GAUSSIAN LAWS IN ANALYTIC COMBINATORICS

MICHÈLE SORIA 27/01/2016

JOURNÉES DE COMBINATOIRE DE BORDEAUX

Analytic Combinatorics

Estimate properties of large structured combinatorial objects

- Symbolic Method
 Combinatorial Specification → Equations on (univariate)
 Generating Fonctions encoding counting sequences
- Complex Analysis
 GF as Analytic Functions → extract asymptotic information on counting sequences
- Properties of Large Structures
 laws governing parameters in large random objects similar to enumeration
 - deformation (adjunction of auxiliary variable)
 - perturbation (effect of variations of auxiliary variable)

Gaussian Laws with Singularity Analysis + Combinatorial applications

Univariate Asymptotics

Enumeration of general Catalan trees

$$\mathbb{A} \wedge \wedge \wedge \wedge \wedge \wedge$$

$$G(z) = \sum g_n z^n$$
, $g_n = \#$ trees of size n

$$\mathcal{G} = \bullet \times \mathsf{SEQ}(\mathcal{G}) \to G(z) = \frac{z}{1 - G(z)}$$

$$G(z) = \frac{1}{2} \left(1 - \sqrt{1 - 4z} \right)$$

$$\xrightarrow{G(z)} g_{n+1} = \frac{1}{2} \left(\frac{1}{n+1} \sqrt{\frac{1}{2}n} - \frac{4z}{\sqrt{n}} \right)_{n-3/2}$$

stirling approx.
$$n! = \sqrt{2\pi n}(n/e)^n(1+0(1/n))$$

G(z) has a singularity of square-root type at $\rho = \frac{1}{4}$ $\implies g_n \sim c \, 4^n n^{-3/2}$

Singularity Analysis

Bivariate Asymptotics

Number of leaves

$$G(z, u) = \sum g_{n,k} z^n u^k$$
, $g_{n,k} = \#$ trees of size n with k leaves

$$\mathcal{G}^{\circ} = \bullet^{\circ} + \bullet \times \mathsf{SEQ}_{\geq 1}(\mathcal{G}^{\circ}) \rightarrow G(z, u) = zu + \frac{zG(z, u)}{1 - G(z, u)}$$

$$G(z,u) = \frac{1}{2}(1 + (u-1)z - \sqrt{1 - 2(u+1)z + (u-1)^2z^2})$$

$$\Longrightarrow g_{n,k} = \frac{1}{n} \binom{n}{k} \binom{n-2}{k-1}$$

Mean value $\mu_n = n/2$; standard deviation $\sigma_n = O(\sqrt{n})$

for
$$k = \frac{n}{2} + x\sqrt{n}$$
, $\frac{g_{n,k}}{g_n} \rightarrow_{n \rightarrow \infty} \frac{1}{\sigma_n \sqrt{2\pi}} e^{-\frac{x^2}{2\sigma_n^2}}$

Bivariate Asymptotics

Combinatorial
Specification
Generating Functions
Bivariate
Asymptotic
Behavior of
Parameters

$$G(z, u) = \frac{1}{2}(1 + (u - 1)z - \sqrt{1 - 2(u + 1)z + (u - 1)^2 z^2})$$

= $g(z, u) - h(z, u)\sqrt{1 - \frac{z}{\rho(u)}}, \qquad \rho(u) = (1 + \sqrt{u})^{-2}$

Probability generating function $p_n(u) = \sum_k \frac{g_{n,k}}{g_n} u^k = \frac{[z^n]G(z,u)}{[z^n]G(z,1)}$

$$p_n(u) = \left(\frac{\rho(u)}{\rho(1)}\right)^{-n} (1 + o(1))$$

Perturbation of Singularity Analysis + Quasi-Powers approximation



Tools

- Generating Functions and Limit Laws
 - Bivariate Generating Functions
 - Continuous Limit Laws
 - Continuity Theorem for Characteristic functions
- Quasi-Powers Theorem
 - Central Limit Theorem
 - Quasi-Powers
- Singularity Analysis
 - Asymptotic enumeration
 - Perturbation of Singularity Analysis

Bivariate Generating Functions and Limit Laws

Combinatorial class A

Size $|.|: \mathcal{A} \to \mathbb{N}$

Counting Generating Function

$$A(z) = \sum_{\alpha \in \mathcal{A}} z^{|\alpha|} = \sum_n a_n z^n$$

Parameter $\chi:\mathcal{A}\to\mathbb{N}$

Bivariate Generating Function

$$A(z, u) = \sum_{\alpha \in \mathcal{A}} u^{\chi(\alpha)} z^{|\alpha|}$$

= $\sum_{n,k} a_{n,k} u^k z^n$

Uniform Model

Random Variables $(X_n)_{n\geq 0}$

 $\mathbb{P}(X_n=k)=\tfrac{a_{n,k}}{a_n}$

Probability Generating Function

$$p_n(u) \equiv \sum_k \mathbb{P}(X_n = k) u^k = \mathbb{E}(u^X)$$
$$= \frac{[z^n] A(z, u)}{[z^n] A(z)}$$

