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Analytic Combinatorics

Estimate properties of large structured combinatorial objects

@ Symbolic Method
Combinatorial Specification — Equations on (univariate)
Generating Fonctions encoding counting sequences

Analytic ;
Combinatorics @ Complex Analysis

GF as Analytic Functions — extract asymptotic information on
counting sequences

@ Properties of Large Structures
laws governing parameters in large random objects similar to
enumeration
— deformation (adjunction of auxiliary variable)

— perturbation (effect of variations of auxiliary variable)

Gaussian Laws with Singularity Analysis + Combinatorial applications
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Univariate Asymptotics

Combinatorial

Univariate Asymptotic

Specification Generating Functions Enumeration

Enumeration of general Catalan trees

£ 48440407
A A pNy A

G(z2) = > 9nZ", gn = #trees of size n

5

g:oxSEQ(g)aG(z):%G(z) S
a0 vie G res it
Gl2)y - 7 Ut (o 4)";2 e

stirling approx. n! = v/2zn(n/e)"(1 + 0(1/n))
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Singularity Analysis
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Bivariate Asymptotics

Asymptotic
Behavior of
Parameters

Combinatorial Bivariate
Specification Generating Functions

Number of leaves

G(z,u)=>" g,,7kZ”Uk, gnk = # trees of size nwith k leaves

zG(z,u)

G° = e° + e x SEQ>1(G°) — G(z7u):ZU+W(27u)

Glz,u)=3(1+(u—-1)z—/1-2u+1)z+ (u—-1)2z2)

= Gns = 7() (&9

Mean value 1, = n/2; standard deviation o, = O(v/n)

x2
_n 9n.k 1 T 252
for k = § + xv/n, o oo s a=€ P
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Bivariate Asymptotics

Combinatorial Generating Functions Q:x?v‘i’::t:;
Specification Bivariate
Parameters

G(z,u):%(1 +(u—1)z—\/1 —2(u+ 1)z + (u—1)>223)

=g(z,u)—h(z,u),/1 — —, u:1+ﬁ—2
9(z,u) = h(z, u) o) p(u) = ( )
Probability generating function ps(u) =Y, g"nk uk = %

Pa(u) = (%JD (1 + 0(1))

Perturbation of Singularity Analysis
+ Quasi-Powers approximation

— Central Limit Theorem
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TooLs

@ Generating Functions and Limit Laws

e Bivariate Generating Functions

e Continuous Limit Laws

e Continuity Theorem for Characteristic functions
@ Quasi-Powers Theorem

e Central Limit Theorem

o Quasi-Powers
@ Singularity Analysis

e Asymptotic enumeration

e Perturbation of Singularity Analysis
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Bivariate Generating Functions and Limit Laws

Combinatorial class .4 Uniform Model

Size ||: A— N Random Varigbles (Xn)n>o0
Counting Generating Function P(Xn = k) = 3=

A2) = Ypen 2 =3, an2" Probability Generating Function
Parameter x : A — N p(u) = X P(Xn = k)u = E(u¥)
Bivariate Generating Function = lele

Az u) =3 e q )2
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Mean value p, = E(Xp) = pp(1)

K n
2 onk@nkl Variance o2 = p//(1) — 12 + pin

Question : Asymptotic behavior of X, ?
moments, limit law (density, cumulative), tails of distribution l

Answer by Analytic Combinatorics : Evaluate [z"|A(z, u)
in different u-domains l

Michele Soria Gaussian Laws in Analytic Combinatorics



Examples of discrete Limit Law

@ 1p = O(1) and 02 = O(1) discrete limit law :
VK, P(Xn = K) = ns0o P(X = k), X discrete RV

Ex. root degree distribution in Catalan trees : Geometric

051H
0.4
03
02—

014

0:
I I

8/43 Michele Soria Gaussian Laws in Analytic Combinatorics



Examples of continuous Limit Law

@ ppand o2 — oo

Quicksort : number of comparisons 10 < N < 50

{iro.
o

IITRSIIINNE SO SSSSNINSININISSSSS

)
“ %;o’e

Xn_lin

Normalized variable X, =
On

continuous limit law

|
2NInN — 846N

9/43 Michele Soria Gaussian Laws in Analytic Combinatorics



Continuous Limit Laws

Y Continuous Random Variable

Distribution Function

Fy(x) :=P(Y < x)
. . Fy(x) differentiable :
Characteristic function density fy(x) := Fy(x)

