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Introduction

Integer partitions

Definition

A partition of a positive integer n is a finite non-increasing sequence of
positive integers λ1, . . . , λm such that λ1 + · · ·+ λm = n. The integers
λ1, . . . , λm are called the parts of the partition.

Example

There are 5 partitions of 4:

4, 3 + 1, 2 + 2, 2 + 1 + 1 and 1 + 1 + 1 + 1.

Let p(n) denote the number of partitions of n.
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Introduction

Generating functions

Question of Naudé (1740): How many partitions of 50 into 7 distinct
parts?

Solution of Euler: generating functions

Let n, k be positive integers and let Q(n, k) denote the number of
partitions of n into k distinct parts. Then

1 +
∑
n≥1

∑
k≥1

Q(n, k)zkqn = (1 + zq)(1 + zq2)(1 + zq3)(1 + zq4) · · ·

=
∏
n≥1

(1 + zqn).

Recurrence relation: Q(n, k) = Q(n − k, k) + Q(n − k , k − 1).

⇒ There are 522 partitions of 50 into 7 distinct parts.

Jehanne Dousse (Universität Zürich) Partition identities JCB 2016 4 / 38



Introduction

Generating functions
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Introduction

Generating functions

Let p(n, k) denote the number of partitions of n into k parts. Then

1 +
∑
n≥1

∑
k≥1

p(n, k)zkqn = (1 + zq + z2q2 + · · · )(1 + zq2 + z2q4 + · · · ) · · ·

=
∏
n≥1

(
1 + zqn + z2q2n + · · ·

)
=
∏
n≥1

1

(1− zqn)
.
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Introduction

Partition identities

Theorem (Euler 1748)

For every integer n, the number of partitions of n into distinct parts equals
the number of partitions of n into odd parts.

Proof.

∏
n≥1

(1 + qn) =
∏
n≥1

(1 + qn)(1− qn)

1− qn

=
∏
n≥1

1− q2n

1− qn

=
∏
n≥1

1

1− q2n−1
.
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Jehanne Dousse (Universität Zürich) Partition identities JCB 2016 6 / 38



Introduction

The Rogers-Ramanujan identities

The first Rogers-Ramanujan identity is the following q-series identity:

Theorem (Rogers 1894, Rogers-Ramanujan 1919)

∞∑
n=0

qn
2

(1− q)(1− q2) · · · (1− qn)
=
∞∏
k=0

1

(1− q5k+1)(1− q5k+4)
,

Theorem (Partition version)

For every positive integer n, the number of partitions of n such that the
difference between two consecutive parts is at least 2 is equal to the
number of partitions of n into parts congruent to 1 or 4 modulo 5.

Rogers-Ramanujan type identity: “for all n, the number of partitions of n
satisfying some difference conditions is equal to the number of partitions
of n satisfying some congruence conditions.”
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Schur’s theorem and its generalisations Schur’s theorem

Theorem (Schur 1926)

For any positive integer n, let A(n) denote the number of partitions of n
into distinct parts congruent to 1 or 2 modulo 3 and B(n) denote the
number of partitions λ1 + · · ·+ λm of n such that

λi − λi+1 ≥

{
3 if λi+1 ≡ 1, 2 mod 3,

4 if λi+1 ≡ 0 mod 3.

Then A(n) = B(n).

Example

The partitions counted by A(10) are 10, 8 + 2, 7 + 2 + 1 and 5 + 4 + 1.
The partitions counted by B(10) are 10, 9 + 1, 8 + 2 and 7 + 3.
There are 4 partitions in both cases.

Several proofs: Schur, Andrews, Bressoud, Bessenrodt, Alladi-Gordon, ...
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Schur’s theorem and its generalisations Schur’s theorem

Idea of Andrews’ first proof

bi (m, n): number of partitions λ1 + · · ·+ λm of n counted by B(n),
having m parts, such that λm ≥ i .

fi (x) = fi (x , q) := 1 +
∞∑
n=1

∞∑
m=1

bi (m, n)xmqn.

f1 satisfies the following q-difference equation

f1(x) = (1 + xq + xq2)f1(xq3) + xq3(1− xq3)f1(xq6).

