Combinatorial solutions to integrable hierarchies

Sergei Lando

National Research University Higher School of Economics, Independent University of Moscow, Moscow, Russia

Journée de Combinatoire de Bordeaux LaBRI January 27–29, 2016

M. Kazarian, S. Lando, *Combinatorial solutions to integrable hierarchies*, Russian Math. Surveys, vol. 70, no. 3, 453–482 (2015) arXiv:1512.07172

S. Lando (HSE Moscow)

• (Hurwitz problem, 1891) What is the number of ways to represent a given permutation as a product of a given number of transpositions?

- (Hurwitz problem, 1891) What is the number of ways to represent a given permutation as a product of a given number of transpositions?
- (Bousquet-Mélou-Schaeffer problem, 2000) What is the number of ways to represent a given permutation as a product of a given number of permutations?

- (Hurwitz problem, 1891) What is the number of ways to represent a given permutation as a product of a given number of transpositions?
- (Bousquet-Mélou-Schaeffer problem, 2000) What is the number of ways to represent a given permutation as a product of a given number of permutations?
- (Enumeration of maps) What is the number of maps on a given surface?

Theorem The number of labelled trees on N vertices is N^{N-2} .

 $\tau_8 \circ \cdots \circ \tau_1 = (45)(15)(18)(12)(16)(29)(57)(35)$ = (697532148)

Theorem The number of labelled trees on N vertices is N^{N-2} .

 $\tau_8 \circ \cdots \circ \tau_1 = (45)(15)(18)(12)(16)(29)(57)(35)$ = (697532148)

Bijection

Trees with N labeled numbered edges

(N-1)-tuples of vertices and $N-1 \leftrightarrow$ transpositions in S_N whose product is a long cycle

For μ a partition of *N*, the *simple Hurwitz number* $h_{m;\mu}^{\circ}$ is defined by

$$h_{m;\mu}^{\circ} = \frac{1}{N!} |\{(\tau_1, \dots, \tau_m)| \text{ the } \tau_i \text{ are transpositions,} \\ \tau_m \circ \dots \circ \tau_1 \text{ has cycle type } \mu\}|.$$

For μ a partition of *N*, the *simple Hurwitz number* $h_{m;\mu}^{\circ}$ is defined by

$$h^{\circ}_{m;\mu} = \frac{1}{N!} |\{(\tau_1, \dots, \tau_m)| \text{ the } \tau_i \text{ are transpositions}, \\ \tau_m \circ \dots \circ \tau_1 \text{ has cycle type } \mu\}|.$$

Definition

For μ a partition of *N*, the *connected simple Hurwitz number* $h_{m;\mu}$ is

 $h_{m;\mu} = \frac{1}{N!} |\{(\tau_1, \dots, \tau_m)| \text{ the } \tau_i \text{ are transpositions}, \tau_m \circ \cdots \circ \tau_1$ has cycle type μ , the group generated by the τ_i acts transitively}.

For μ a partition of *N*, the *simple Hurwitz number* $h_{m;\mu}^{\circ}$ is defined by

$$h^{\circ}_{m;\mu} = \frac{1}{N!} |\{(\tau_1, \dots, \tau_m)| \text{ the } \tau_i \text{ are transpositions}, \\ \tau_m \circ \dots \circ \tau_1 \text{ has cycle type } \mu\}|.$$

Definition

For μ a partition of *N*, the *connected simple Hurwitz number* $h_{m;\mu}$ is

 $h_{m;\mu} = \frac{1}{N!} |\{(\tau_1, \dots, \tau_m)| \text{ the } \tau_i \text{ are transpositions}, \tau_m \circ \cdots \circ \tau_1$ has cycle type μ , the group generated by the τ_i acts transitively $\}|$.

A set of transpositions is encoded by a graph with labelled vertices

For μ a partition of *N*, the *simple Hurwitz number* $h_{m;\mu}^{\circ}$ is defined by

$$h^{\circ}_{m;\mu} = \frac{1}{N!} |\{(\tau_1, \dots, \tau_m)| \text{ the } \tau_i \text{ are transpositions}, \\ \tau_m \circ \dots \circ \tau_1 \text{ has cycle type } \mu\}|.$$

Definition

For μ a partition of *N*, the *connected simple Hurwitz number* $h_{m;\mu}$ is

 $h_{m;\mu} = \frac{1}{N!} |\{(\tau_1, \dots, \tau_m)| \text{ the } \tau_i \text{ are transpositions}, \tau_m \circ \cdots \circ \tau_1$ has cycle type μ , the group generated by the τ_i acts transitively}.