(Fourier Transform)
py(t) = E(e")

(X5) sequence of (norm. combinatorial) Random Variables X = %

Weak Convergence X = Y
VX, liMpso0 Fix; (X) = Fr(X) J Local Limit Law X; — Y
P(Xp = Lptn + xon]) = 3-f(X)

Continuity Theorem (Lévy 1922)

Xy =Y = oxr = oy

i+ Xn—pn __jtkn _jtkn it
ox; (1) = E(e"7") = e " E(e"7h) = &% py(e7i)
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Gaussian Limit Laws N(0,1)

N(0,1)

Distribution Function F(x) = —= [* e~
Probability density ~ f(x) = --e~ =
Characteristic Function (t)=e =2

Number of &'s in words on {a, b}* of length n
Bivariate GF F(z,u) = _
1—z—zu

.

Binomial Distribution P(X, = k) = 5 (})
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Central Limit Theorem

Central Limit Theorem (Demoivre, Laplace, Gauss)

Let Ty,..., T, be i.i.d RV, with finite mean 1 and variance o2,
and let S, = > T;. The normalized variable S;; weekly
converges to a normalized Gaussian distribution :

Sn—nll,b

S,,Eiaﬁ

= N(0,1)

Proof by Levy’s theorem : characteristic function E(e'S") = (¢, (1)),

jt Sn=mu —it

ps; (t) = E(e i )=e Vi E ( ) e"’% (67, (512))"

log ¢s; (1) = —it - +n|09( + = 5 o (12 + %) + o(%))
=%+ O(ﬁ)

Thus ¢s: (1) — o ps: (1) = pn(u) = p"(u)

it
U=eon :u~1whenn— oo
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Quasi-Powers Theorem — Example

Cycles in Permutations

P = SET(cCYCLE(Z)) — F(z,u) =exp (ulog 11—z>

F(z,u) =S k2 = 3, pa(u) 2" with pu(u) = 32 P(Xn = k)uk
Flzouy=(1-2z) v =Y ("4 ") 2"

n

_u(u+1)...(u+n-1)  T(u+n)
Pr(u) = i = T(r(n+1)

7L u—1ylogn 1 ; ~
p,,(u)—l_(u)(e ) 14+ 0 =) uniform for v~ 1

Theorem (Goncharov 1944)

The number of cycles in a random permutation is
asymptotically Gaussian, with u, = H, and o, = \/logn+ o(1).
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Quasi-Powers Theorem

Quasi-powers Theorem (H-K Hwang 1994)

X, non-negative discrete random variables with PGF p,(u).
Assume that, uniformly for u ~ 1 (u in a fixed neighbourhood of 1)

p(u) = A(u)B(u)™ (1 + O(

l))7 with Xp, kp — 00, N —
Kn
with A(u), B(u) analytic atu =1, A(1) = B(1) = 1 and "variability
conditions" on B(u). Then
Mean E(X,) = A\pB'(1) + A(1) + O(Hin),
Variance Var(X,) = A\p(B"(1) + B'(1) — B?(1)) + ...
Distribution asymptotically Gaussian :

1 X £
P(Xh < pn + Xop) — —/ e z dt
( n << Kn n) \/ﬂ .

Speed of Convergence O (ni 4L J?)

Proof : analyticity + uniformity — error terms transfer to differentiation.
Like in CLT only local properties near u = 1 are needed since A\p — co.
Normalization, Characteristic function + Levy Theorem
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Other Properties

Local Limit Theorem (H-K Hwang 1994)

If the Quasi-Powers approximation holds on the circle |u| = 1

then
2

1
O'n]P)(Xn: LMn"‘XO-nJ):Ee 2

Large Deviations Theorem (H-K Hwang 1994)

If the Quasi-Powers approximation holds on an interval

containing 1 then
log P(Xh < xAn) < \pW(x)+ O(1)

where W(x) = minlog(B(u)/u*)
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Singularity Analysis
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Theorem : Singularity Analysis (Flajolet-Odlyzko 90)