Mean value $\mu_n \equiv \mathbb{E}(X_n) = p'_n(1)$ Variance $\sigma_n^2 = p''_n(1) - \mu_n^2 + \mu_n$

Question : Asymptotic behavior of X_n ?

moments, limit law (density, cumulative), tails of distribution

Answer by Analytic Combinatorics : Evaluate $[z^n]A(z,u)$

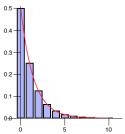
in different u-domains

Examples of discrete Limit Law

• $\mu_n = O(1)$ and $\sigma_n^2 = O(1)$ discrete limit law:

$$\forall k, \mathbb{P}(X_n = k) \rightarrow_{n \rightarrow \infty} \mathbb{P}(X = k), X \text{ discrete RV}$$

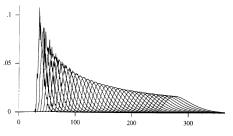
Ex. root degree distribution in Catalan trees : Geometric



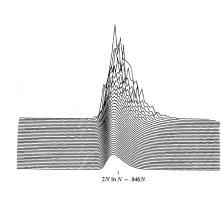
Examples of continuous Limit Law

• μ_n and $\sigma_n^2 \to \infty$

Quicksort : number of comparisons $10 < N \le 50$



Normalized variable
$$X_n^* = \frac{X_n - \mu_n}{\sigma_n}$$



Continuous Limit Laws

Y Continuous Random Variable

Distribution Function

$$F_Y(x) := \mathbb{P}(Y \leq x)$$

Characteristic function

(Fourier Transform)

$$\varphi_Y(t) = \mathbb{E}(e^{itY})$$

 $F_Y(x)$ differentiable : **density** $f_Y(x) := F'_Y(x)$

 (X_n^*) sequence of (norm. combinatorial) Random Variables $X_n^* = \frac{X_n - \mu_n}{\sigma_n}$

Weak Convergence
$$X_n^* \Rightarrow Y$$

$$\forall x, \lim_{n\to\infty} F_{X_n^*}(x) = F_Y(x)$$

Continuity Theorem (Lévy 1922)

$$X_n^* \Rightarrow Y \Longleftrightarrow \varphi_{X_n^*} \rightarrow \varphi_Y$$

Local Limit Law
$$X_n^* \to Y$$

$$\mathbb{P}(X_n = \lfloor \mu_n + x \sigma_n \rfloor) = \frac{1}{\sigma_n} f(x)$$

$$\varphi_{X_n^*}(t) = \mathbb{E}(e^{it\frac{X_n - \mu_n}{\sigma_n}}) = e^{-it\frac{\mu_n}{\sigma_n}}\mathbb{E}(e^{it\frac{X_n}{\sigma_n}}) = e^{-it\frac{\mu_n}{\sigma_n}}\,p_n(e^{\frac{it}{\sigma_n}})$$

Gaussian Limit Laws $\mathcal{N}(0,1)$

$\mathcal{N}(0,1)$

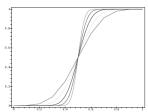
Distribution Function $F(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$ Probability density $f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$

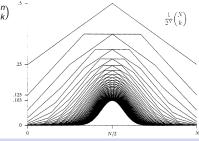
Characteristic Function $\varphi(t) = e^{-\frac{t^2}{2}}$

Number of a's in words on $\{a, b\}^*$ of length n

Bivariate GF
$$F(z, u) = \frac{1}{1 - z - zu}$$

Binomial Distribution $\mathbb{P}(X_n = k) = \frac{1}{2^n} \binom{n}{k}$





Central Limit Theorem

Central Limit Theorem (Demoivre, Laplace, Gauss)

Let T_1, \ldots, T_n be i.i.d RV, with finite mean μ and variance σ^2 , and let $S_n = \sum T_i$. The normalized variable S_n^* weekly converges to a normalized Gaussian distribution :

$$S_n^* \equiv \frac{S_n - n\mu}{\sigma\sqrt{n}} \Rightarrow \mathcal{N}(0,1)$$

Proof by Levy's theorem : characteristic function $\mathbb{E}(e^{itS_n})=(\phi_{T_1}(t))^n$, with $\phi_{T_1}(t)=1+it\mu-\frac{t^2}{2}(\mu^2+\sigma^2)+o(t^2),\ t\to 0$

