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Three enumerative problems

(Hurwitz problem, 1891) What is the number of ways to represent
a given permutation as a product of a given number of transpositions?

(Bousquet-Mélou–Schaeffer problem, 2000) What is the number
of ways to represent a given permutation as a product of a given
number of permutations?

(Enumeration of maps) What is the number of maps on a given
surface?
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Example of Hurwitz numbers: Cayley’s Theorem

Theorem The number of labelled trees on N vertices is NN−2.
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τ8 ◦ · · · ◦ τ1 = (45)(15)(18)(12)(16)(29)(57)(35)

= (697532148)

Bijection

Trees with N labeled (N − 1)-tuples of
vertices and N − 1 ←→ transpositions in SN

numbered edges whose product
is a long cycle

S. Lando (HSE Moscow) Combinatorial solutions Bordeaux–2016 4 / 24



Example of Hurwitz numbers: Cayley’s Theorem

Theorem The number of labelled trees on N vertices is NN−2.

s
s
s
s
s

s
s

s
s

6 1

3 5 4

7

2

8

9

4

7
1

2

8

5
6

3

τ8 ◦ · · · ◦ τ1 = (45)(15)(18)(12)(16)(29)(57)(35)

= (697532148)

Bijection

Trees with N labeled (N − 1)-tuples of
vertices and N − 1 ←→ transpositions in SN

numbered edges whose product
is a long cycle

S. Lando (HSE Moscow) Combinatorial solutions Bordeaux–2016 4 / 24



Example of Hurwitz numbers: Cayley’s Theorem

Theorem The number of labelled trees on N vertices is NN−2.

s
s
s
s
s

s
s

s
s

6 1

3 5 4

7

2

8

9

4

7
1

2

8

5
6

3

τ8 ◦ · · · ◦ τ1 = (45)(15)(18)(12)(16)(29)(57)(35)

= (697532148)

Bijection

Trees with N labeled (N − 1)-tuples of
vertices and N − 1 ←→ transpositions in SN

numbered edges whose product
is a long cycle

S. Lando (HSE Moscow) Combinatorial solutions Bordeaux–2016 4 / 24



Example of Hurwitz numbers: Cayley’s Theorem

Theorem The number of labelled trees on N vertices is NN−2.

s
s
s
s
s

s
s

s
s

6 1

3 5 4

7

2

8

9

4

7
1

2

8

5
6

3

τ8 ◦ · · · ◦ τ1 = (45)(15)(18)(12)(16)(29)(57)(35)

= (697532148)

Bijection

Trees with N labeled (N − 1)-tuples of
vertices and N − 1 ←→ transpositions in SN

numbered edges whose product
is a long cycle

S. Lando (HSE Moscow) Combinatorial solutions Bordeaux–2016 4 / 24



Example of Hurwitz numbers: Cayley’s Theorem

Theorem The number of labelled trees on N vertices is NN−2.

s
s
s
s
s

s
s

s
s

6 1

3 5 4

7

2

8

9

4

7
1

2

8

5
6

3

τ8 ◦ · · · ◦ τ1 = (45)(15)(18)(12)(16)(29)(57)(35)

= (697532148)

Bijection

Trees with N labeled (N − 1)-tuples of
vertices and N − 1 ←→ transpositions in SN

numbered edges whose product
is a long cycle

S. Lando (HSE Moscow) Combinatorial solutions Bordeaux–2016 4 / 24



Example of Hurwitz numbers: Cayley’s Theorem

Theorem The number of labelled trees on N vertices is NN−2.

s
s
s
s
s

s
s

s
s

6 1

3 5 4

7

2

8

9

4

7
1

2

8

5
6

3

τ8 ◦ · · · ◦ τ1 = (45)(15)(18)(12)(16)(29)(57)(35)

= (697532148)

Bijection

Trees with N labeled (N − 1)-tuples of
vertices and N − 1 ←→ transpositions in SN

numbered edges whose product
is a long cycle

S. Lando (HSE Moscow) Combinatorial solutions Bordeaux–2016 4 / 24



Hurwitz numbers

Definition

For µ a partition of N, the simple Hurwitz number h◦m;µ is defined by

h◦m;µ =
1

N!
|{(τ1, . . . , τm)| the τi are transpositions,

τm ◦ · · · ◦ τ1 has cycle type µ}|.

