) denote the number of partitions of n
into distinct parts congruent to 1 or 2 modulo 3 and B(n) denote the
number of partitions A1 + - -+ + A\, of n such that

M= Aiyg > 3 /.f)\,-+1 =1,2 mod 3,
4 fAiy1=0 mod 3.

Then A(n) = B(n).

Example

The partitions counted by A(10) are 10, 8 +2, 7+2+1and 5+ 4 + 1.
The partitions counted by B(10) are 10, 9+ 1, 8+ 2 and 7 + 3.
There are 4 partitions in both cases.

Several proofs: Schur, Andrews, Bressoud, Bessenrodt, Alladi-Gordon, ...
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Schur's theorem and its generalisations Schur’s theorem

Idea of Andrews’ first proof

@ bi(m, n): number of partitions Ay + -+ - + A, of n counted by B(n),
having m parts, such that A\, > /.

fi(x) = fi(x,q) =1+ Z Z bi(m, n)x™q".

n=1m=1

e f satisfies the following g-difference equation
A(x) = (14 xq + xq°)i(xq*) + x¢*(1 — x¢*) i (xq®).

@ We solve it and obtain:

S B(n)g" = A1) = [+ ¥+ ¥ = 3 A(n)g".
n>0 j=0 n>0
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Schur's theorem and its generalisations Schur’s theorem for overpartitions

© Schur's theorem and its generalisations

@ Schur's theorem for overpartitions

Jehanne Dousse (Universitat Ziirich) Partition identities JCB 2016 9 /38



Schur's theorem and its generalisations Schur’s theorem for overpartitions

Overpartitions

Definition
Let n be a positive integer. An overpartition of n is a partition of n in
which the first occurrence of a number may be overlined.

Example
There are 8 overpartitions of 3:

3,3,24+1,241,24+1,24+1,1+1+1, and 1+ 1+ 1.
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Schur's theorem and its generalisations Schur’s theorem for overpartitions

Overpartitions

Definition
Let n be a positive integer. An overpartition of n is a partition of n in
which the first occurrence of a number may be overlined.

Example

There are 8 overpartitions of 3:

3,3,24+1,241,24+1,24+1,1+1+1, and 1+ 1+ 1.

v

Let p(n, k) denotes the number of overpartitions of n with k non-overlined
parts. Then

1+ ZZb(n, K)d*q" = H fjjqnn

n>1 k>0 n>1
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SIS IIER AT IEN T MSWCN I IS Schur's theorem for overpartitions

Theorem (Lovejoy 2005)

Let A(k, n) denote the number of overpartitions of n into parts congruent
to 1 or 2 modulo 3, with k non-overlined parts. Let B(k, n) denote the
number of overpartitions A1 + - - - + As of n, having k non-overlined parts
and satisfying the difference conditions

0+ 3X()\,‘+1) I'f)\,url = 1,2 mod 3,
1+ 3X()\,'+1) I'f)\,'_H_ =0 mod 3,

Ai — Aip1 2> {

where x(\i+1) = 1 if A\jy1 is overlined and O otherwise.
Then for all k,n, A(k,n) = B(k, n).

The case k = 0 corresponds to Schur’s theorem.
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SIS IR AT IEN T IESRCN I I Andrews’ generalisations of Schur's theorem

© Schur's theorem and its generalisations

@ Andrews’ generalisations of Schur's theorem
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SIS IR AT IEN T IESRCN I I Andrews’ generalisations of Schur's theorem

Generalisations of Schur's theorem

Notation :

(@ 9)oc = [ (1 — ad").

k>0

Schur Andrews 1
(=9 8*)oo(— % 7)o (=4:9")oe - (=0% 1 d")

Lovejoy D. |
(=0:8%)0o(-0%% )00 ——— (44" (0> 1¢M)x
(dg:63)0(dg?:93) o (dg:qN oo (dg2 T:gN)oe
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SIS IR AT IEN T IESRCN I I Andrews’ generalisations of Schur's theorem

Notation

@ In the following, r is a positive integer and N > 2" — 1.
o [n(m):= the least positive residue of m mod N.
e Forae{1,2,...,2" -1},
w(a) := the number of powers of 2 appearing in the binary expansion

of a,
v(a) := the smallest power of 2 appearing in this expansion.
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Andrews’ generalisations of Schur's theorem
o
Andrews’ first theorem

Theorem (Andrews)

Let D(r, N; n) denote the number of partitions of n into distinct parts
congruent to 20,21, ... 2"~ modulo N.

