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PROLOGUE
A (Brief) Introduction to Analytic 

Combinatorics



Generating Functions
A priori, a generating function is a formal object but it may also 
be the expansion of an analytic function at the origin.
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‘Analytic’ Combinatorics
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Exponentially smaller

Know local behaviour

Theorem (Flajolet-Odlyzko / Darboux) 
 If        is analytic in                   , except at             where 
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Univariate AC
Theorem (Pringsheim) 
 If                            is analytic at the origin with radius of  
 convergence          and           then         is a singularity with  
 minimal modulus. 

Thus, the general method of AC (often) has one: 

(1) Find singularity closest to origin (using Pringsheim) 

(2) Calculate contribution of each singularity with this  
   modulus



ACT I
A Combinatorial Problem



Lattice Paths in a Quadrant
Given: A finite set of steps / directions 
Count:        # of walks staying in    , starting at the origin cn = N
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Importance
Studied as far back as 18th and 19th centuries. 

 
Applications to: 

• Statistical mechanics (polymers in solution, Ising model, …) 

• Queueing theory / operations research 

• Discrete Structures (trees, words, plane partitions, …) 

• Probability Theory (random walks, branching processes, …) 

 
Useful sandbox for developing methods for generating functions



A Reduction
A priori, there are                   different models.  Some, like  

 
are trivial.  Some, like 

 
live in a half-space and can be solved by methods of Banderier 
and Flajolet (2001).  

Finally, some are equivalent.



A Reduction

Bousquet-Mélou and Mishna (2010) showed there are 79 non-
isomorphic two dimensional models.



The Kernel Method
Bousquet-Mélou and Mishna (2010) were able to show that many 
of these walks have a D-finite generating function.  
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The Kernel Method
The recursive nature of a walk of length    ending at           
implies that              satisfies a functional equation of the form 



The Kernel Method
The recursive nature of a walk of length    ending at           
implies that              satisfies a functional equation of the form 

Bousquet-Mélou and Mishna use a group    of bi-rational 
transformations of the plane associated to this model. 

 
When the group is finite it can usually be combined with the 
functional equation to give a nice representation of             .
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is D-Finite (Bousquet-Mélou & Mishna 2010)

is algebraic (Bostan & Kauers 2010)

is not D-Finite (M. & Mishna 2014)
(Bostan, Raschel, Salvy 2014)

Finite Group Infinite Group



Bostan and Kauers (2009) Guessed Asymptotics



Bostan and Kauers (2009) Guessed Asymptotics

is algebraic and has these asymptotics (Bousquet-Mélou Mishna & Bostan Kauers)



Bostan, Chyzak, van Hoeij, Kauers, Pech (2015) Guessed Asymptotics
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For a step set   , define the characteristic polynomial 
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Diagonals of Rational Functions
Theorem 
 For each of the 23 D-finite models, except the algebraic models 
 5 — 8, there exists an explicit rational function             such  
 that for   
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ACT II
Analytic Combinatorics in Several Variables



Theorem (CIF In Several Variables) 
 Let             be holomorphic on an open neighbourhood of 0. 
 Then there is a unique series                                       
 converging to f  near the origin whose coefficients satisfy 
 
 
 
 where    is a polydisk sufficiently close to the origin. 
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         we can get asymptotic approximations. 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Theorem (CIF In Several Variables) 
 Let             be holomorphic on an open neighbourhood of 0. 
 Then there is a unique series                                       
 converging to f  near the origin whose coefficients satisfy 
 
 
 
 where    is a polydisk sufficiently close to the origin. 



Goal: Deform    without changing the value of the integral, until  
         we can get asymptotic approximations. 
 
Idea: Like the univariate case, find points where local behaviour 
        determines asymptotics.   
                  In general this is very very hard!

Theorem (CIF In Several Variables) 
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 Then there is a unique series                                       
 converging to f  near the origin whose coefficients satisfy 
 
 
 
 where    is a polydisk sufficiently close to the origin. 



Minimal Points
Let    be the open domain of convergence of the power series. 
Points            are known as minimal points. 

Minimal points give an ‘easy’ upper bound on asymptotics: 
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Assume that                                          is rational, and let  
    be the set of zeroes of              where no coordinate is zero. 