Definition

For µ a partition of N, the connected simple Hurwitz number hm;µ is

hm;µ = 1
N! |{(τ1, . . . , τm)| the τi are transpositions, τm ◦ · · · ◦ τ1

has cycle type µ, the group generated by the τi acts transitively}|.

A set of transpositions is encoded by a graph with labelled vertices
Connected Hurwitz numbers enumerate certain connected graphs
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Bousquet-Mélou–Schaeffer numbers

Definition

For µ a partition of N, the Bousquet-Mélou–Schaeffer number b◦m,k;µ is
defined by

b◦m,k;µ =
1

N!
|{(τ1, . . . , τm)| the τi ∈ SN , their total degeneracy is k ,

and τm ◦ · · · ◦ τ1 has cycle type µ}|.

Definition

For µ a partition of N, the connected Bousquet-Mélou–Schaeffer number
bm,k;µ is

bm,k;µ = 1
N! |{(τ1, . . . , τm)| the τi ∈ SN , their total degeneracy is k,

τm ◦ · · · ◦ τ1 has cycle type µ,

and the group generated by the τi acts transitively}|.

The degeneracy of a partition ν ` N, ν = (ν1, . . . , ν`), is N − `.
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Enumeration of maps

Definition

For µ a partition of N, let r◦m,n;µ denote the number of oriented rooted
maps with m edges and n faces, and the partition defined by the valencies
of the vertices being µ.

Definition

For µ a partition of N, let rm,n;µ denote the number of connected oriented
rooted maps with m edges and n faces, and the partition defined by the
valencies of the vertices being µ.

S. Lando (HSE Moscow) Combinatorial solutions Bordeaux–2016 7 / 24



Enumeration of maps

Definition

For µ a partition of N, let r◦m,n;µ denote the number of oriented rooted
maps with m edges and n faces, and the partition defined by the valencies
of the vertices being µ.

Definition

For µ a partition of N, let rm,n;µ denote the number of connected oriented
rooted maps with m edges and n faces, and the partition defined by the
valencies of the vertices being µ.

S. Lando (HSE Moscow) Combinatorial solutions Bordeaux–2016 7 / 24



Generating functions for Hurwitz numbers

Define exponential generating functions in a variable u (recording the
number of transpositions) and infinitely many variables p1, p2, . . .
(recording the parts of the partitions):

H◦(u; p1, p2, . . . ) =
∞∑

m=0

∑
µ

h◦m;µpµ1pµ2 . . .
um

m!
;

and

H(u; p1, p2, . . . ) =
∞∑

m=0

∑
µ

hm;µpµ1pµ2 . . .
um

m!
.

Here µ = (µ1, µ2, . . . ), µ1 ≥ µ2 ≥ . . . runs over all partitions.

The two are related by
H◦ = exp(H).
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Series expansion for Hurwitz numbers

It is clear from the definition that the coefficients of both H and H◦ are
rational. The first terms of the power series expansions are

H◦(u; p1, . . . ) = 1 + p1 +
p2u

2
+

p21
2

+
p3u

2

2
+

1

2
p2p1u +

p31
6

+
p2u

3

12

+
2p4u

3

3
+

1

4
p21u

2 +
1

2
p3p1u

2 +
1

8
p22u

2 +
1

4
p2p

2
1u +

p41
24

+ · · ·

H(u; p1, . . . ) = p1 +
p2u

2
+

(
p21
4

+
p3
2

)
u2 +

(
2p1p2

3
+

p2
12

+
2p4
3

)
u3

+

(
p31
6

+
p21
48

+
9p3p1

8
+

p22
2

+
3p3
8

+
25p5
24

)
u4 + · · ·
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Generating functions for Bousquet-Mélou–Schaeffer
numbers