Let E(r, N; n) denote the number of partitions \1 + - - - + As of n into
parts congruent to 1,2,...,2" — 1 modulo N such that

Ai = Aix1 2 Nw(Bn(Air1)) + v(Bu(Ait1)) — Bu(Aiv1)-

Then for all n, D(r, N;n) = E(r, N; n).

Schur's theorem corresponds to the case r =2, N = 3.
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Andrews’ generalisations of Schur's theorem
H
Andrews’ second theorem

Theorem (Andrews)

Let F(r, N; n) denote the number of partitions of n into distinct parts

congruent to —2°, —21, ... —2""1 modulo N.
Let G(r, N; n) denote the number of partitions A1 + --- + \s of n into
parts congruent to —1,—2,...,—2" + 1 modulo N such that

Ai = Aip1 = Nw(Bn(=Ai)) + v(Bu(=Ai)) — Bn (=),

and \s > N (w(Bn(—Xs) — 1).
Then for all n, F(r,N;n) = G(r,N; n).

Again, Schur’s theorem corresponds to the case r =2, N = 3. But for
other values, the two theorems are different.
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A e T A R G
Thecase r=3,N=7

Theorem (Andrews 1)

Let A(n) denote the number of partitions of n into distinct parts

congruent to 1,2 or 4 modulo 7. Let B(n) denote the number of partitions
of n of the form n = A1 + -+ + X5, where

7ifAiz1=1,2,4 mod 7,
12 if A\jz1 =3 mod 7,

10 if A\jz1 =5,6 mod 7,
15 ifAjiz1 =0 mod 7.

Ai = Aip1 2>

Then for all n, A(n) = B(n).
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A e T A R G
Thecase r=3,N=7

Theorem (Andrews 2)

Let C(n) denote the number of partitions of n into distinct parts

congruent to 3,5 or 6 modulo 7. Let D(n) denote the number of partitions

of n of the form n = A1 + --- + Xs, where

7ifA\i=3,56 mod?7,
12 ifA\j=4 mod?7,
10ifX;=1,2 mod?7,
15ifA; =0 mod?7,

Ai — Aig1 >

and \s #1,2,4,7.
Then for all n, C(n) = D(n).
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Schur's theorem and its generalisations Generalisation of Andrews’ theorems to overpartitions

© Schur's theorem and its generalisations

@ Generalisation of Andrews' theorems to overpartitions
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Generalisation of Andrews’ theorems to overpartitions
The first theorem

Theorem (D. 2014)

Let D(r, N; k, n) denote the number of overpartitions of n into parts

congruent to 2°,21, ... 21 modulo N, having k non-overlined parts.
Let E(r, N; k, n) denote the number of overpartitions A\1 + - - -+ As of n
into parts congruent to 1,2,...,2" — 1 modulo N, having k non-overlined

parts, such that

Ai = A1 > N (w (Bu(Aig1)) = 14 x(Nig1)) + v(Buv(Niv1)) — Bu(Aiga)-

Then for all k,n >0, D(r,N; k,n) = E(r, N; k, n).

The case k = 0 corresponds to Andrews’ first theorem.
The case N = 3, r = 2 corresponds to Schur’s theorem for overpartitions.
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Generalisation of Andrews’ theorems to overpartitions
The second theorem

Theorem (D. 2014)

Let F(r,N; k, n) denote the number of overpartitions of n into parts

congruent to —2°, =21 ... —2""1 modulo N, having k non-overlined
parts.

Let G(r, N; k, n) denote the number of overpartitions A1 + - - - + As of n
into parts congruent to —1,—2,...,—2"+ 1 modulo N, having k

non-overlined parts, such that
Ai = Aig1 = N (w (Bn(=Ai) — 1+ x(Aix1)) + v(Bu (=) — Bru(=i),

)\s > N(W(BN(_/\S)) - 1)7
Then for all k,n >0, F(r,N; k,n) = G(r,N; k, n).