Quasi-Powers Theorem - Example

Cycles in Permutations

$$\mathcal{P} = \mathsf{SET}(\circ \mathsf{CYCLE}(\mathcal{Z})) \rightarrow F(z, u) = \exp\left(u \log \frac{1}{1 - z}\right)$$

$$F(z, u) = \sum_{n,k} f_{n,k} u^k \frac{z^n}{n!} = \sum_n p_n(u) z^n \text{ with } p_n(u) = \sum_n \mathbb{P}(X_n = k) u^k$$

$$F(z, u) = (1 - z)^{-u} = \sum_n \binom{n+u-1}{n} z^n$$

$$p_n(u) = \frac{u(u+1) \dots (u+n-1)}{n!} = \frac{\Gamma(u+n)}{\Gamma(u)\Gamma(n+1)}$$

$$p_n(u) = \frac{1}{\Gamma(u)} (e^{u-1})^{\log n} \left(1 + O\left(\frac{1}{n}\right) \right), \quad \text{uniform for} \quad u \approx 1$$

Theorem (Goncharov 1944)

The number of cycles in a random permutation is asymptotically Gaussian, with $\mu_n = H_n$ and $\sigma_n = \sqrt{\log n} + o(1)$.

Quasi-Powers Theorem

Quasi-powers Theorem (H-K Hwang 1994)

 X_n non-negative discrete random variables with PGF $p_n(u)$. Assume that, uniformly for $u \approx 1$ (u in a fixed neighbourhood of 1)

$$p_n(u) = A(u)B(u)^{\lambda_n}(1 + O(\frac{1}{\kappa_n})), \text{ with } \lambda_n, \kappa_n \to \infty, \ n \to \infty$$

with A(u), B(u) analytic at u = 1, A(1) = B(1) = 1 and "variability conditions" on B(u). **Then**

Mean
$$\mathbb{E}(X_n) = \lambda_n B'(1) + A'(1) + O(\frac{1}{\kappa_n}),$$

Variance $Var(X_n) = \lambda_n (B''(1) + B'(1) - B'^2(1)) + ...$
Distribution asymptotically Gaussian :

$$\mathbb{P}(X_n < \mu_n + x\sigma_n) \to \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$$

Speed of Convergence $O\left(\frac{1}{\kappa_n} + \frac{1}{\sqrt{\beta_n}}\right)$

Proof: analyticity + uniformity \rightarrow error terms transfer to differentiation. Like in CLT only local properties near u=1 are needed since $\lambda_n \rightarrow \infty$. Normalization, Characteristic function + Levy Theorem

Other Properties

Local Limit Theorem (H-K Hwang 1994)

If the Quasi-Powers approximation holds on the circle |u|=1 then

$$\sigma_n \mathbb{P}(X_n = \lfloor \mu_n + x \sigma_n \rfloor) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

Large Deviations Theorem (H-K Hwang 1994)

If the Quasi-Powers approximation holds on an interval containing 1 then

$$\log \mathbb{P}(X_n < x\lambda_n) \leq \lambda_n W(x) + O(1)$$

where $W(x) = \min \log(B(u)/u^x)$

Singularity Analysis

Theorem: Singularity Analysis (Flajolet-Odlyzko 90)

 $F(z) = \sum f_n z^n$ analytic function at 0, unique dominant sigularity at $z = \rho$, and F(z) analytic in some Δ -domain (Δ -analytic)

and locally,

$$F(z) \sim \frac{1}{(1-z/\rho)^{\alpha}} \ \alpha \in \mathbb{R} - \mathbb{Z}^{-1}$$

then

$$f_n \sim \frac{\rho^{-n} n^{\alpha-1}}{\Gamma(\alpha)}$$

Cauchy coefficient integral :
$$[z^n] F(z) = \frac{1}{2i\pi} \int_{\gamma} F(z) \frac{dz}{z^{n+1}}$$

F alg-log singularity

Hankel Contour

$$F(z) \sim \frac{1}{(1-z/\rho)^{\alpha}} \log^{\beta} \frac{1}{(1-z/\rho)} \to f_n \sim \frac{\rho^{-n} n^{\alpha-1}}{\Gamma(\alpha)} \log^{\beta} n$$

Perturbation of Singularity Analysis

Robust : contour integrals → uniform error terms for parameters

$$p_n(u) = \frac{[z^n]F(z,u)}{[z^n]F(z,1)}$$

 $p_n(u) = rac{[z^n]F(z,u)}{[z^n]F(z,1)}$ uparameter Sing. of F(z,1) o Sing. of F(z,u) for $u \approx 1$

Movable singularities

$$F(z,u) \approx \frac{1}{(1-z/\rho(u))^{\alpha}} \longrightarrow p_n(u) \sim \left(\frac{\rho(u)}{\rho(1)}\right)^{-n}$$
, uniform for $u \approx 1$.