For each m = 0, 1, 2, . . . , define exponential generating functions in a
variable u (recording the total degeneracies) and infinitely many variables
p1, p2, . . . (recording the parts of the partitions):

B◦m(u; p1, p2, . . . ) =
∑
k,µ

b◦m,k;µpµ1pµ2 . . .
uk

k!
;

and

Bm(u; p1, p2, . . . ) =
∑
k,µ

bm,k;µpµ1pµ2 . . .
uk

k!
;

Here µ = (µ1, µ2, . . . ), µ1 ≥ µ2 ≥ . . . runs over all partitions.

The two are related by
B◦m = exp(Bm).
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Generating functions for the numbers of rooted maps

Define exponential generating functions in a variable w (recording the
number of edges), a variable w (recording the number of faces), and
infinitely many variables p1, p2, . . . (recording the verticies’ valencies):

R◦(w , z ; p1, p2, . . . ) =
∑
m,n,µ

r◦m,n;µ
2n

pµ1pµ2 . . .
wm

m!

zn

n!
;

and

R(w , z ; p1, p2, . . . ) =
∑
m,n,µ

rm,n;µ
2n

pµ1pµ2 . . .
wm

m!

zn

n!
;

Here µ = (µ1, µ2, . . . ), µ1 ≥ µ2 ≥ . . . runs over all partitions µ ` 2n.

The two are related by
R◦ = exp(R).
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KP-hierarchy for Hurwitz numbers

Theorem (A. Okounkov 2000, M. Kazarian, S. L. 2007)

The generating function H for the connected Hurwitz numbers is a
one-parameter family of solutions to the Kadomtsev–Petviashvili hierarchy
of partial differential equations. In particular,

∂2H

∂p22
=

∂2H

∂p1∂p3
− 1

2

(
∂2H

∂p21

)2

− 1

12

∂4H

∂p41
.
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KP-hierarchy for Bousquet-Mélou–Schaeffer numbers

Theorem (I. P. Goulden, D. M. Jackson, 2008)

Each generating function Bm for the connected Bousquet-Mélou–Schaeffer
numbers is a one-parameter family of solutions to the
Kadomtsev–Petviashvili hierarchy of partial differential equations. In
particular,

∂2Bm

∂p22
=

∂2Bm

∂p1∂p3
− 1

2

(
∂2Bm

∂p21

)2

− 1

12

∂4Bm

∂p41

for m = 1, 2, 3, . . . .
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KP-hierarchy for the numbers of maps

Theorem (I. P. Goulden, D. M. Jackson, 2008)

The generating function R for the numbers of connected maps is a
two-parameter family of solutions to the Kadomtsev–Petviashvili hierarchy
of partial differential equations. In particular,

∂2R

∂p22
=

∂2R

∂p1∂p3
− 1

2

(
∂2R

∂p21

)2

− 1

12

∂4R

∂p41
.
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Genus expansion for connected maps

Connected maps have genus. The generating function R for connected
maps admits the genus expansion

R~(w , z ; p1, p2, . . . ) = R0(w , z ; p1, p2, . . . ) + ~2R1(w , z ; p1, p2, . . . )

+~4R2(w , z ; p1, p2, . . . ) + . . . ,

where Rg is the generating function for the numbers of maps on the
genus g compact oriented surface, g = 0, 1, 2, . . . .