The case k = 0 corresponds to Andrews’' second theorem.
Again, the case N = 3, r = 2 corresponds to Lovejoy's theorem.
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Schur's theorem and its generalisations Generalisation of Andrews’ theorems to overpartitions

Proof of the first theorem

o Define bl (k, m, n) as the number of overpartitions Ay +--- + Ap,
counted by E(r, N; k, n), having m parts, such that A, >/, and

o oo o
' (x) =f"(x,q,d): 1+ZZZb (k,m,n) xMdkq".
n=1 m=1 k=0
e Find the g-difference equation (eq, n) satisfied by f{"(x).
@ Show by induction on r that a function f satisfying (eq, n) and
f(0) = 1 satisfies
H ( CI ; q
b (dg”; M)
which is the generating function for overpartitions counted by

D(r,N; k, n).
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SSRGS IERMEN-CR I CEHGLE  Deducing r=2 from r=1
Outline

© Schur's theorem and its generalisations

@ Deducing (r =2, N = 3) from (r = 1, N = 3) in the first theorem
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b ltlioilisl
The theorem for r=1,N =3

Theorem

Let A(k, n) denote the number of overpartitions of n into parts congruent
to 1 modulo 3, having k non-overlined parts. Let B(k, n) denote the
number of overpartitions A\1 + - - - + Ap, of n into parts congruent to 1
modulo 3, having k non-overlined parts, such that

Ai = Aig1 > 04 3x(Aig1).

Then A(k,n) = B(k, n).

We have

bi(k, m,n) — bi(k,m,n) = bl(k—1,m—1,n-1)
+bi(k,m—1,n—3(m—1)-1).
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Thus
bi(k, m,n) = bi(k,m,n—3m)+ bj(k —1,m—1,n—1)
+bl(k,m—1,n—3m+2),

and
(1 - dxq)fi!(x) = (1 +xq)f{' (xa°).
Iterating gives
1 B (1 + Xq3k+1) 1 B (1 + Xq3k+1)
i) =11 (1 — dxq?k+1) f0) =] (1 — dxq?kFly’
k>0 k>0
So 3k+1

— 3k+1)°
k>0 1 dq )
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Schur's theorem and its generalisations Deducing r=2 from r=1

Deducing Lovejoy's theorem

In the same way as before, we obtain a g-difference equation:

(1 — dxq)(1 — dxq?)f2(x) =(1 + xq + xq° + dxg® — dx?q® — dx*q°)f2(xq®)
+xq°(1 — xq*) 7 (xq°),

and £2(0) = 1.

Let

o 1 — dxg3kt2
F(X) = flz(x) H 1 — xq3k
k=0 9

Then F(0) =1 and

(1 — dxq)(1 — x)F(x) =(1 + xq + xq° + dxq°> — dx*q> — dx*q°)F(xq?)
+ xq°(1 — dxq®)F(xq®).
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SSRGS IERMEN-CR I CEHGLE  Deducing r=2 from r=1

Deducing Lovejoy's theorem

Let

F(x) =: Z Apx".

n>0
Then Ap =1 and

(1 _ q3n)An — (1 + dq+ q3n—2)(1 + q3”_1)A,,,1
—dq(1+ > N1+ A,

Now
An

Z;(lj(]- + q3k+2) )

Then ag = 1 and

(1 - q3n)3n = (1 + dq + q3n_2)an—1 - dqan—2~
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SSRGS IERMEN-CR I CEHGLE  Deducing r=2 from r=1

Deducing Lovejoy's theorem

Let
G(x) = Z anx".

n>0

Then G(0) =1 and
(1= x)(1 — dxq)G(x) = (1 + xq) G(xq°).
Now
5() = 600 [T~ x™)

k>0

Then g(0) =1 and
(1 - dxq)g(x) = (1 + xq)g(xq*).