We solve it and obtain:∑
n≥0

B(n)qn = f1(1) =
∞∏
j=0

(1 + q3j+1)(1 + q3j+2) =
∑
n≥0

A(n)qn.
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Schur’s theorem and its generalisations Schur’s theorem for overpartitions

Overpartitions

Definition

Let n be a positive integer. An overpartition of n is a partition of n in
which the first occurrence of a number may be overlined.

Example

There are 8 overpartitions of 3:

3, 3, 2 + 1, 2 + 1, 2 + 1, 2 + 1, 1 + 1 + 1, and 1 + 1 + 1.

Let p(n, k) denotes the number of overpartitions of n with k non-overlined
parts. Then

1 +
∑
n≥1

∑
k≥0

p(n, k)dkqn =
∏
n≥1

1 + qn

1− dqn
.
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Schur’s theorem and its generalisations Schur’s theorem for overpartitions

Theorem (Lovejoy 2005)

Let A(k, n) denote the number of overpartitions of n into parts congruent
to 1 or 2 modulo 3, with k non-overlined parts. Let B(k, n) denote the
number of overpartitions λ1 + · · ·+ λs of n, having k non-overlined parts
and satisfying the difference conditions

λi − λi+1 ≥

{
0 + 3χ(λi+1) if λi+1 ≡ 1, 2 mod 3,

1 + 3χ(λi+1) if λi+1 ≡ 0 mod 3,

where χ(λi+1) = 1 if λi+1 is overlined and 0 otherwise.
Then for all k , n, A(k, n) = B(k, n).

The case k = 0 corresponds to Schur’s theorem.
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3 Siladić’s theorem and the method of weighted words
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Schur’s theorem and its generalisations Andrews’ generalisations of Schur’s theorem

Generalisations of Schur’s theorem

Notation :
(a; q)∞ =

∏
k≥0

(1− aqk).

Schur
(−q; q3)∞(−q2; q3)∞

Andrews
(−q; qN)∞ · · · (−q2r−1

; qN)∞

Lovejoy
(−q;q3)∞(−q2;q3)∞
(dq;q3)∞(dq2;q3)∞

D.
(−q;qN)∞···(−q2r−1

;qN)∞
(dq;qN)∞···(dq2r−1

;qN)∞
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Schur’s theorem and its generalisations Andrews’ generalisations of Schur’s theorem

Notation

In the following, r is a positive integer and N ≥ 2r − 1.

βN(m):= the least positive residue of m mod N.

For α ∈ {1, 2, . . . , 2r − 1},
w(α) := the number of powers of 2 appearing in the binary expansion
of α,
v(α) := the smallest power of 2 appearing in this expansion.
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Schur’s theorem and its generalisations Andrews’ generalisations of Schur’s theorem

Andrews’ first theorem

Theorem (Andrews)

Let D(r ,N; n) denote the number of partitions of n into distinct parts
congruent to 20, 21, . . . , 2r−1 modulo N.
Let E (r ,N; n) denote the number of partitions λ1 + · · ·+ λs of n into
parts congruent to 1, 2, . . . , 2r − 1 modulo N such that

λi − λi+1 ≥ Nw(βN(λi+1)) + v(βN(λi+1))− βN(λi+1).

Then for all n, D(r ,N; n) = E (r ,N; n).

Schur’s theorem corresponds to the case r = 2, N = 3.
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Schur’s theorem and its generalisations Andrews’ generalisations of Schur’s theorem

Andrews’ second theorem

Theorem (Andrews)

Let F (r ,N; n) denote the number of partitions of n into distinct parts
congruent to −20,−21, . . . ,−2r−1 modulo N.
Let G (r ,N; n) denote the number of partitions λ1 + · · ·+ λs of n into
parts congruent to −1,−2, . . . ,−2r + 1 modulo N such that

λi − λi+1 ≥ Nw(βN(−λi )) + v(βN(−λi ))− βN(−λi ),

and λs ≥ N (w(βN(−λs)− 1) .
Then for all n, F (r ,N; n) = G (r ,N; n).

Again, Schur’s theorem corresponds to the case r = 2, N = 3. But for
other values, the two theorems are different.
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Schur’s theorem and its generalisations Andrews’ generalisations of Schur’s theorem

The case r = 3,N = 7

Theorem (Andrews 1)

Let A(n) denote the number of partitions of n into distinct parts
congruent to 1,2 or 4 modulo 7. Let B(n) denote the number of partitions
of n of the form n = λ1 + · · ·+ λs , where

λi − λi+1 ≥


7 if λi+1 ≡ 1, 2, 4 mod 7,

12 if λi+1 ≡ 3 mod 7,

10 if λi+1 ≡ 5, 6 mod 7,

15 if λi+1 ≡ 0 mod 7.