F(z) = faz" analytic function at 0, unique dominant sigularity
at z = p, and F(z) analytic in some A-domain (A-analytic)

and locally,
’
F(z)~ —— aeR-Z"
O~ a2/
then o p "
! ()

Cauchy coefficient integral : [z"] F(z) =5 / z” +1

F alg-log singularity Hankel Contour

F(2) ~ e 109” (=7 = T ~ Sy log” n
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Pe

rturbation of Singularity Analysis

Robust : contour integrals — uniform error terms for parameters

_[2"|F(z,u) | uparameter

Pn(u) = [z"F(z,1) | Sing. of F(z,1) — Sing. of F(z,u) for u ~ 1

17/43

Movable singularities

1 p(w)\ " N
W — Pn(U) ~ ([)(1)) , uniform for u ~ 1.

— Gaussian limit law, with a mean and variance of order n.

F(z,u) =

Variable exponent

_ 1
(1=2/p)°®
= Gaussian limit law, with a mean and variance of order log n.

F(z,u) ~ — pp(u) ~ ne®=M yniform for u ~ 1
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ANALYTICO-COMBINATORIAL SCHEMES

@ Perturbation of Meromorphic Asymptotics
e Meromorphic functions
e Linear systems
@ Perturbation of Singularity Analysis
e Alg-Log Scheme : movable singularities
Algebraic Systems
Exp-Log Scheme : variable exponent
Differential equations
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MEROMORPHIC SCHEMES




Example : Eulerian numbers

Rises in permutations 2 6 41 "3 "5 "8 7

_u(1—u) B
logu + 2ikm
1 dz
n - el
IR = g | Few
uniformly = (p(u))"""'+ 02"

Quasi-Powers Theorem

— Number of rises in permutations

Gaussian limit law

n 2 n
Hn ™~ 2,0p ™~ 93

20/43 Michéle Soria Gaussian Laws in Analytic Combinatorics



Meromorphic Scheme : Theorem

Meromorphic Theorem (Bender 93)
@ F(z,u) analytic at (0,0), non negative coefficients.

F(z,1) single dominant simple pole at z = p.
B(z,u)
F(z,u) = Czu)’
B(z,u),C(z,u) analytic forlu—1| <n, |z| < p+e
(p simple zero of C(z,1) and p(u) analyticu ~ 1, C(u, p(u) = 0))
@ Non degeneracy + variability conditions

Then

@ Gaussian limit law, mean and variance asymptotically
linear : N'(cin, con)
@ Speed of Convergence O(n~'/?)

for |z|<p+e and |u—1|<n

Proof : fa(u) = Residue + exponentially small uniform for u ~ 1
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Applications : Supercritical Sequences

22/43

Supercritical Composition

Substitution F = G(H) — f(z) = g(h(z)), h(0) =0

Th = Iimz_m_ h(z). The composition is supercritical if 7, > pg

‘ Singularity of f «+— Singularity of g uniquely ‘

Supercritical Sequences F = SEQ(H) — f(z) = 1%,,(2) Th > 1

The number of components in a random supercritical sequence
of size nis asymptotically Gaussian, with pu, = ph,i(p), where p is

the positive root of h(p) = 1, and o(n) = c,n

@ blocks in a surjection F(z,u) = ﬁez_”
@ parts in an integer composition F(z, U) = =5z » h(2) = Lz 7

@ cycles in an alignment F(z, u) = WW
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Other applications

@ Occurrences of fixed pattern of length k in binary words length n

F(z,u) = 17227(3:1(;1(;:35(01@)2;;()0(2)71)) ¢(z2) correlation polynomial

@ Parallelogram polyominoes of area n (39)
@ width (13) . e .
height (9) (z,u) = ug25. Jo, 1~ Bessel Functions
@ perimeter (22)
= width + height

Jo(z,1) simple zero at p ~ .433

@ GCD of polynomials over finite field
P monic polynomials of d°ninF,(z) : P(z) =

17pz
Steps in Euclid’s algorithm
Uy = qruy + Up F(z,u) = v uG F’(Z)
e ) ;
Up—2 = Gp—1Up—1 + Up = 1_, PP=Dz T-pz
Up—1 = Qpup +0 “Upr

Gaussian limit law with mean and variance asymptotically linear
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Linear Systems

Theorem Gaussian Limiting Distribution Bender 93
Y(z,u) =V(z,u) +T(z,u).Y(z,u)

@ each V; and T;; polynomial in z, u with non negative coefficients.