 \implies Gaussian limit law, with a mean and variance of order n.

Variable exponent

$$F(z,u) \approx rac{1}{(1-z/
ho)^{lpha(u)}} \longrightarrow p_n(u) \sim n^{lpha(u)-lpha(1)}$$
, uniform for $u \approx 1$

 \implies Gaussian limit law, with a mean and variance of order $\log n$.

ANALYTICO-COMBINATORIAL SCHEMES

- Perturbation of Meromorphic Asymptotics
 - Meromorphic functions
 - Linear systems
- Perturbation of Singularity Analysis
 - Alg-Log Scheme : movable singularities
 - Algebraic Systems
 - Exp-Log Scheme : variable exponent
 - Differential equations

MEROMORPHIC SCHEMES

Example: Eulerian numbers

Rises in permutations $2 \nearrow 6 4 1 \nearrow 3 \nearrow 5 \nearrow 8 7$

$$F(z,u) = \frac{u(1-u)}{e^{(u-1)z} - u} \qquad F(z,1) = \frac{1}{1-z}$$

$$\rho(u) = \frac{\log u + 2ik\pi}{u-1} \quad u \approx 1 \qquad \rho = 1$$

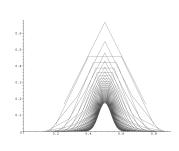
$$[z^n]F(z,u) = \frac{1}{2i\pi} \int_{|z|=1/2} F(z,u) \frac{dz}{z^{n+1}}$$

uniformly = $(\rho(u))^{-n-1} + O(2^{-n})$

Quasi-Powers Theorem

 \Longrightarrow Number of rises in permutations

Gaussian limit law $\mu_{p} \sim \frac{n}{2}, \ \sigma_{p}^{2} \sim \frac{n}{12}$



Meromorphic Scheme: Theorem

Meromorphic Theorem (Bender 93)

- F(z, u) analytic at (0, 0), non negative coefficients.
- F(z, 1) single dominant simple pole at $z = \rho$.
- $F(z, u) = \frac{B(z, u)}{C(z, u)}$, for $|z| < \rho + \varepsilon$ and $|u 1| < \eta$ B(z, u), C(z, u) analytic for $|u - 1| < \eta$, $|z| < \rho + \varepsilon$ (ρ simple zero of C(z, 1) and $\rho(u)$ analytic $u \approx 1$, $C(u, \rho(u) = 0)$)
- Non degeneracy + variability conditions

Then

- Gaussian limit law, mean and variance asymptotically linear: $\mathcal{N}(c_1 n, c_2 n)$
- Speed of Convergence $O(n^{-1/2})$

Proof : $f_n(u) = \text{Residue} + \text{exponentially small uniform for } u \approx 1$

Applications: Supercritical Sequences

Supercritical Composition

Substitution
$$\mathcal{F} = \mathcal{G}(\mathcal{H}) \to f(z) = g(h(z)), \ h(0) = 0$$

 $\tau_h = \lim_{z \to \rho_h^-} h(z).$ The composition is supercritical if $\tau_h > \rho_g$

Singularity of $f \leftarrow$ Singularity of g uniquely

Supercritical Sequences
$$\mathcal{F} = \text{SEQ}(\mathcal{H}) \rightarrow f(z) = \frac{1}{1 - h(z)}, \, \tau_h > 1$$

The number of components in a random supercritical sequence of size n is asymptotically Gaussian, with $\mu_n = \frac{n}{\rho h'(\rho)}$, where ρ is the positive root of $h(\rho) = 1$, and $\sigma^2(n) = c_\rho n$

- blocks in a surjection $F(z, u) = \frac{1}{1 u(e^z 1)}$
- parts in an integer composition $F(z,u) = \frac{1}{1-uh(z)}$, $h(z) = \sum_{i \in \mathcal{I}} z^i$
- cycles in an alignment $F(z, u) = \frac{1}{1 u \log(1 z)^{-1}}$

Other applications

Occurrences of fixed pattern of length k in binary words length n

$$F(z,u) = \frac{1 - (u-1)(c(z)-1)}{1 - 2z - (u-1)(z^k + (1-2z)(c(z)-1))}$$
 $c(z)$ correlation polynomial