Then for all n, A(n) = B(n).
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Schur’s theorem and its generalisations Andrews’ generalisations of Schur’s theorem

The case r = 3,N = 7

Theorem (Andrews 2)

Let C (n) denote the number of partitions of n into distinct parts
congruent to 3,5 or 6 modulo 7. Let D(n) denote the number of partitions
of n of the form n = λ1 + · · ·+ λs , where

λi − λi+1 ≥


7 if λi ≡ 3, 5, 6 mod 7,

12 if λi ≡ 4 mod 7,

10 if λi ≡ 1, 2 mod 7,

15 if λi ≡ 0 mod 7,

and λs 6= 1, 2, 4, 7.
Then for all n, C (n) = D(n).
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Schur’s theorem and its generalisations Generalisation of Andrews’ theorems to overpartitions

The first theorem

Theorem (D. 2014)

Let D(r ,N; k , n) denote the number of overpartitions of n into parts
congruent to 20, 21, . . . , 2r−1 modulo N, having k non-overlined parts.
Let E (r ,N; k, n) denote the number of overpartitions λ1 + · · ·+ λs of n
into parts congruent to 1, 2, . . . , 2r − 1 modulo N, having k non-overlined
parts, such that

λi − λi+1 ≥ N
(
w (βN(λi+1))− 1 + χ(λi+1)

)
+ v(βN(λi+1))− βN(λi+1).

Then for all k , n ≥ 0, D(r ,N; k , n) = E (r ,N; k , n).

The case k = 0 corresponds to Andrews’ first theorem.
The case N = 3, r = 2 corresponds to Schur’s theorem for overpartitions.
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Schur’s theorem and its generalisations Generalisation of Andrews’ theorems to overpartitions

The second theorem

Theorem (D. 2014)

Let F (r ,N; k , n) denote the number of overpartitions of n into parts
congruent to −20,−21, . . . ,−2r−1 modulo N, having k non-overlined
parts.
Let G (r ,N; k , n) denote the number of overpartitions λ1 + · · ·+ λs of n
into parts congruent to −1,−2, . . . ,−2r + 1 modulo N, having k
non-overlined parts, such that

λi − λi+1 ≥ N
(
w (βN(−λi ))− 1 + χ(λi+1)

)
+ v(βN(−λi ))− βN(−λi ),

λs ≥ N (w(βN(−λs))− 1) ,

Then for all k , n ≥ 0, F (r ,N; k , n) = G (r ,N; k , n).

The case k = 0 corresponds to Andrews’ second theorem.
Again, the case N = 3, r = 2 corresponds to Lovejoy’s theorem.
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Schur’s theorem and its generalisations Generalisation of Andrews’ theorems to overpartitions

Proof of the first theorem

Define bri (k ,m, n) as the number of overpartitions λ1 + · · ·+ λm
counted by E (r ,N; k , n), having m parts, such that λm ≥ i , and

f ri (x) = f ri (x , q, d) := 1 +
∞∑
n=1

∞∑
m=1

∞∑
k=0

bri (k ,m, n)xmdkqn.

Find the q-difference equation (eqr ,N) satisfied by f r1 (x).

Show by induction on r that a function f satisfying (eqr ,N) and
f (0) = 1 satisfies

f (1) =
r−1∏
k=0

(−q2k ; qN)∞

(dq2k ; qN)∞
,

which is the generating function for overpartitions counted by
D(r ,N; k , n).
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Schur’s theorem and its generalisations Deducing r=2 from r=1

The theorem for r = 1,N = 3

Theorem

Let A(k, n) denote the number of overpartitions of n into parts congruent
to 1 modulo 3, having k non-overlined parts. Let B(k , n) denote the
number of overpartitions λ1 + · · ·+ λm of n into parts congruent to 1
modulo 3, having k non-overlined parts, such that

λi − λi+1 ≥ 0 + 3χ(λi+1).

Then A(k , n) = B(k , n).