This is (eq1,3), so
(1+ q3k+1)

_ 3k+1)"
kzo(l dg3k+1)
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Schur's theorem and its generalisations Deducing r=2 from r=1

Deducing Lovejoy's theorem

Theorem (Appell's Lemma)

Let (an)nen be a sequence such that limp_,o a, is finite. Then

lim (1 — X)Za,,x" = lim a,.
x—1

n—o00
n>0

Then

g(1)

el g9~ #7060

Jehanne Dousse (Universitat Ziirich)

= lim (1= x) ) apx”

x—1
n>0

= lim a,.
n—oo

Partition identities JCB 2016
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Schur's theorem and its generalisations Deducing r=2 from r=1

Deducing Lovejoy's theorem

Thus -
1
lim a, = H (3k—-t1q ) 3k+3Y)’
n— o0 S0 (]_ — dq )(1 —q )
>0 3k+1 3k+2
im A= [ L 0@
pooe UL (T dg (1 g3
and
fim (1= X)F() = i A
1— dq3k+2
_ g2
= f(1) H 1— g3k+3
k>0
Thus

f12(1) _ H ((1 + q3k+1)(1 + q3k+2) -

— 3k+1 _ 3k+2Y)°
L= dgn)(1 = dgi2)
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Schur's theorem and its generalisations Deducing r=2 from r=1

The g-difference equation (eg, y) in the general case

r—1 )
[1(1- &) ) = f(xa")
j=0
3D xq“((—x)'"l[””"l]
j=1 \ m=0 a<2r m—1 lgu
w(a)=j+m
j+m izl
m _ hN r iN
e[ ) T -sa) s ()
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Siladi¢’s theorem and the method of weighted words
Outline

© Siladi¢'s theorem and the method of weighted words
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Siladi¢’s theorem and the method of weighted words Siladi¢’s theorem
Outline

© Siladi¢'s theorem and the method of weighted words
@ Siladi¢’s theorem
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Siladi¢’s theorem and the method of weighted words Siladi¢’s theorem
The theorem

Theorem (Siladi¢ 2005)

The number of partitions of an integer n into distinct odd parts equals the
number of partitions A\1 + - - - + As of n into parts different from 2 such

that the difference between two consecutive parts is at least 5 (ie.
)\,’ — A,‘+1 > 5) and

Ai— A1 =5= XA+ A\jiy1 # £1,£5,£7 mod 16,
Ai—Aig1=6= X+ A\jiy1 #£2,£6 mod 16,
Ai—= A1 =7= A+ A\ir1 13 mod 16,
Ai— A1 =8= A+ \jiy1 14 mod 16.
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Siladi¢’s theorem and the method of weighted words Siladi¢’s theorem

The theorem

Theorem (Siladi¢ 2005)

The number of partitions of an integer n into distinct odd parts equals the
number of partitions A\1 + - - - + As of n into parts different from 2 such
that the difference between two consecutive parts is at least 5 (ie.

)\,’ — A,‘+1 > 5) and

Ai—Aig1 =5= N+ A\jy1 # £1,45,£7 mod 16,
Ai—Aig1=6= X+ A\jiy1 #£2,£6 mod 16,

Ai—= A1 =7= A+ A\ir1 13 mod 16,
Ai— A1 =8= A+ \jiy1 14 mod 16.

Originally proved by studying representations of the twisted affine Lie
algebra Agz)'
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Siladi¢’s theorem and the method of weighted words Siladi¢’s theorem
The refinement

Theorem (D. 2013)

For k,n € N, let C(k, n) denote the number of partitions of n into k
distinct odd parts. For n € N and k € N*, let D(k, n) denote the number
of partitions A1 + - - + A of n such that k equals the number of odd part
plus twice the number of even parts, satisfying the following conditions:

QVi>1\N#2

Q@ Vi>1,\A\—Ajy12>5,

QVvi>1,
Ai—Air1=5= X =14 mod 8,
Ai—Air1=6=X;=1,3,57 mod 8,
Ai—Air1=7=X=0,1,3,4,6,7 mod 8,
)\,'—)\,'+1:8:>)\,'EO,1,3,4,5,7 mod 8.

Then for all k,n € N, C(k, n) = D(k, n).
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Siladi¢’s theorem and the method of weighted words Siladi¢’s theorem
|dea of the proof

@ Show that the two formulations are equivalent
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Siladi¢’s theorem and the method of weighted words Siladi¢’s theorem
Idea of the proof

@ Show that the two formulations are equivalent
@ The generating function for C(k, n) is easy to obtain. We need to
show that the generating function for D(k, n) is the same:

Jehanne Dousse (Universitat Ziirich) Partition identities JCB 2016 31/38



Siladi¢’s theorem and the method of weighted words Siladi¢’s theorem
Idea of the proof