A set of transpositions is encoded by a graph with labelled vertices Connected Hurwitz numbers enumerate certain connected graphs

S. Lando (HSE Moscow)

For μ a partition of N, the Bousquet-Mélou–Schaeffer number $b^\circ_{m,k;\mu}$ is defined by

$$b^{\circ}_{m,k;\mu} = \frac{1}{N!} |\{(\tau_1, \dots, \tau_m)| \text{ the } \tau_i \in S_N, \text{ their total degeneracy is } k, \text{ and } \tau_m \circ \dots \circ \tau_1 \text{ has cycle type } \mu\}|.$$

For μ a partition of N, the Bousquet-Mélou–Schaeffer number $b^\circ_{m,k;\mu}$ is defined by

$$b_{m,k;\mu}^{\circ} = \frac{1}{N!} |\{(\tau_1, \dots, \tau_m) | \text{ the } \tau_i \in S_N, \text{ their total degeneracy is } k, \text{ and } \tau_m \circ \dots \circ \tau_1 \text{ has cycle type } \mu\}|.$$

Definition

For μ a partition of N, the connected Bousquet-Mélou–Schaeffer number $b_{m,k;\mu}$ is

$$b_{m,k;\mu} = \frac{1}{N!} |\{(\tau_1, \ldots, \tau_m)| \text{ the } \tau_i \in S_N, \text{ their total degeneracy is } k,$$

 $\tau_{m} \circ \cdots \circ \tau_{1}$ has cycle type μ ,

and the group generated by the τ_i acts transitively |.

For μ a partition of N, the Bousquet-Mélou–Schaeffer number $b^\circ_{m,k;\mu}$ is defined by

$$b_{m,k;\mu}^{\circ} = \frac{1}{N!} |\{(\tau_1, \dots, \tau_m) | \text{ the } \tau_i \in S_N, \text{ their total degeneracy is } k, \\ \text{and } \tau_m \circ \dots \circ \tau_1 \text{ has cycle type } \mu\}|.$$

Definition

For μ a partition of *N*, the *connected Bousquet-Mélou–Schaeffer number* $b_{m,k;\mu}$ is

$$b_{m,k;\mu} = \frac{1}{N!} |\{(\tau_1, \dots, \tau_m)| \text{ the } \tau_i \in S_N, \text{ their total degeneracy is } k, \\ \tau_m \circ \cdots \circ \tau_1 \text{ has cycle type } \mu, \}$$

and the group generated by the τ_i acts transitively}.

The *degeneracy* of a partition $\nu \vdash N$, $\nu = (\nu_1, \ldots, \nu_\ell)$, is $N - \ell$.

For μ a partition of N, let $r_{m,n;\mu}^{\circ}$ denote the number of oriented rooted maps with m edges and n faces, and the partition defined by the valencies of the vertices being μ .

For μ a partition of N, let $r_{m,n;\mu}^{\circ}$ denote the number of oriented rooted maps with m edges and n faces, and the partition defined by the valencies of the vertices being μ .

Definition

For μ a partition of N, let $r_{m,n;\mu}$ denote the number of connected oriented rooted maps with m edges and n faces, and the partition defined by the valencies of the vertices being μ .

Generating functions for Hurwitz numbers

Define exponential generating functions in a variable u (recording the number of transpositions) and infinitely many variables $p_1, p_2, ...$ (recording the parts of the partitions):

$$H^{\circ}(u; p_1, p_2, \dots) = \sum_{m=0}^{\infty} \sum_{\mu} h^{\circ}_{m;\mu} p_{\mu_1} p_{\mu_2} \dots \frac{u^m}{m!};$$

Generating functions for Hurwitz numbers

Define exponential generating functions in a variable u (recording the number of transpositions) and infinitely many variables $p_1, p_2, ...$ (recording the parts of the partitions):

$$H^{\circ}(u; p_1, p_2, \dots) = \sum_{m=0}^{\infty} \sum_{\mu} h^{\circ}_{m;\mu} p_{\mu_1} p_{\mu_2} \dots \frac{u^m}{m!};$$

and

$$H(u; p_1, p_2, ...) = \sum_{m=0}^{\infty} \sum_{\mu} h_{m;\mu} p_{\mu_1} p_{\mu_2} ... \frac{u^m}{m!}.$$

Here $\mu = (\mu_1, \mu_2, ...)$, $\mu_1 \ge \mu_2 \ge ...$ runs over *all* partitions.