We have

b1
1(k,m, n)− b1

4(k,m, n) = b1
1(k − 1,m − 1, n − 1)

+ b1
1(k ,m − 1, n − 3(m − 1)− 1).
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Schur’s theorem and its generalisations Deducing r=2 from r=1

Thus

b1
1(k ,m, n) = b1

1(k ,m, n − 3m) + b1
1(k − 1,m − 1, n − 1)

+ b1
1(k ,m − 1, n − 3m + 2),

and
(1− dxq)f 1

1 (x) = (1 + xq)f 1
1 (xq3).

Iterating gives

f 1
1 (x) =

∏
k≥0

(1 + xq3k+1)

(1− dxq3k+1)
f 1
1 (0) =

∏
k≥0

(1 + xq3k+1)

(1− dxq3k+1)
.

So

f 1
1 (1) =

∏
k≥0

(1 + q3k+1)

(1− dq3k+1)
.
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Schur’s theorem and its generalisations Deducing r=2 from r=1

Deducing Lovejoy’s theorem

In the same way as before, we obtain a q-difference equation:

(1− dxq)(1− dxq2)f 2
1 (x) =(1 + xq + xq2 + dxq3 − dx2q3 − dx2q6)f 2

1 (xq3)

+ xq3(1− xq3)f 2
1 (xq6),

and f 2
1 (0) = 1.

Let

F (x) := f 2
1 (x)

∞∏
k=0

1− dxq3k+2

1− xq3k
.

Then F (0) = 1 and

(1− dxq)(1− x)F (x) =(1 + xq + xq2 + dxq3 − dx2q3 − dx2q6)F (xq3)

+ xq3(1− dxq5)F (xq6).
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Schur’s theorem and its generalisations Deducing r=2 from r=1

Deducing Lovejoy’s theorem

Let
F (x) =:

∑
n≥0

Anx
n.

Then A0 = 1 and

(1− q3n)An = (1 + dq + q3n−2)(1 + q3n−1)An−1

− dq(1 + q3n−1)(1 + q3n−4)An−2.

Now

an :=
An∏n−1

k=0(1 + q3k+2)
.

Then a0 = 1 and

(1− q3n)an = (1 + dq + q3n−2)an−1 − dqan−2.
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Schur’s theorem and its generalisations Deducing r=2 from r=1

Deducing Lovejoy’s theorem

Let
G (x) :=

∑
n≥0

anx
n.

Then G (0) = 1 and

(1− x)(1− dxq)G (x) = (1 + xq)G (xq3).

Now
g(x) := G (x)

∏
k≥0

(1− xq3k).

Then g(0) = 1 and

(1− dxq)g(x) = (1 + xq)g(xq3).

This is (eq1,3), so

g(1) = f 1
1 (1) =

∏
k≥0

(1 + q3k+1)

(1− dq3k+1)
.
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Schur’s theorem and its generalisations Deducing r=2 from r=1

Deducing Lovejoy’s theorem

Theorem (Appell’s Lemma)

Let (an)n∈N be a sequence such that limn→∞ an is finite. Then

lim
x→1

(1− x)
∑
n≥0

anx
n = lim

n→∞
an.

Then

g(1)∏
k≥1(1− q3k)

= lim
x→1

(1− x)G (x)

= lim
x→1

(1− x)
∑
n≥0

anx
n

= lim
n→∞

an.
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Schur’s theorem and its generalisations Deducing r=2 from r=1

Deducing Lovejoy’s theorem

Thus

lim
n→∞

an =
∏
k≥0

(1 + q3k+1)

(1− dq3k+1)(1− q3k+3)
,

so

lim
n→∞

An =
∏
k≥0

(1 + q3k+1)(1 + q3k+2)

(1− dq3k+1)(1− q3k+3)
,

and

lim
x→1

(1− x)F (x) = lim
n→∞

An

= f 2
1 (1)

∏
k≥0

1− dq3k+2

1− q3k+3
.

Thus

f 2
1 (1) =

∏
k≥0

(1 + q3k+1)(1 + q3k+2)

(1− dq3k+1)(1− dq3k+2)
.
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Schur’s theorem and its generalisations Deducing r=2 from r=1

The q-difference equation (eqr ,N) in the general case

r−1∏
j=0

(
1− dxq2j

)
f r1 (x) = f r1 (xqN)

+
r∑

j=1

 r−j∑
m=0

dm
∑
α<2r

w(α)=j+m

xqα

(
(−x)m−1

[
j + m − 1

m − 1

]
qN

+(−x)m
[
j + m

m

]
qN

) j−1∏
h=1

(
1− xqhN

)
f r1

(
xqjN

)
.