@ Technical conditions : irreducibility, aperiodicity, unicity of
dominant pole of Y(z,1).

Then
Limiting distribution of the additional parameter u : N'(c1n, con)

Applications

@ Irreducible and aperiodic finite Markov chain, after n transitions,
number of times a certain state is reached asymptotically
Gaussian.

@ Set of patterns in words : number of occurrences asymptotically
Gaussian
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ALG-LOG SCHEMES




Example : leaves in Catalan Trees

G(z,u) = zu+ 12_6((32(’;’111)
F(z,u) = G(z, u?) satisfies
1 1 > 1 1
F(z,u) = é+§z(u -1~ 5 1—z(1—u)?|x 5 1—z(1+u)?
F(z,u) = A(z,u)— B(z,u)(1—-£5)"/2 with p(u) =(1+u)2

p(u)

n—2

[2"|F(z,u) = bup(ug\f (1+0(3)

Singularity Analysis = uniformity for u ~ 1

p(1)

o))" i
pn(U) ~ (—) Quasi-Powers Theorem ..

Gaussian limit law mean and variance ~ linear
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Alg-Log Scheme : Theorem

Algebraic Singularity Theorem (Flajolet-S. 93, Drmota 97)
@ F(z,u) analytic at (0,0), non negative coefficients.
@ F(z,1) single dominant alg-log singularity at z = p
@ For |zl<p+e and |ju—1|<n
F(z,u)=A(z,u)+ B(z,u)C(z,u) *,aa e R—Z~
A(z,u),B(z,u),C(z,u) analytic for lu — 1| <n, |z| < p+¢
@ Non degeneracy + variability conditions.
Then
@ Gaussian limit law, mean and variance asymptotically
linear : N'(cyn, czn)
@ Speed of Convergence O(n~'/?)

Proof : Uniform lifting of univariate SA for u ~ 1
Implicit Function Theorem :p(u) ; C(u, p(u) = 0) analytic u ~ 1,
+ Quasi-Powers Theorem
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Applications

Functional equation (Bender, Canfield, Meir-Moon)

y(2) = ®(2,¥(2))

®(z,y) has a power series expansion at (0,0) with
non-negative coefficients, non linear (¢,,(z,y) # 0), and
well-defined ((z,y) # 0).

Letp > 0,7 > 0 such thatt = ®(p,7) and1 = ®,(p, 7).
Then 3 g(z), h(z) analytic functions such that locally

y(2) = 9(2) = h(z)\1—2z/p with g(p)=7 and h(p)# 0.
Simple family of trees Y(z) = z&(z, Y(2))
Catalan, Cayley , Motzkin, ...
@ number of leaves
@ number of occurrences of a fixed pattern

@ number of nodes of any fixed degree
Gaussian limiting distribution, mean and variance ~ linear.
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Random Mappings

M = SET(CYCLE(T))
: 0 ;;<:” T = e x SET(T)

3 M(z) = exp (Iog 71_}(20,
T(z) = ze®

T(z)=1-+/2(1 — ez) + sot.
@ number of leaves
@ number of nodes with a fixed number of predecessors

Gaussian limiting distribution, with mean and variance
asymptotically linear.
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other applications

@ Extends to Pdlya operators :
Otter Trees : B(z) = z + 3B%(z) + 3B(2?),
General non plane trees : H(z) = zexp(d_ #Zk))

number of leaves, number of nodes with a fixed number of
predecessors asymptotically Gaussian

@ Characteristics of random walks in the discrete plane :
number of steps of any fixed kind, number of occurrences
of any fixed pattern asymptotically Gaussian

@ Planar maps : number of occurrences of any fixed submap

asymptotically Gaussian
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Algebraic Systems
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Theorem Gaussian Limiting Distribution Drmota, Lalley — 95-97

Y(z) = P(z,Y(2), u) positive and well defined polynomial (entire)
system of equations , in z,Y, u which has a solution F(z, u).
Strongly connected dependency graph (non linear case), locally

fi(z,u) = (2, u) = hi(z,u)v1 = 2/p(u)
gi(z,u), hj(z, u), p(u) analytic non zero functions.