The genus expansion R~ can be obtained from the generating function R
by the substitution

R~(w , z ; p1, p2, p3, . . . ) = ~2R
(
~w , ~z ;

p1
~2
,
p2
~3
,
p3
~4
. . .
)

(the Euler genus formula).
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Genus expansion for the KP-hierarchy

Theorem

The generating function R~ for the numbers of connected maps is a
two-parameter family of solutions to the perturbed Kadomtsev–Petviashvili
hierarchy of partial differential equations. In particular,

∂2R~

∂p22
=

∂2R~

∂p1∂p3
− 1

2

(
∂2R~

∂p21

)2

− ~2

12

∂4R~

∂p41

due to the above substitution

R~(w , z ; p1, p2, p3, . . . ) = ~2R
(
~w , ~z ;

p1
~2
,
p2
~3
,
p3
~4
. . .
)
.
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Genus expansion equations

For the genus 0 part, series expansion for the perturbed KP equation yields

∂2R0

∂p22
=

∂2R0

∂p1∂p3
− 1

2

(
∂2R0

∂p21

)2

(the dispersionless first KP equation).

For the genus 1 part, series expansion for the perturbed KP equation yields

∂2R1

∂p22
=

∂2R1

∂p1∂p3
− ∂2R0

∂p21

∂2R1

∂p21
− 1

12

∂4R0

∂p41
,

which is a LINEAR partial differential equation with respect to R1.

Equations for P2,P3, . . . also are linear.
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Genus expansion for Hurwitz and
Bousquet-Mélou–Schaeffer numbers

H~(u; p1, p2, . . . ) = ~2H(~u; p1/~2, p2/~3, . . . )
= H0(u; p1, p2, . . . ) + ~2H1(u; p1, p2, . . . )

+ ~4H2(u; p1, p2, . . . ) + · · · ,

B~
m(u; p1, p2, . . . ) = ~2Bm(~u; p1/~2, p2/~3, . . . )

= Bm;0(u; p1, p2, . . . ) + ~2Bm;1(u; p1, p2, . . . )

+ ~4Bm;2(u; p1, p2, . . . ) + · · · ,
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Hurwitz’s formula

Theorem (Hurwitz’s formula, 1891)

For a partition µ = (µ1, . . . , µn) of N, and m smallest possible, we have

hm;µ =
m!

|Aut(µ)|

n∏
i=1

µµii
µi !

Nn−3.
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Bousquet-Mélou–Schaeffer formula

Theorem (Bousquet-Mélou–Schaeffer formula, 2000)

For a partition µ = (µ1, . . . , µn) of N, we have

bm,k;µ =
m(m|µ| − k + 1)`(µ)−3

|Aut(µ)|

n∏
i=1

(
mµi − 1

µi

)
, k = |µ|+ n − 2.
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Orlov–Shcherbin family

Theorem (A. Yu. Orlov, D. M. Shcherbin, 2001, I. P. Goulden,
D. M. Jackson, 2008)

The generating function

log
∑
µ

yµsµ(p1, p2, . . . )sµ(q1, q2, . . . ),

is a family of solutions to the KP hierarchy depending of infinitely many
parameters . . . , y−2, y−1, y0, y1, y2, . . . and q1, q2, . . . .

µ a partition, and the summation carries over all partitions;

sµ is the Schur polynomial corresponding to the partition µ;

yµ is the content product, yµ =
∏

w∈µ yc(w), c(w) being the content
of the cell w of the Young diagram of µ.

The functions H,Bm,R belong to the Orlov–Shcherbin family.
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Parameter values for solutions

The parameters are
for the Hurwitz numbers

(q1, q2, q3, . . . ) = (1, 0, 0, . . . )

yc = euc , c = . . . ,−2,−1, 0, 1, 2, . . .

for the Bousquet-Mélou–Schaeffer numbers

(q1, q2, q3, . . . ) = (1, 0, 0, . . . )

yc = (1 + uc)m c = . . . ,−2,−1, 0, 1, 2, . . .
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Genus expansion for Orlov–Shcherbin family

Theorem (M. Kazarian, S. L. 2015)

All the solutions to KP in the Orlov–Shcherbin family admit a genus
expansion.
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