- Parallelogram polyominoes of area n (39)
- width (13)
- height (9)
- perimeter (22)
 - = width + height

$$F(z,u)=urac{J_1(z,u)}{J_0(z,u)}, \ \ J_0,J_1{\sim}$$
 Bessel Functions

 $J_0(z, 1)$ simple zero at $\rho \approx .433$

GCD of polynomials over finite field

$$\mathcal{P}$$
 monic polynomials of $d^o n$ in $\mathbb{F}_p(z)$: $P(z) = \frac{1}{1-pz}$

Steps in Euclid's algorithm

$$\begin{cases} u_0 = q_1 u_1 + u_2 \\ \dots \\ u_{h-2} = q_{h-1} u_{h-1} + u_h \\ u_{h-1} = q_h u_h + 0 \end{cases}$$

$$F(z, u) = \frac{1}{1 - uG(z)} P(z)$$

$$= \frac{1}{1 - u\frac{p(p-1)z}{1 - pz}} \frac{1}{1 - pz}$$

Gaussian limit law with mean and variance asymptotically linear

Linear Systems

Theorem Gaussian Limiting Distribution Bender 93

$$\mathbf{Y}(z,u) = \mathbf{V}(z,u) + \mathbf{T}(z,u).\mathbf{Y}(z,u)$$

- each V_i and $T_{i,j}$ polynomial in z, u with non negative coefficients.
- Technical conditions: irreducibility, aperiodicity, unicity of dominant pole of Y(z, 1).

Then

Limiting distribution of the additional parameter $u: \mathcal{N}(c_1 n, c_2 n)$

Applications

- Irreducible and aperiodic finite Markov chain, after n transitions, number of times a certain state is reached asymptotically Gaussian.
- Set of patterns in words : number of occurrences asymptotically Gaussian

ALG-LOG SCHEMES

Example: leaves in Catalan Trees

$$G(z,u)=zu+\frac{zG(z,u)}{1-G(z,u)}$$

 $F(z, u) = G(z, u^2)$ satisfies

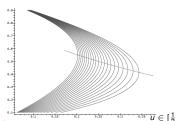
$$F(z,u) = \boxed{\frac{1}{2} + \frac{1}{2}z(u^2 - 1)} - \boxed{\frac{1}{2}\sqrt{1 - z(1 - u)^2}} \times \boxed{\frac{1}{2}\sqrt{1 - z(1 + u)^2}}$$
$$F(z,u) = A(z,u) - B(z,u)(1 - \frac{z}{a(u)})^{1/2} \quad \text{with} \quad \rho(u) = (1 + u)^{-2}$$

$$[z^n]F(z,u) = b_u \frac{\rho(u)^{-n} n^{-3/2}}{2\sqrt{\pi}} \left(1 + O\left(\frac{1}{n}\right)\right)$$

Singularity Analysis \Longrightarrow uniformity for $u \approx 1$

$$p_n(u) \sim \left(rac{
ho(u)}{
ho(1)}
ight)^{-n}$$
 Quasi-Powers Theorem

 $(\rho(1))$



Gaussian limit law mean and variance \sim linear

Alg-Log Scheme: Theorem

Algebraic Singularity Theorem (Flajolet-S. 93, Drmota 97)

- F(z, u) analytic at (0, 0), non negative coefficients.
- F(z, 1) single dominant alg-log singularity at $z = \rho$
- For $|z| < \rho + \varepsilon$ and $|u 1| < \eta$ $F(z, u) = A(z, u) + B(z, u)C(z, u)^{-\alpha}, \alpha \in \mathbb{R} - \mathbb{Z}^-$ A(z, u), B(z, u), C(z, u) analytic for $|u - 1| < \eta, |z| < \rho + \varepsilon$
- Non degeneracy + variability conditions.

Then

- Gaussian limit law, mean and variance asymptotically linear: $\mathcal{N}(c_1 n, c_2 n)$
- Speed of Convergence $O(n^{-1/2})$

Proof: Uniform lifting of univariate SA for $u\approx 1$ Implicit Function Theorem : $\rho(u)$; $C(u,\rho(u)=0)$ analytic $u\approx 1$, + Quasi-Powers Theorem

Applications

Functional equation (Bender, Canfield, Meir-Moon)

$$y(z) = \Phi(z, y(z))$$

 $\Phi(z,y)$ has a power series expansion at (0,0) with non-negative coefficients, non linear $(\Phi_{yy}(z,y) \neq 0)$, and well-defined $(\Phi_z(z,y) \neq 0)$.

Let $\rho > 0, \tau > 0$ such that $\tau = \Phi(\rho, \tau)$ and $1 = \Phi_y(\rho, \tau)$. Then $\exists g(z)$, h(z) analytic functions such that locally

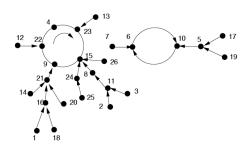
$$y(z) = g(z) - h(z)\sqrt{1 - z/\rho}$$
 with $g(\rho) = \tau$ and $h(\rho) \neq 0$.