Generating functions for Hurwitz numbers

Define exponential generating functions in a variable u (recording the number of transpositions) and infinitely many variables $p_1, p_2, ...$ (recording the parts of the partitions):

$$H^{\circ}(u; p_1, p_2, \dots) = \sum_{m=0}^{\infty} \sum_{\mu} h^{\circ}_{m;\mu} p_{\mu_1} p_{\mu_2} \dots \frac{u^m}{m!};$$

and

$$H(u; p_1, p_2, \dots) = \sum_{m=0}^{\infty} \sum_{\mu} h_{m;\mu} p_{\mu_1} p_{\mu_2} \dots \frac{u^m}{m!}.$$

Here $\mu = (\mu_1, \mu_2, ...)$, $\mu_1 \ge \mu_2 \ge ...$ runs over *all* partitions.

The two are related by

$$H^{\circ} = \exp(H).$$

It is clear from the definition that the coefficients of both H and H° are rational. The first terms of the power series expansions are

$$\begin{aligned} H^{\circ}(u;p_{1},\ldots) &= 1 + p_{1} + \frac{p_{2}u}{2} + \frac{p_{1}^{2}}{2} + \frac{p_{3}u^{2}}{2} + \frac{1}{2}p_{2}p_{1}u + \frac{p_{1}^{3}}{6} + \frac{p_{2}u^{3}}{12} \\ &+ \frac{2p_{4}u^{3}}{3} + \frac{1}{4}p_{1}^{2}u^{2} + \frac{1}{2}p_{3}p_{1}u^{2} + \frac{1}{8}p_{2}^{2}u^{2} + \frac{1}{4}p_{2}p_{1}^{2}u + \frac{p_{1}^{4}}{24} + \cdots \\ H(u;p_{1},\ldots) &= p_{1} + \frac{p_{2}u}{2} + \left(\frac{p_{1}^{2}}{4} + \frac{p_{3}}{2}\right)u^{2} + \left(\frac{2p_{1}p_{2}}{3} + \frac{p_{2}}{12} + \frac{2p_{4}}{3}\right)u^{3} \\ &+ \left(\frac{p_{1}^{3}}{6} + \frac{p_{1}^{2}}{48} + \frac{9p_{3}p_{1}}{8} + \frac{p_{2}^{2}}{2} + \frac{3p_{3}}{8} + \frac{25p_{5}}{24}\right)u^{4} + \cdots \end{aligned}$$

Generating functions for Bousquet-Mélou–Schaeffer numbers

For each m = 0, 1, 2, ..., define exponential generating functions in a variable u (recording the total degeneracies) and infinitely many variables $p_1, p_2, ...$ (recording the parts of the partitions):

$$B_m^{\circ}(u; p_1, p_2, \dots) = \sum_{k,\mu} b_{m,k;\mu}^{\circ} p_{\mu_1} p_{\mu_2} \dots \frac{u^k}{k!};$$

Generating functions for Bousquet-Mélou–Schaeffer numbers

For each m = 0, 1, 2, ..., define exponential generating functions in a variable u (recording the total degeneracies) and infinitely many variables $p_1, p_2, ...$ (recording the parts of the partitions):

$$B_m^{\circ}(u; p_1, p_2, \dots) = \sum_{k,\mu} b_{m,k;\mu}^{\circ} p_{\mu_1} p_{\mu_2} \dots \frac{u^k}{k!};$$

and

$$B_m(u; p_1, p_2, \dots) = \sum_{k,\mu} b_{m,k;\mu} p_{\mu_1} p_{\mu_2} \dots \frac{u^k}{k!};$$

Here $\mu = (\mu_1, \mu_2, ...)$, $\mu_1 \ge \mu_2 \ge ...$ runs over *all* partitions.