Jehanne Dousse (Universität Zürich) Partition identities JCB 2016 28 / 38



Siladić’s theorem and the method of weighted words
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Siladić’s theorem
The method of weighted words

4 Perspectives
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Siladić’s theorem and the method of weighted words Siladić’s theorem
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Siladić’s theorem and the method of weighted words Siladić’s theorem

The theorem

Theorem (Siladić 2005)

The number of partitions of an integer n into distinct odd parts equals the
number of partitions λ1 + · · ·+ λs of n into parts different from 2 such
that the difference between two consecutive parts is at least 5 (ie.
λi − λi+1 ≥ 5) and

λi − λi+1 = 5⇒ λi + λi+1 6≡ ±1,±5,±7 mod 16,

λi − λi+1 = 6⇒ λi + λi+1 6≡ ±2,±6 mod 16,

λi − λi+1 = 7⇒ λi + λi+1 6≡ ±3 mod 16,

λi − λi+1 = 8⇒ λi + λi+1 6≡ ±4 mod 16.

Originally proved by studying representations of the twisted affine Lie

algebra A
(2)
2 .
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Siladić’s theorem and the method of weighted words Siladić’s theorem

The refinement

Theorem (D. 2013)

For k , n ∈ N, let C (k , n) denote the number of partitions of n into k
distinct odd parts. For n ∈ N and k ∈ N∗, let D(k , n) denote the number
of partitions λ1 + · · ·+ λs of n such that k equals the number of odd part
plus twice the number of even parts, satisfying the following conditions:

1 ∀i ≥ 1, λi 6= 2,

2 ∀i ≥ 1, λi − λi+1 ≥ 5,

3 ∀i ≥ 1,
λi − λi+1 = 5⇒ λi ≡ 1, 4 mod 8,

λi − λi+1 = 6⇒ λi ≡ 1, 3, 5, 7 mod 8,

λi − λi+1 = 7⇒ λi ≡ 0, 1, 3, 4, 6, 7 mod 8,

λi − λi+1 = 8⇒ λi ≡ 0, 1, 3, 4, 5, 7 mod 8.

Then for all k , n ∈ N, C (k , n) = D(k, n).
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Siladić’s theorem and the method of weighted words Siladić’s theorem

Idea of the proof

Show that the two formulations are equivalent

The generating function for C (k , n) is easy to obtain. We need to
show that the generating function for D(k , n) is the same:

I Let dN(k, n) denote the number of partitions λ1 + · · ·+ λs counted by
D(k, n) such that the largest part λ1 is at most N, and

GN(t, q) = 1 +
∞∑
k=1

∞∑
n=1

dN(k , n)tkqn.

By a combinatorial reasoning, we establish eight q-difference equations
satisfied by GN(t, q).

I By induction, we show that for all m ∈ N∗,

G2m(t, q) = (1 + tq)G2m−3(tq2, q).

I Letting m→∞ and iterating leads to

lim
N→∞

GN(t, q) =
∞∏
k=0

(
1 + tq2k+1

)
.
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Siladić’s theorem and the method of weighted words Siladić’s theorem

The q-difference equations

For all N ∈ N∗,

G8N(t, q) = G8N−1(t, q) + t2q8NG8N−7(t, q),

G8N+1(t, q) = G8N(t, q) + tq8N+1G8N−4(t, q),

G8N+2(t, q) = G8N+1(t, q) + t2q8N+2G8N−7(t, q),

G8N+3(t, q) = G8N+2(t, q) + tq8N+3G8N−3(t, q),

G8N+4(t, q) = G8N+3(t, q) + t2q8N+4G8N−3(t, q) + t3q16N+3G8N−7(t, q),

G8N+5(t, q) = G8N+4(t, q) + tq8N+5G8N−3(t, q) + t2q16N+4G8N−7(t, q),

G8N+6(t, q) = G8N+5(t, q) + t2q8N+6G8N−3(t, q) + t3q16N+5G8N−7(t, q),

G8N+7(t, q) = G8N+6(t, q) + tq8N+7G8N+1(t, q).
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Siladić’s theorem and the method of weighted words The method of weighted words

Example of Schur’s theorem

Reminder: Schur’s theorem

The number of partitions of n into distinct parts congruent to 1 or 2
modulo 3 equals the number of partitions λ1 + · · ·+ λm of n such that

λi − λi+1 ≥

{
3 if λi+1 ≡ 1, 2 mod 3,

4 if λi+1 ≡ 0 mod 3.