Simple family of trees $Y(z) = z\Phi(z, Y(z))$ Catalan, Cayley, Motzkin, ...

- number of leaves
- number of occurrences of a fixed pattern
- number of nodes of any fixed degree

Gaussian limiting distribution, mean and variance \sim linear.

Random Mappings



$$\begin{cases} \mathcal{M} = \mathsf{SET}(\mathsf{CYCLE}(\mathcal{T})) \\ \mathcal{T} = \bullet \times \mathsf{SET}(\mathcal{T}) \end{cases}$$

$$M(z) = \exp\left(\log \frac{1}{1 - T(z)}\right),$$

$$T(z) = ze^{T(z)}$$

$$T(z) = 1 - \sqrt{2(1 - ez)} + sot.$$

- number of leaves
- number of nodes with a fixed number of predecessors

Gaussian limiting distribution, with mean and variance asymptotically linear.

other applications

Extends to Pólya operators :

```
Otter Trees : B(z) = z + \frac{1}{2}B^2(z) + \frac{1}{2}B(z^2),
General non plane trees : H(z) = z \exp(\sum \frac{H(z^k)}{k}) number of leaves, number of nodes with a fixed number of predecessors asymptotically Gaussian
```

- Characteristics of random walks in the discrete plane: number of steps of any fixed kind, number of occurrences of any fixed pattern asymptotically Gaussian
- Planar maps: number of occurrences of any fixed submap asymptotically Gaussian

Algebraic Systems

Theorem Gaussian Limiting Distribution Drmota, Lalley – 95-97

 $\mathbf{Y}(z) = \mathbf{P}(z, \mathbf{Y}(z), u)$ positive and well defined polynomial (entire) system of equations, in z, \mathbf{Y} , u which has a solution $\mathbf{F}(z, u)$. Strongly connected dependency graph (non linear case), locally

$$f_j(z,u)=g_j(z,u)-h_j(z,u)\sqrt{1-z/\rho(u)}$$

 $g_j(z, u)$, $h_j(z, u)$, $\rho(u)$ analytic non zero functions.

Limiting distribution of the additional parameter $u: \mathcal{N}(c_1 n, c_2 n)$



General dependancy graph Drmota, Banderier 2014

Gaussian Limiting Distribution when all strongly connected components have different radius of convergence.

Algebraic Systems : Applications

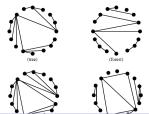
- number of independent sets in a random tree
- number of patterns in a context-free language

Gaussian limiting distribution, mean and variance asymptotically linear.

Non-crossing familiy: trees, forests, connect. or general graphs

- number of connected components
- number of edges

Forests
$$F^3(z) + (z^2 - z - 3)F^2(z) + (z + 3)F - 1 = 0$$



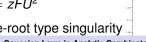
irreducible aperiodic system

$$F = 1 + zFU$$

$$U = 1 + UV$$

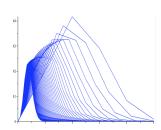
$$V = zFU^2$$

⇒ square-root type singularity



EXP-LOG SCHEMES

Example: cycles in permutations



Stirling numbers of 1st kind

$$F(z, u) = \exp\left(u \log \frac{1}{1-z}\right)$$
$$= (1-z)^{-u}$$

$$p_n(u) = [z^n]F(z,u) = \frac{n^{u-1}}{\Gamma(u)} \left(1 + O(\frac{1}{n})\right)$$

Singularity Analysis \rightarrow uniformity for $u \approx 1$

Quasi-Powers approximation with $\beta_n = \log n$ $p_n(u) \sim \frac{1}{\Gamma(u)} (\exp(u-1))^{\log n}$

Number of cycles in a random permutation asymptotically Gaussian, with μ_n and σ_n^2 equivalent to $\log n$

Exp-log Scheme: Theorem

Variable exponent Theorem (Flajolet-S. 93)

- F(z, u) analytic at (0, 0), non negative coefficients.
- F(z, 1) single dominant alg-log singularity at $z = \rho$
- For $|z| < \rho + \varepsilon$ and $|u 1| < \eta$ $F(z, u) = A(z, u) + B(z, u)C(z)^{-\alpha(u)}, \alpha(1) \in \mathbb{R} - \mathbb{Z}^-$ A(z, u), B(z, u) analytic for $|u - 1| < \eta, |z| < \rho + \varepsilon$; $\alpha(u)$ analytic for $|u - 1| < \eta$; C(z) analytic for $|z| < \rho + \varepsilon$ and unique root $C(\rho) = 0$.
- Non degeneracy + variability conditions.