Limiting distribution of the additional parameter u : N'(cin, con)

‘\(é) ¥1(2) = pi(z. 1. y2)
Yo(2) = po(2, Y2, Y3, Ya)
K ,VS(Z) :p3(2~}/3~}/4)
¥a(2) = pa(z, y1)

General dependancy graph Drmota, Banderier 2014

Gaussian Limiting Distribution when all strongly connected
components have different radius of convergence.
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Algebraic Systems : Applications

@ number of independent sets in a random tree

@ number of patterns in a context-free language
Gaussian limiting distribution, mean and variance
asymptotically linear.

Non-crossing familiy : trees, forests, connect. or general graphs
@ number of connected components
@ number of edges

Forests
F3(z2)+ (22 —z—-3)F3(2) + (z+3)F-1=0

.’.\..
% irreducible aperiodic system
N A F=14zFU

U=1+0vV

= \} V = zFU?
{ — square-root type singularity
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EXP-LOG SCHEMES




Example : cycles in permutations

F(z,u) = exp <u|og 1%2>
—(1-2z)v

pn(u) = [2"|F(z,u) = Ty (14 O(1))
Singularity Analysis — uniformity for u ~ 1

Quasi-Powers approximation with 3, = log n

Stirling numbers of 1st kind
Pr(U) ~ £l (exp(u — 1))97

Number of cycles in a random permutation asymptotically
Gaussian, with i, and o2 equivalent to log n
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Exp-log Scheme : Theorem

Variable exponent Theorem (Flajolet-S. 93)

@ F(z,u) analytic at (0,0), non negative coefficients.

@ F(z,1) single dominant alg-log singularity at z = p

@ For |zl <p+e and |u—1|<n
F(z,u) = A(z,u) + B(z,u)C(2) W, a(1) e R — Z~
A(z,u), B(z, u) analytic for |u — 1| < n, |z| <p+e;
a(u) analytic for lu — 1| < n;

C(z) analytic for |z| < p + ¢ and unique root C(p) = 0.
@ Non degeneracy + variability conditions.

Then
@ Gaussian limit law, mean and variance asymptotically
logaritmic :  N(a/(1)logn, (o/(1) + &”(1)) log n)
@ Speed of Convergence O((log n)~'/?)

Proof : Singularity Analysis + Quasi-Powers Theorem
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Number of components in a set

G of logarithmic type : G(z) singular at p, and locally

G(z) = klog 1_12/p + A+ O(log™3(1 — z/p))

Labelled exp-log schema 7 = SET(cG)

F(z,u) = exp(uG(2)) — F(z,u) ~ !

(1—2/p)
Number of components — N (k log n, k log n)

Unlabelled exp-log schem F = MSET(cG) or F = PSET(c Q)
K Nk
F(z,u) = exp (Z l:(G(zk)) or F(z,u)=exp (Z ( /il) G(z")>

p<1= F(z,u) = H(z,u) exp(uG(z2))
H(z,u) analytic |lu—1|<n,|z| < p+e

Number of components — A/ (k log n, k log n)
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Connected components in Random Mappings

Random Mappings (labelled)

M = SET(oCYCLE(T))
T = e x SET(T)

M(z) = exp (log %T(Z))
T(2) = ze™®

T(z)=1-+/2(1 — ez) + sot.