The method of weighted words consists of finding a refinement of the
theorem by assigning a color to each part according to its value modulo 3.
color a : 1 mod 3,
color b : 2 mod 3,
color ab : 0 mod 3.
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Siladić’s theorem and the method of weighted words The method of weighted words

The non-dilated version

Consider the positive integers in three colors, a, b, and ab, with the order

1ab < 1a < 1b < 2ab < 2a < 2b < 3ab < 3a < 3b < · · · .

Schur’s theorem non-dilated [Alladi-Gordon 1995]

Let S(u, v , n) denote the number of partitions of n with u parts colored a
or ab and v parts colored b or ab such that there is no part 1ab, and the
difference λi − λi+1 ≥ 2 if c(λi ) = ab or c(λi ) < c(λi+1). Then we have∑

S(u, v , n)aubvqn =
∏
n≥1

(1 + aqn) (1 + bqn) .

The dilation q → q3, a→ aq−2, b → bq−1 implies Schur’s theorem.
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Siladić’s theorem and the method of weighted words The method of weighted words

Non-dilated version of Siladić’s theorem

Let us consider the following ordered set of colored integers:

1ab < 1a < 1b2 < 1b < 2ab < 2a < 3a2 < 2b < 3ab < 3a < 3b2 < 3b < · · ·

The colors a2 and b2 only appear for odd integers.

Consider partitions λ1 + · · ·+ λs where the entry (x , y) in the matrix A
gives the minimal difference between λi of color x and λi+1 of color y :

A =



aodd b2 bodd abeven aeven a2 beven abodd

a 2 2 2 1 2 2 2 2
b 1 2 2 1 1 1 2 1
ab 2 3 3 2 2 2 2 2
a2 4 4 4 3 3 4 3 4
b2 2 4 4 3 3 2 3 2

.
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Siladić’s theorem and the method of weighted words The method of weighted words

Theorem (D. 2016)

Let D(u, v , n) denote the number of partitions λ1 + · · ·+ λs of n, with no
part 1ab or 1b2 , satisfying the difference conditions given by the matrix,
such that u equals the number of parts a or ab plus twice the number of
parts a2 and v equals the number of parts b or ab plus twice the number
of parts b2.
Then for all u, v , n ∈ N,∑

D(u, v , n)aubvqn =
∏
n≥1

(1 + aqn) (1 + bqn) .

The dilation q → q4, a→ aq−3, b → bq−1 implies Siladić’s theorem.
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Siladić’s theorem and the method of weighted words The method of weighted words

If we keep the same order and difference conditions but do the dilation
q → q4, a→ aq−1, b → bq−3, we obtain a companion of Siladic’s theorem.

Theorem (D. 2016)

Let C (k, n) denote the number of partitions of n into k distinct odd parts.
Let E (k , n) denote the number of partitions of n, where 2 is not a part,
such that k equals the number of odd part plus twice the number of even
parts, satisfying the following conditions:

λi − λi+1



= 5, 6, 8, 9 or ≥ 11 if λi ≡ 0 mod 8,

= 2 or ≥ 5 if λi ≡ 1 mod 8,

= 11 or ≥ 13 if λi ≡ 2 mod 8,

≥ 7 if λ ≡ 3 mod 8,

= 5 or ≥ 7 if λi ≡ 4 mod 8,

= 2, 3, 5, 6 or ≥ 8 if λi ≡ 5 mod 8,

= 3, 4, 6, 7 or ≥ 9 if λi ≡ 6 mod 8,

= 8 or ≥ 10 if λi ≡ 7 mod 8.

Then for all k , n ∈ N, C (k, n) = E (k , n).
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Perspectives

Perspectives

Method of weighted words on the generalisations of Andrews’
theorems

Generalise other Rogers-Ramanujan type partition identities to
overpartitions (Capparelli, Siladić, ...)

Combinatorial proof of other partition identities coming from Lie
algebras
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