Then

- Gaussian limit law, mean and variance asymptotically logaritmic: $\mathcal{N}(\alpha'(1) \log n, (\alpha'(1) + \alpha''(1)) \log n)$
- Speed of Convergence $O((\log n)^{-1/2})$

Proof: Singularity Analysis + Quasi-Powers Theorem

Number of components in a set

 \mathcal{G} of *logarithmic type* : G(z) singular at ρ , and locally

$$G(z) = \frac{k}{\log \frac{1}{1 - z/\rho}} + \lambda + O(\log^{-2}(1 - z/\rho))$$

Labelled exp-log schema $\mathcal{F} = Set(\circ \mathcal{G})$

$$F(z,u) = \exp(uG(z)) \rightarrow F(z,u) \sim \frac{1}{(1-z/\rho)^{uk}}$$

Number of components $\rightarrow \mathcal{N}(k \log n, k \log n)$

Unlabelled exp-log schem $\mathcal{F} = \mathsf{MSet}(\circ \mathcal{G})$ or $\mathcal{F} = \mathsf{PSet}(\circ \mathcal{G})$

$$F(z, u) = \exp\left(\sum \frac{u^k}{k} G(z^k)\right)$$
 or $F(z, u) = \exp\left(\sum \frac{(-u)^k}{k} G(z^k)\right)$

$$\rho < 1 \Longrightarrow F(z, u) = H(z, u) \exp(uG(z))$$

$$H(z, u)$$
 analytic $|u - 1| < \eta$, $|z| < \rho + \varepsilon$

Number of components $\rightarrow \mathcal{N}(k \log n, k \log n)$

Connected components in Random Mappings

Random Mappings (labelled)

$$\begin{cases} \mathcal{M} = \mathsf{SET}(\circ\mathsf{CYCLE}(\mathcal{T})) \\ \mathcal{T} = \bullet \times \mathsf{SET}(\mathcal{T}) \end{cases}$$
$$\begin{cases} M(z) = \exp\left(\log \frac{1}{1 - T(z)}\right) \\ T(z) = ze^{T(z)} \end{cases}$$
$$T(z) = 1 - \sqrt{2(1 - ez)} + sot.$$

Connected components

$$M(z, u) = (1 - T(z))^{-u}$$

 $\sim (2(1 - ez))^{-\frac{u}{2}}$

Gaussian limiting law mean and variance $\sim \frac{1}{2} \log n$.

Random Mapping Patterns (unlabelled)

$$\begin{cases} \mathcal{MP} = \mathsf{MSET}(\circ \mathcal{L}) \\ \mathcal{L} = \mathsf{CYCLE}(\mathcal{H}) \\ \mathcal{H} = \bullet \times \mathsf{MSET}(\mathcal{H}) \end{cases}$$
$$\begin{cases} \mathit{MP}(z) = \exp\left(\sum \frac{L(z^k)}{k}\right) \\ L(z) = \sum \frac{\phi(k)}{k} \log \frac{1}{k} \end{cases}$$

$$\begin{cases} MP(z) = \exp\left(\sum \frac{L(z^k)}{k}\right) \\ L(z) = \sum \frac{\phi(k)}{k} \log \frac{1}{1 - H(z^k)} \\ H(z) = z \exp\left(\sum \frac{H(z^k)}{k}\right) \end{cases}$$

$$H(z) = 1 - \gamma \sqrt{(1 - z/\eta)} + sot., \, \eta < 1$$

Connected components

 $MP(z,u) \sim c_u (1-z/\eta)^{-\frac{u}{2}}$

Gaussian limiting law mean and variance $\sim \frac{1}{2} \log n$.

Irreducible factors in a polynomial $d^{o}n$ in \mathbb{F}_{p}

• \mathcal{P} monic polynomials of $d^{\circ}n$ in $\mathbb{F}_{p}(z)$: Polar singularity 1/p

$$P_n = p^n, \qquad P(z) = \frac{1}{1 - pz}$$

Unique factorization property :

$$\mathcal{P} = \mathsf{MSET}(\mathcal{I}) \to P(z) = exp(\sum \frac{I(z^k)}{k})$$

- Mobius inversion : $I(z) = \sum_{k>1} \frac{\mu(k)}{k} \log(P(z^k))$
- Logarithmic type : $I(z) = \log \frac{1}{1 pz} + \sum_{k>2} \frac{\mu(k)}{k} \log(P(z^k))$
- Thus number of irreducible factors asymptotically Gaussian with mean and variance $\sim \log n$.