Generating functions for Bousquet-Mélou–Schaeffer numbers

For each m = 0, 1, 2, ..., define exponential generating functions in a variable u (recording the total degeneracies) and infinitely many variables $p_1, p_2, ...$ (recording the parts of the partitions):

$$B_m^{\circ}(u; p_1, p_2, \dots) = \sum_{k,\mu} b_{m,k;\mu}^{\circ} p_{\mu_1} p_{\mu_2} \dots \frac{u^k}{k!};$$

and

$$B_m(u; p_1, p_2, \dots) = \sum_{k,\mu} b_{m,k;\mu} p_{\mu_1} p_{\mu_2} \dots \frac{u^k}{k!};$$

Here $\mu = (\mu_1, \mu_2, ...)$, $\mu_1 \ge \mu_2 \ge ...$ runs over *all* partitions.

The two are related by

$$B_m^\circ = \exp(B_m).$$

Generating functions for the numbers of rooted maps

Define exponential generating functions in a variable w (recording the number of edges), a variable w (recording the number of faces), and infinitely many variables p_1, p_2, \ldots (recording the verticies' valencies):

$$R^{\circ}(w, z; p_1, p_2, \dots) = \sum_{m,n,\mu} \frac{r_{m,n;\mu}^{\circ}}{2n} p_{\mu_1} p_{\mu_2} \dots \frac{w^m}{m!} \frac{z^n}{n!};$$

Generating functions for the numbers of rooted maps

Define exponential generating functions in a variable w (recording the number of edges), a variable w (recording the number of faces), and infinitely many variables p_1, p_2, \ldots (recording the verticies' valencies):

$$R^{\circ}(w, z; p_1, p_2, \dots) = \sum_{m,n,\mu} \frac{r_{m,n;\mu}^{\circ}}{2n} p_{\mu_1} p_{\mu_2} \dots \frac{w^m}{m!} \frac{z^n}{n!};$$

and

$$R(w, z; p_1, p_2, \dots) = \sum_{m,n,\mu} \frac{r_{m,n;\mu}}{2n} p_{\mu_1} p_{\mu_2} \dots \frac{w^m}{m!} \frac{z^n}{n!};$$

Here $\mu = (\mu_1, \mu_2, ...)$, $\mu_1 \ge \mu_2 \ge ...$ runs over *all* partitions $\mu \vdash 2n$.

Define exponential generating functions in a variable w (recording the number of edges), a variable w (recording the number of faces), and infinitely many variables p_1, p_2, \ldots (recording the verticies' valencies):

$$R^{\circ}(w, z; p_1, p_2, \dots) = \sum_{m,n,\mu} \frac{r_{m,n;\mu}^{\circ}}{2n} p_{\mu_1} p_{\mu_2} \dots \frac{w^m}{m!} \frac{z^n}{n!};$$

and

$$R(w, z; p_1, p_2, \dots) = \sum_{m,n,\mu} \frac{r_{m,n;\mu}}{2n} p_{\mu_1} p_{\mu_2} \dots \frac{w^m}{m!} \frac{z^n}{n!};$$

Here $\mu = (\mu_1, \mu_2, ...), \ \mu_1 \ge \mu_2 \ge ...$ runs over *all* partitions $\mu \vdash 2n$.

The two are related by

$$R^\circ = \exp(R).$$

Theorem (A. Okounkov 2000, M. Kazarian, S. L. 2007)

The generating function H for the connected Hurwitz numbers is a one-parameter family of solutions to the Kadomtsev–Petviashvili hierarchy of partial differential equations. In particular,

$$\frac{\partial^2 H}{\partial p_2^2} = \frac{\partial^2 H}{\partial p_1 \partial p_3} - \frac{1}{2} \left(\frac{\partial^2 H}{\partial p_1^2} \right)^2 - \frac{1}{12} \frac{\partial^4 H}{\partial p_1^4}.$$

Theorem (I. P. Goulden, D. M. Jackson, 2008)

Each generating function B_m for the connected Bousquet-Mélou–Schaeffer numbers is a one-parameter family of solutions to the Kadomtsev–Petviashvili hierarchy of partial differential equations. In particular,

$$\frac{\partial^2 B_m}{\partial p_2^2} = \frac{\partial^2 B_m}{\partial p_1 \partial p_3} - \frac{1}{2} \left(\frac{\partial^2 B_m}{\partial p_1^2} \right)^2 - \frac{1}{12} \frac{\partial^4 B_m}{\partial p_1^4}$$

for $m = 1, 2, 3, \ldots$.