@ Show that the two formulations are equivalent
@ The generating function for C(k, n) is easy to obtain. We need to
show that the generating function for D(k, n) is the same:
> Let dy(k, n) denote the number of partitions A\; + - - - + Ag counted by
D(k, n) such that the largest part \; is at most N, and

Gn(t,q) =1+ > du(k,n)t"q".

k=1 n=1
By a combinatorial reasoning, we establish eight g-difference equations
satisfied by Gn(t, q).
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Siladi¢’s theorem and the method of weighted words Siladi¢’s theorem
Idea of the proof

@ Show that the two formulations are equivalent
@ The generating function for C(k, n) is easy to obtain. We need to
show that the generating function for D(k, n) is the same:
> Let dy(k, n) denote the number of partitions A\; + - - - + Ag counted by
D(k, n) such that the largest part \; is at most N, and

Gn(t,q) =1+ > du(k,n)t"q".

k=1 n=1
By a combinatorial reasoning, we establish eight g-difference equations
satisfied by Gn(t, q).
» By induction, we show that for all m € N*,

Gam(t, q) = (1 + tq) Gom—3(td?, q).
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Siladi¢’s theorem and the method of weighted words Siladi¢’s theorem
Idea of the proof

@ Show that the two formulations are equivalent
@ The generating function for C(k, n) is easy to obtain. We need to
show that the generating function for D(k, n) is the same:
> Let dy(k, n) denote the number of partitions A\; + - - - + Ag counted by
D(k, n) such that the largest part \; is at most N, and

Gn(t,q) =1+ > du(k,n)t"q".

k=1 n=1
By a combinatorial reasoning, we establish eight g-difference equations
satisfied by Gn(t, q).
» By induction, we show that for all m € N*,
Gom(t,q) = (1 + tq) Gam—3(tq°, q).

» Letting m — oo and iterating leads to

oo

Jim Gu(t,q) = kl;[O (1+ tq?*).
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The g-difference equations

For all N € N*,
Gen(t, q) = Gen—1(t, q) + t2q®N Gen_7(t, q),

Gen+1(t, q) = Gen(t,q) + tq®" ' Gen_a(t, q),
Gen+2(t, q) = Genr1(t, q) + 2¢*N 2 Gen_7(t, q),
Gen3(t,q) = Geno(t, q) + tg®V 3 Gen_s(t, q),
Gen+a(t,q) = Genia(t, q) + 26V Gen_s(t, q) + ¢V 3 Gen_1(t, q),
Gengs(t,q) = Ganra(t, ) + tg® VT2 Gan_s(t, q) + t2q" N Gen_7(t, q),
Gen-6(t, q) = Gens(t, q) + t2q®N 0 Gen_s(t, q) + ¢V P Gen_7(t, q),

Gen+7(t,q) = Gane(t, q) + tq®V 7 Gana(t, q).
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Siladi¢’s theorem and the method of weighted words TSRS Tele Rel MWVEIT-(N It RWVeTde
Outline

© Siladi¢'s theorem and the method of weighted words

@ The method of weighted words
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Example of Schur’s theorem

Reminder: Schur’s theorem

The number of partitions of n into distinct parts congruent to 1 or 2
modulo 3 equals the number of partitions A\; + - -+ + A, of n such that

3 ifA1=1,2 mod3,

Ai = i1 >
i 4 ifAy1=0 mod 3.
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Example of Schur’s theorem

Reminder: Schur’s theorem

The number of partitions of n into distinct parts congruent to 1 or 2
modulo 3 equals the number of partitions A\; + - -+ + A, of n such that

M= Ay > 3 !f Air1 =1,2 mod 3,
4 ifAy1=0 mod 3.

The method of weighted words consists of finding a refinement of the
theorem by assigning a color to each part according to its value modulo 3.
color a: 1 mod 3,

color b: 2 mod 3,

color ab: 0 mod 3.
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The non-dilated version

Consider the positive integers in three colors, a, b, and ab, with the order

1op <1< 1p <2 <2,<2p<3p<3,<3p< -+
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The non-dilated version

Consider the positive integers in three colors, a, b, and ab, with the order

1op <1< 1p <2 <2,<2p<3p<3,<3p< -+

Schur’s theorem non-dilated [Alladi-Gordon 1995]

Let S(u, v, n) denote the number of partitions of n with u parts colored a
or ab and v parts colored b or ab such that there is no part 1,5, and the
difference \j — A\iy1 > 2 if ¢(A\;) = ab or ¢(A;) < c(Ai4+1). Then we have