(Erdös-Kac Gaussian Law for the number of prime divisors of natural numbers.)

Linear Differential Equations – node level in BST

Binary Search Trees (increasing trees)

$$\mathcal{F} = 1 + \mathcal{Z}^{\square} \times \mathcal{F} \times \mathcal{F} \qquad \rightarrow \qquad F(z) = 1 + \int_0^z F^2(t) dt$$

Internal nodes

$$F(z, u) = 1 + 2u \int_0^z F(t, u) \frac{dt}{1 - t}$$

$$F'_z(z,u) = \frac{2u}{1-z}F(z,u)$$
, with $F(0,u) = 1 \to F(z,u) = \frac{1}{(1-z)^{2u}}$

Singularity analysis

$$[z^n]F(z,u)=\frac{n^{2u-1}}{\Gamma(2u)}\left(1+O(\frac{1}{n})\right)$$
, uniform for $u\approx 1$

Distribution of depth of a random node in a random Binary Search Trees asymptotically Gaussian, with mean and variance $\sim 2 \log n$

Linear Differential Equations

Linear differential equations (Flajolet-Lafforgue 94)

- F(z, u) analytic at (0, 0), non negative coefficients.
- F(z,1) single dominant alg-log singularity at ρ : $f_n \sim C\rho^{-n}n^{\sigma-1}$
- F(z,u) satisfies a linear differential equation $a_0(z,u)F^{(r)}(z,u)+\frac{a_1(z,u)}{(\rho-z)}F^{(r-1)}(z,u)+\ldots+\frac{a_r(z,u)}{(\rho-z)^r}F(z,u)=0$ $a_i(z,u)$ analytic at $|z|=\rho$
- Non degeneracy + variability conditions.
- Indicial polynomial $J(\theta) = a_0(\rho, 1)(\theta)_r + a_1(\rho, 1)(\theta)_{r-1} + \ldots + a_1(\rho, 1)$ unique simple root $\sigma > 0$. $(\theta)_r = \theta(\theta 1) \ldots (\theta r + 1)$

Then

• Gaussian limit law, mean and variance asymptotically logarithmic: $\mathcal{N}(c_1 \log n, c_2 \log n)$

Node level in quadtrees

$$F(z, u) = 1 + 4u \mathbf{I} \cdot \mathbf{J} F(z, u)$$

$$\mathbf{I}[g](z) = \int_0^z g(t) \frac{dt}{1-t} \ \mathbf{J}[g](z) = \int_0^z g(t) \frac{dt}{t(1-t)}$$

Indicial polynomial $J(\theta, u) = \theta^2 - 4u \rightarrow \text{root } \sigma(u) = 2\sqrt{u}$

Depth of a random external node in a random quadtree asymptotically Gaussian, mean and variance $\sim logn$

Non Linear Differential Equations?

Binary Search Trees, parameter χ ,

$$F(z, u) = \sum_{T} \lambda(T) u^{\chi(T)} z^{|T|}$$
, where $\lambda(T) = \prod_{V \prec T} \frac{1}{|V|}$

ullet Paging of BST : index + pages of size $\leq b$

$$F'_z(z,u) = uF(z,u)^2 + (1-u)\frac{d}{dz}\left(\frac{1-z^{b+1}}{1-z}\right), \ F(0,u) = 1$$

Occurences of a pattern P in BST

$$F'_z(z,u) = F(z,u)^2 + |P|\lambda(P)(u-1)z^{|P|-1}, \ F(0,u) = 1$$

Riccati equations:

$$Y' = aY^2 + bY + c \rightarrow W'' = AW' + BW$$
 with $Y = -\frac{W'}{aW}$

Poles and movable singularity $\rho(u)$ analytic for $u \approx 1 \rightarrow$ Gaussian limit with mean and variance $\sim cn$

Varieties of increasing trees $\mathcal{F} = \mathcal{Z}^{\square} \times \phi(\mathcal{F})$ $F_z'(z) = \phi(F(z))$, F(0) = 0 Nodes fixed degree : Gaussian limit law with mean and variance $\sim cn$

Conclusion

• Analytic Combinatorics methods :

Combinatorial Decomposability

- + Strong Analycity
- + Smooth Singulatity Perturbation

- Gaussian Laws
- + Local limits
- + Large deviations

- Also
 - Gaussian limit laws with analytic perturbation of Saddle-point method and Sachkov Quasi-Powers
 - Discontinuity of singularity for $u \approx 1$ (confluence, ...) \rightarrow non Gaussian continuous limit laws : Rayleigh, Airy, ...
- Beyond the scope of Analytic Combinatorics : functional limit theorems (Probabilistic approach)