Assume that    is a smooth manifold; i.e., that at no point 
 

At each                   there is (at least) one point with the same 
coordinate-wise modulus in   .  
 
 
Which points of    give the best bound? When is it tight?
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A point                 is called critical if  

 



Critical Points

Idea: We understand asymptotics of Gaussian integrals very well

A point                 is called critical if  

 
At such a point,

z z 0



Critical Minimal Points
Theorem 
 Let              be the set of minimal points maximizing        . 
 Assume each point of     has the same coordinate-wise modulus. 

 If the subset            of critical points in     is non-empty and  
 finite then    is the set of contributing points, in the sense that    
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Non-degenerate Smooth Formula
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Critical Minimal Points

There are extensions to more general cases with a finite number 
of critical minimal points. 

Problem: critical minimal points may not exist!

Theorem 
 Let              be the set of minimal points maximizing        . 
 Assume each point of     has the same coordinate-wise modulus. 

 If the subset            of critical points in     is non-empty and  
 finite then    is the set of contributing points, in the sense that    
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Luckily, there are important cases where we are guaranteed 
critical minimal points.

“Combinatorial” Case

Theorem 

 Suppose that                            has a power series expansion  

 
 where each              . Then there is at least one critical minimal  
 point, and                    only if                             .
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1) Find contributing points.  Can be done: 

-  when dealing with minimal critical points* (if they exist) 

-  when the denominator has only linear factors 

-  in dimension 2 (DeVries, van der Hoeven, Pemantle) 

2) Calculate the contribution of each, using pre-calculated 
formulae (can get very messy) 

The Method of ACSV
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1) Find contributing points.  Can be done: 

-  when dealing with minimal critical points* (if they exist) 

-  when the denominator has only linear factors 

-  in dimension 2 (DeVries, van der Hoeven, Pemantle) 

2) Calculate the contribution of each, using pre-calculated 
formulae (can get very messy) 

Work in Progress (with Bruno Salvy and George Labahn): 
      Make this effective and give complexity (see ISSAC 2016?)

The Method of ACSV



ACT III
Back to Lattice Paths



The 23 D-Finite Models
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Highly Symmetric Walks



Highly Symmetric Walks

Theorem (M. and Mishna 2014) 
 Let                              be symmetric with respect to each   
 axis and take a positive step in each direction.  Then 

 where              of steps which have      coordinate 1. 

0



Highly Symmetric — M. and Mishna 2014/15
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Positive Drift — M. and Wilson 2015
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Negative Drift — M. and Wilson 2015
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Negative Drift — M. and Wilson 2015

The 23 D-Finite Models



Algebraic Zero Orbit Sum Cases 
Mishna / Bousquet-Mélou and Mishna / Bostan and Kauers

The 23 D-Finite Models



Three Sporadic Cases 
M. and Wilson 2015 (and Bousquet-Mélou and Mishna)

The 23 D-Finite Models



Example: Negative Drift
Example 
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 The contributing points turn out to be 
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Example: Negative Drift
Example 
The Sage package of Raichev calculates (after shifting) 
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Conclusion
We are able to 

• Prove (and re-discover) conjectured asymptotics of Bostan and 
Kauers from 2009 

• Prove (and re-discover) conjectured asymptotics for returns to 
boundaries 

• Derive compact representations for these combinatorial objects 

• Explain combinatorial properties analytically

Extensions to: 

• Step sets in d variables symmetric over every axis (M. & Mishna 2015) 

• Step sets in d variables missing one symmetry* (M. & Wilson 2015+)



Conclusion
Other on-going work: 

• Computational complexity of ACSV methods  
(for combinatorial case and beyond) — use Computer Algebra 

• Comparison of ACSV methods to creative telescoping 
algorithms 

• Dealing with weights 

• Dealing with longer steps  
(joint work with Alin Bostan and Mireille Bosquet-Mélou) 

• Walks in other regions (Weyl Chambers) 

• Applications to other areas of  
Combinatorics / CS / Number Theory



FIN
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 This rational function has a smooth denominator and is  
 combinatorial!  We easily get contributing points: 
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Example 
 The Sage package of Raichev calculates (after shifting) 

 Thus, 

 Bousquet-Mélou and Mishna used Gosper-summability of a 
 related sequence to prove this. 
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