Z S(u,v,n)a"b"q" = H (1+aq")(1+ bq").

n>1
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The non-dilated version

Consider the positive integers in three colors, a, b, and ab, with the order

1op <1< 1p <2 <2,<2p<3p<3,<3p< -+

Schur’s theorem non-dilated [Alladi-Gordon 1995]

Let S(u, v, n) denote the number of partitions of n with u parts colored a
or ab and v parts colored b or ab such that there is no part 1,5, and the
difference \j — A\iy1 > 2 if ¢(A\;) = ab or ¢(A;) < c(Ai4+1). Then we have

Z S(u,v,n)a"b"q" = H (1+aq")(1+ bq").

n>1

The dilation g — ¢3,a — ag—2, b — bg~! implies Schur’s theorem.
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Non-dilated version of Siladi¢'s theorem

Let us consider the following ordered set of colored integers:
1ap <1< 1y <1p <25 <2,<3,2 <25 <3,p<3,<32<3p< -+

The colors a® and b? only appear for odd integers.
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Non-dilated version of Siladi¢'s theorem

Let us consider the following ordered set of colored integers:

1ap <1< 1y <1p <25 <2,<3,2 <25 <3,p<3,<32<3p< -+

The colors a® and b? only appear for odd integers.

Consider partitions A1 + - - - + \s where the entry (x, y) in the matrix A

gives the minimal difference between A; of color x and A;;1 of color y:

dodd
a 2
b 1
A= ab 2
a2 4
b\ 2
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Theorem (D. 2016)

Let D(u, v, n) denote the number of partitions A\; + - -+ + As of n, with no
part 1,5 or 1,2, satisfying the difference conditions given by the matrix,
such that u equals the number of parts a or ab plus twice the number of
parts a®> and v equals the number of parts b or ab plus twice the number
of parts b.

Then for all u,v,n € N,

> D(u,v,n)a"b"q" = [[ (1 +aq") (1 + bg").

n>1
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Theorem (D. 2016)

Let D(u, v, n) denote the number of partitions A\; + - -+ + As of n, with no
part 1,5 or 1,2, satisfying the difference conditions given by the matrix,
such that u equals the number of parts a or ab plus twice the number of
parts a®> and v equals the number of parts b or ab plus twice the number
of parts b.

Then for all u,v,n € N,

Z D(u,v,n)a"b"q" = H (1+a9™)(1+ bg").

n>1

The dilation g — g*, a — ag~3, b — bg~! implies Siladi¢'s theorem.
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If we keep the same order and difference conditions but do the dilation

4 _1 _3 . . . .y
qg— q*,a— aq -, b — bg™>, we obtain a companion of Siladic's theorem.
Theorem (D. 2016)

Let C(k, n) denote the number of partitions of n into k distinct odd parts.
Let E(k, n) denote the number of partitions of n, where 2 is not a part,
such that k equals the number of odd part plus twice the number of even
parts, satisfying the following conditions:

=5,6,8,90r >11ifA\;=0 mod 8,
=2o0r >5ifA\;=1 mod 8,
=1lor > 13 ifA; =2 mod 8,
>7ifFA=3 mod 8,

=5o0r >7ifA\i=4 mod 8,
=2,3,5,6 or >8if\;=5 mod 8,
=3,4,6,70r >9if\;=6 mod 8,
=8or >10if\;=7 mod 8.
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Outline

@ Perspectives
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Perspectives

@ Method of weighted words on the generalisations of Andrews’
theorems

@ Generalise other Rogers-Ramanujan type partition identities to
overpartitions (Capparelli, Siladi¢, ...)

@ Combinatorial proof of other partition identities coming from Lie
algebras

Jehanne Dousse (Universitat Ziirich) Partition identities JCB 2016 38 /38



	Introduction
	Schur's theorem and its generalisations
	Schur's theorem
	Schur's theorem for overpartitions
	Andrews' generalisations of Schur's theorem
	Generalisation of Andrews' theorems to overpartitions
	Deducing (r=2, N=3) from (r=1,N=3) in the first theorem

	Siladic's theorem and the method of weighted words
	Siladic's theorem
	The method of weighted words

	Perspectives

