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How to get more faces, How to get more faces,
all perfectly symmetric? all perfectly symmetric?

Use shapes with holes
Aim only at topological symmetry

Konigsberg
1893
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Symmetric Tiling of Closed Surfaces:
Visualization of Regular Maps

Jarke van Wijk
TU Eindhoven

ACM SIGGRAPH 2009, August 3-7, New Orleans
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The general puzzle

Construct space models of regular maps

* Surface topology, combinatorial group theory,
graph theory, algebraic geometry, hyperbolic
geometry, physics, chemistry, ...
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Triangle group

T(p,q,r) =<a,b,c|a®?=b2=2= (ab)P =(bc)’ = (ca) = I >
a, b, c: reflections edges
ab, bc, ca: rotations vertices

Regular maps

Quotient group of triangle group T(p, q, 2):
Glp,q)=<R SR =s"=(RS)’= ... =1>

R: ab, rotation center polygon
S : be, rotation vertex
RS: ca, rotation edge

Regular maps

Regular map:
Embedding of a graph in
a closed surface, such
that topologically

* faces are identical
e vertices are identical
* edges are identical

Tiling of closed surface with maximal symmetry

Symmetries of the cube

» 48—fold symmetry  (2pN = 2x4x6 = 48)
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Symmetric tiling sphere

Symmetric tiling:
Covering of surface with
regular polygons

| {p, q}: Schldffli symbol
At each vertex:
q p-gons meet
{4, 3}: cube

Genus 0: Platonic solids

VOO

{3, 3} {3, 4} {3, 5}

{4, 3} {5, 3} 5

Genus 0: hosohedra

* hosohedron: faces with two edges

000

{2,4} {2, 9 {2, 32}

Genus |: tori

* Tile the plane "

.
—
~L_

I

I

* Define a rhombus D II
(all sides same length)

* Project tiling

¢ Fold rhombus to torus

Genus |: {4, 4} torii

Genus |: {6, 3} torii
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Genus g=2

shape |geometry |transf. tilings

sphere |spherical 3D {3,3},{3,4}, {4,3},
rotation {3,5},{5,3},{2,n}

| torus |planar 2D
Euclidean

{4,4},{3,6},{6,3}

>2 ? hyperbolic | M&bius {3,7},{4,5}, {5,4},

{4,6},{6,4},{5,5}, ...

Tiling hyperbolic plane

{3, 8} tiling
hyperbolic plane

Tiling hyperbolic plane

RS, {4, 6} tiling
‘ hyperbolic plane

Regular maps

5

Regular map:

Cut out part of tiling
hyperbolic plane

For instance:

6 quads
Regular maps Regular maps
Regular map: Regular map:
Cut out part of tiling Cut out part of
hyperbolic plane tiling hyperbolic
plane

For instance:
6 quads,
and match edges

42

2

M. Conder (2006):

enumerated all
regular maps for
g< 10l

43
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Conder’s list

R21: Type (3,8)_12 Order 96 mV=2 mF= |
Defining relations for automorphism group:
[TA2 RA3, (R* )2, (R* TYN2, (S * )2, (R * SA-3)82 ]

R22: Type (46}_I2 Order 48 mV =3 mF=2
Defining relations for automorphism group:
[ T2, RM, (R*S)'2, (R* SM1)%2, R * T2, (5 * T)"2, 56

R23: Type (48)_8 Order32 mV=8 mF=2
Defining relations for automorphism group:
[ TA2, RA, (R* SPA2, (R* SA-1)A2, (R * TJA2, (5 * T2, $82 * RA2* 582 ]

R24: Type (5,10} 2 Order20 mV =10 mF=5
Defining relations for automorphism group:
[TA2, S*RA2*S, R, S), (R T)R2, (5 ¥ T)"2, RA-5 ]

RI0155: Type {204,204} 2 Order 816 mV =204 mF =204 Self-dual
Defining relations for automorphism group:
[TA2, S*RA2*S, (R, S), (R * T)A2, (S * T)"2, RA92* SA-| * RA3* T *$A2 * T * RAI6 * SA-89 *R ]

RI01.56 : Type {404,404)_2 Order 808 mV = 404 mF =404 Self.dual

Defining relations for automorphism group:
[TAL S*RA2¥S, (R, S), (R * )2, (S * T)A2, RA9B* T*SA2 % T *RAIQ* T#RA-3* T+ RA4 + 5885 ]

Total number of maps in list above: 3378

Conder’s list

R2.2: Type {4,6} 12 Order48 mV =3 mF=2
Defining relations for automorphism group:
[ TA2, RM, (R * S)A2, (R * SA-1)A2, (R* T)"Z (S*T)A2, 576 ]