Theorem (I. P. Goulden, D. M. Jackson, 2008)

The generating function R for the numbers of connected maps is a two-parameter family of solutions to the Kadomtsev–Petviashvili hierarchy of partial differential equations. In particular,

$$\frac{\partial^2 R}{\partial p_2^2} = \frac{\partial^2 R}{\partial p_1 \partial p_3} - \frac{1}{2} \left(\frac{\partial^2 R}{\partial p_1^2} \right)^2 - \frac{1}{12} \frac{\partial^4 R}{\partial p_1^4}.$$

Connected maps have *genus*. The generating function R for connected maps admits the *genus expansion*

$$R^{\hbar}(w, z; p_1, p_2, \dots) = R_0(w, z; p_1, p_2, \dots) + \hbar^2 R_1(w, z; p_1, p_2, \dots) + \hbar^4 R_2(w, z; p_1, p_2, \dots) + \dots,$$

where R_g is the generating function for the numbers of maps on the genus g compact oriented surface, g = 0, 1, 2, ...

Connected maps have *genus*. The generating function R for connected maps admits the *genus expansion*

$$R^{\hbar}(w, z; p_1, p_2, \dots) = R_0(w, z; p_1, p_2, \dots) + \hbar^2 R_1(w, z; p_1, p_2, \dots) + \hbar^4 R_2(w, z; p_1, p_2, \dots) + \dots,$$

where R_g is the generating function for the numbers of maps on the genus g compact oriented surface, g = 0, 1, 2, ...

The genus expansion R^{\hbar} can be obtained from the generating function R by the substitution

$$R^{\hbar}(w,z;p_1,p_2,p_3,\dots)=\hbar^2 R\left(\hbar w,\hbar z;\frac{p_1}{\hbar^2},\frac{p_2}{\hbar^3},\frac{p_3}{\hbar^4}\dots\right)$$

(the Euler genus formula).

Theorem

The generating function R^h for the numbers of connected maps is a two-parameter family of solutions to the perturbed Kadomtsev–Petviashvili hierarchy of partial differential equations. In particular,

$$\frac{\partial^2 R^{\hbar}}{\partial p_2^2} = \frac{\partial^2 R^{\hbar}}{\partial p_1 \partial p_3} - \frac{1}{2} \left(\frac{\partial^2 R^{\hbar}}{\partial p_1^2} \right)^2 - \frac{\hbar^2}{12} \frac{\partial^4 R^{\hbar}}{\partial p_1^4}$$

Theorem

The generating function R^{\hbar} for the numbers of connected maps is a two-parameter family of solutions to the perturbed Kadomtsev–Petviashvili hierarchy of partial differential equations. In particular,

$$\frac{\partial^2 R^{\hbar}}{\partial p_2^2} = \frac{\partial^2 R^{\hbar}}{\partial p_1 \partial p_3} - \frac{1}{2} \left(\frac{\partial^2 R^{\hbar}}{\partial p_1^2} \right)^2 - \frac{\hbar^2}{12} \frac{\partial^4 R^{\hbar}}{\partial p_1^4}$$

due to the above substitution

$$R^{\hbar}(w,z;p_1,p_2,p_3,\dots)=\hbar^2 R\left(\hbar w,\hbar z;\frac{p_1}{\hbar^2},\frac{p_2}{\hbar^3},\frac{p_3}{\hbar^4}\dots\right).$$

For the genus 0 part, series expansion for the perturbed KP equation yields

$$\frac{\partial^2 R_0}{\partial p_2^2} = \frac{\partial^2 R_0}{\partial p_1 \partial p_3} - \frac{1}{2} \left(\frac{\partial^2 R_0}{\partial p_1^2} \right)^2$$

(the *dispersionless* first KP equation).