Connected components
M(z,u)=(1-T(2)™
~(2(1 - ez))t

Gaussian limiting law

mean and variance ~ 1 log .
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Random Mapping Patterns (unlabelled)

MP = MSET(oL)
L = CYCLE(H)
H =ex MSET(H)

MP(z) = (z
L(z) =Y ®Miog ,J
H(z) = zexp(3 ™ ))

z)=1—-~v/(1-2z/n)+sot,n<A1

Connected components
MP(z,u) ~c,(1 - z/n)~%

Gaussian limiting law
mean and variance ~ } log n.
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Irreducible factors in a polynomial d°nin IFp

@ P monic polynomials of d°nin [F,(z) : Polar singularity 1/p

1
1—-pz

Po=p".  P(2)=

@ Unique factorization property :

1(z¥)
P = MSET(Z) - P(2) = exp(> )
@ Mobius inversion : /(z Z uk Iog z)
k1

® Logarithmic type : /(2) = log —— + Z uk Iog(P )
k>2
@ Thus number of irreducible factors asymptotically Gaussian with
mean and variance ~ log n.

(Erdds-Kac Gaussian Law for the number of prime divisors of natural numbers.)
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Linear Differential Equations — node level in BST

Binary Search Trees (increasing trees)
z
F=1429xFxF = F(z):1+/ F2(t)at
0

Internal nodes

at

F(zu)—1+2u/ Ftu17t

u .
Fi(z,u)= EF(Z, u), with F(O,u) =1 — F(z,u) = UJW
Singularity analysis
[2"F(z,u) = ( ( + O(1)), uniform for u ~ 1

Distribution of depth of a random node in a random Binary Search
Trees asymptotically Gaussian, with mean and variance ~ 2log n
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Linear Differential Equations

Linear differential equations (Flajolet-Lafforgue 94)

@ F(z,u) analytic at (0,0), non negative coefficients.

@ F(z,1) single dominant alg-log singularity at p : f, ~ Cp="n° 1

@ F(z,u) satisfies a linear differential equation

ao(z, u)F)(z, u) + %F(’*”(z, U+...+ (a;(fz‘ﬂ F(z,u)=0

ai(z,u) analytic at |z| = p
@ Non degeneracy + variability conditions.

@ Indicial polynomial
J(0) = ao(p, 1)(0)r + ar(p, 1)(0)r—1 + ... + a1 (p, 1)

unique simple root o > 0. @)=00-1)...(0—r+1)

Then

@ Gaussian limit law, mean and variance asymptotically
logarithmic : N'(c4 log n, ¢, log n)
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Node level in quadtrees
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T

P |l
NW NE —f—
= |

] /f\\ I [

0| S NW NE SW SE \ | H—

Hl [

— E ]

F(z,u)=1+4ul.JF(z,u)

z dt z dt
ol(2) = [~ o(0;%; Jlala) = [ a0 5%

Indicial polynomial J(6, u) = #2 — 4u — root o(u) = 2\/u

Depth of a random external node in a random quadiree
asymptotically Gaussian, mean and variance ~ logn

Michele Soria Gaussian Laws in Analytic Combinatorics



Non Linear Differential Equations ?

Binary Search Trees, parameter x ,
F(z,u) =Y+ NTux(NzITl where \(T) = ] Vi

v<T
@ Paging of BST : index + pages of size < b
Fl(z,u) = uF(z,u)?> + (1 — u)i -2 F(0,u) =1
“amre ’ az\ 1-z )’ e

@ Occurences of a pattern P in BST
Fi(z,u) = F(z,u)? + |PIX(P)(u—1)21P=1, F(0,u) =1

Riccati equations : )
Y =aY2+bY +c— W' =AW +BW with Y = -4
Poles and movable singularity p(u) analytic foru~1 —
Gaussian limit with mean and variance ~ cn

Varieties of increasing trees F = 25 x ¢(F) Fi(z) = ¢(F(2)), F(0) =0
Nodes fixed degree : Gaussian limit law with mean and variance ~ cn
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Conclusion

@ Analytic Combinatorics methods :

Combinatorial Decomposability Gaussian Laws

+ Strong Analycity — + Local limits

+ Smooth Singulatity Perturbation + Large deviations
@ Also

e Gaussian limit laws with analytic perturbation of
Saddle-point method and Sachkov Quasi-Powers

e Discontinuity of singularity for u =~ 1 (confluence, ...) —
non Gaussian continuous limit laws : Rayleigh, Airy, ...

@ Beyond the scope of Analytic Combinatorics : functional
limit theorems (Probabilistic approach )
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