For the genus 0 part, series expansion for the perturbed KP equation yields

$$\frac{\partial^2 R_0}{\partial p_2^2} = \frac{\partial^2 R_0}{\partial p_1 \partial p_3} - \frac{1}{2} \left(\frac{\partial^2 R_0}{\partial p_1^2} \right)^2$$

(the *dispersionless* first KP equation).

For the genus 1 part, series expansion for the perturbed KP equation yields

$$\frac{\partial^2 R_1}{\partial p_2^2} = \frac{\partial^2 R_1}{\partial p_1 \partial p_3} - \frac{\partial^2 R_0}{\partial p_1^2} \frac{\partial^2 R_1}{\partial p_1^2} - \frac{1}{12} \frac{\partial^4 R_0}{\partial p_1^4},$$

which is a LINEAR partial differential equation with respect to R_1 .

For the genus 0 part, series expansion for the perturbed KP equation yields

$$\frac{\partial^2 R_0}{\partial p_2^2} = \frac{\partial^2 R_0}{\partial p_1 \partial p_3} - \frac{1}{2} \left(\frac{\partial^2 R_0}{\partial p_1^2} \right)^2$$

(the *dispersionless* first KP equation).

For the genus 1 part, series expansion for the perturbed KP equation yields

$$\frac{\partial^2 R_1}{\partial p_2^2} = \frac{\partial^2 R_1}{\partial p_1 \partial p_3} - \frac{\partial^2 R_0}{\partial p_1^2} \frac{\partial^2 R_1}{\partial p_1^2} - \frac{1}{12} \frac{\partial^4 R_0}{\partial p_1^4},$$

which is a LINEAR partial differential equation with respect to R_1 . Equations for P_2, P_3, \ldots also are linear.

Genus expansion for Hurwitz and Bousquet-Mélou–Schaeffer numbers

$$\begin{aligned} H^{\hbar}(u; p_1, p_2, \dots) &= \hbar^2 H(\hbar u; p_1/\hbar^2, p_2/\hbar^3, \dots) \\ &= H_0(u; p_1, p_2, \dots) + \hbar^2 H_1(u; p_1, p_2, \dots) \\ &+ \hbar^4 H_2(u; p_1, p_2, \dots) + \cdots, \end{aligned}$$

Genus expansion for Hurwitz and Bousquet-Mélou–Schaeffer numbers

$$\begin{aligned} H^{\hbar}(u; p_1, p_2, \dots) &= \hbar^2 H(\hbar u; p_1/\hbar^2, p_2/\hbar^3, \dots) \\ &= H_0(u; p_1, p_2, \dots) + \hbar^2 H_1(u; p_1, p_2, \dots) \\ &+ \hbar^4 H_2(u; p_1, p_2, \dots) + \cdots, \end{aligned}$$

$$B_m^{\hbar}(u; p_1, p_2, \dots) = \hbar^2 B_m(\hbar u; p_1/\hbar^2, p_2/\hbar^3, \dots)$$

= $B_{m;0}(u; p_1, p_2, \dots) + \hbar^2 B_{m;1}(u; p_1, p_2, \dots)$
+ $\hbar^4 B_{m;2}(u; p_1, p_2, \dots) + \dots,$

S. Lando (HSE Moscow)

Theorem (Hurwitz's formula, 1891)

For a partition $\mu = (\mu_1, \dots, \mu_n)$ of N, and m smallest possible, we have

$$h_{m;\mu} = rac{m!}{|Aut(\mu)|} \prod_{i=1}^{n} rac{\mu_i^{\mu_i}}{\mu_i!} N^{n-3}.$$

Theorem (Bousquet-Mélou–Schaeffer formula, 2000)

For a partition $\mu = (\mu_1, \dots, \mu_n)$ of N, we have

$$b_{m,k;\mu} = \frac{m(m|\mu| - k + 1)^{\overline{\ell(\mu) - 3}}}{|Aut(\mu)|} \prod_{i=1}^{n} \binom{m\mu_i - 1}{\mu_i}, \qquad k = |\mu| + n - 2.$$

Theorem (A. Yu. Orlov, D. M. Shcherbin, 2001, I. P. Goulden, D. M. Jackson, 2008)

The generating function

$$\log \sum_{\mu} y_{\mu} s_{\mu}(p_1, p_2, \dots) s_{\mu}(q_1, q_2, \dots),$$

is a family of solutions to the KP hierarchy depending of infinitely many parameters \ldots , y_{-2} , y_{-1} , y_0 , y_1 , y_2 , \ldots and q_1 , q_2 , \ldots

Theorem (A. Yu. Orlov, D. M. Shcherbin, 2001, I. P. Goulden, D. M. Jackson, 2008)

The generating function

$$\log\sum_{\mu}y_{\mu}s_{\mu}(p_1,p_2,\dots)s_{\mu}(q_1,q_2,\dots),$$

is a family of solutions to the KP hierarchy depending of infinitely many parameters \ldots , y_{-2} , y_{-1} , y_0 , y_1 , y_2 , \ldots and q_1 , q_2 , \ldots

• μ a partition, and the summation carries over all partitions;

Theorem (A. Yu. Orlov, D. M. Shcherbin, 2001, I. P. Goulden, D. M. Jackson, 2008)

The generating function

$$\log \sum_{\mu} y_{\mu} s_{\mu}(p_1, p_2, \dots) s_{\mu}(q_1, q_2, \dots),$$

is a family of solutions to the KP hierarchy depending of infinitely many parameters \ldots , y_{-2} , y_{-1} , y_0 , y_1 , y_2 , \ldots and q_1 , q_2 , \ldots

- μ a partition, and the summation carries over all partitions;
- s_{μ} is the *Schur polynomial* corresponding to the partition μ ;

Theorem (A. Yu. Orlov, D. M. Shcherbin, 2001, I. P. Goulden, D. M. Jackson, 2008)

The generating function

$$\log \sum_{\mu} y_{\mu} s_{\mu}(p_1, p_2, \dots) s_{\mu}(q_1, q_2, \dots),$$

is a family of solutions to the KP hierarchy depending of infinitely many parameters \ldots , y_{-2} , y_{-1} , y_0 , y_1 , y_2 , \ldots and q_1 , q_2 , \ldots

- μ a partition, and the summation carries over all partitions;
- s_{μ} is the *Schur polynomial* corresponding to the partition μ ;
- y_μ is the content product, y_μ = ∏_{w∈μ} y_c(w), c(w) being the content of the cell w of the Young diagram of μ.

Theorem (A. Yu. Orlov, D. M. Shcherbin, 2001, I. P. Goulden, D. M. Jackson, 2008)

The generating function

$$\log \sum_{\mu} y_{\mu} s_{\mu}(p_1, p_2, \dots) s_{\mu}(q_1, q_2, \dots),$$

is a family of solutions to the KP hierarchy depending of infinitely many parameters \ldots , y_{-2} , y_{-1} , y_0 , y_1 , y_2 , \ldots and q_1 , q_2 , \ldots

- μ a partition, and the summation carries over all partitions;
- s_{μ} is the *Schur polynomial* corresponding to the partition μ ;
- y_μ is the content product, y_μ = ∏_{w∈μ} y_c(w), c(w) being the content of the cell w of the Young diagram of μ.

The functions H, B_m, R belong to the Orlov–Shcherbin family.

S. Lando (HSE Moscow)

The parameters are for the Hurwitz numbers

$$(q_1, q_2, q_3, \dots) = (1, 0, 0, \dots)$$

 $y_c = e^{uc}, \quad c = \dots, -2, -1, 0, 1, 2, \dots$

The parameters are for the Hurwitz numbers

$$(q_1, q_2, q_3, \dots) = (1, 0, 0, \dots)$$

 $y_c = e^{uc}, \quad c = \dots, -2, -1, 0, 1, 2, \dots$

for the Bousquet-Mélou-Schaeffer numbers

$$(q_1, q_2, q_3, \dots) = (1, 0, 0, \dots)$$

 $y_c = (1 + uc)^m \quad c = \dots, -2, -1, 0, 1, 2, \dots$

Theorem (M. Kazarian, S. L. 2015)

All the solutions to KP in the Orlov–Shcherbin family admit a genus expansion.

Merci beaucoup pour votre attention