* Rg.i: genus g, member i

» complete definition topology
(connectivity)

* No cue on possible 3D geometry

44 4
Conder’s list A perfect puzzle
R2.2: Type {4,6} 12 Order48 mV =3 mF‘Z . .
Def"mng)tl*glailon}; for automorphism group Find a space model of a regular map:
[TA2 R4, (R SN2, (R * SA-IA2, (ROFTIN2, (S * TIA2, $h6 ]
* Easy to understand

The challenge: * Scalable
Given the complete topology, * Many approaches possible
find a space model: an * Fascinating
embedding of faces, edges and * Many puzzles to be cracked
vertices in 3D space * Few known solutions

46 47

Genus 3

* Helaman Ferguson, 1993
* The Eightfold Way

* Hurwitz genus 3

* Klein’s surface

* 24 heptagons

48

Genus 3

* Carlo Séquin, 2006
* Klein’s surface

* 24 heptagons

* tetrahedral frame

Carlo Séquin, 2009:
many more, found manually

by exploiting symmetries
49
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Work of Carlo Séquin

An addictive puzzle

“During the last few nights | woke up
at 3am with some ideas, and
sometimes they worked, and
sometimes they evaporated in
daylight!”

/\," ‘
Carlo Séquin
Berkeley

“..., that is why | had to physically
remove all signs of these puzzles
from my desk and ’lock them up in a
vault’, so that | would not be
constantly distracted from the duties
that | HAVE to fulfill ...”

Tori (genus |) (reprise)

* Tile the plane 4

* Unfold to square D
* Warp to a rhombus D
* Project tiling

|
¢ Take a torus / > /
II |

* Map rhombus to torus

Approach for g =2

* Tile the hyperbolic plane 4

¢ Unfold to cut out

—
~
~L_

* Take a nice genus g shape II
[
L

* Warp to match shape
* Project tiling
* Map cut out to nice shape

Nice genus g shape?

(OD .. D

Solid shape with holes?

Where to place holes or
handles to get maximal
symmetry?
Forg=6,13,17,...2

Sphere with handles?
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Tubified regular maps

Take a regular map

Turn edges into tubes

Remove faces

edges — tubes

vertices — junctions

faces — holes

triangles — "4 tubes

Tubified regular maps

* Take a regular map
* Turn edges into tubes
* Remove faces

* edges — tubes
* vertices — junctions

* faces — holes
* triangles — /4 tubes

Basic idea

==

target shapes pattern

regular maps

2

tube

project
§

ma
igenus 2 1 warp 1 P

@ unfold @ /\
N /!

vo

Tubified regular maps, reprise

Take a regular map
Turn edges into tubes
Remove faces

Map a regular map

i » w N —

Goto step 2 again

61
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Results

Symmetric Tiling of Closed Surfaces:
* About 50 different space models for regular

maps found automatically

Visualization of Regular Maps

ACM SIGGRAPH 2009

62

Visualization of Regular Maps:

The Chase Continues
Paris

2014
Jarke J. van Wijk

Five years later Eindhoven University of Technology

|EEE SciVis, 2014, Paris

Results 2014 Visualization of cyclic groups

* More generic approach for regular shapes * Subdivide a circle into 18 intervals,

— 45 new space models for regular maps found given a circle, subdivided in 12 intervals

New smoothing approach * Source: Cjg

— Better quality of models * Target: C,

(Lots of) details: see paper

IT



Visualization of cyclic groups

Source Cg: Target: C, :
G x{1,2} o Cox{l,2}
Cox{1,2,3} . Cx{l1,2,3}
C;%{l1,2,3,4,5,6} e Cyx{1,2,3,4}

© C,%x{1,2,3,4,56,7,89  + C,x{l,234,5,6}

Visualization of cyclic groups

¢ Subdivide a circle into |8 intervals,

given a circle, subdivided in 12 intervals

* Source: Cq

* Target: C,

Face-transitive variations

2/2/2016

Visualization of cyclic groups

Source Cg: Target: C,:
G x{1,2} o Cox{l,2}
Cex{1,2,3} o« C,x{1,2,3}
C,x{1,2,3,4,5,6} o Cyx{1,2,3,4}

« C,x{1,2,3,4,567,89 =+ C,x{l,23,45,6}
C,: greatest common subgroup
Match sets:
— Source {l, 2, 3}  ———
— Target {I, 2}: —+—

Approach

» Take regular maps. Produce face-transitive
variations by enumerating subgroups;

* Make target shapes. Produce face-transitive
maps by duplicating regular maps,
enumerating subgroups, punching, gluing

* Match variations regular map and target.

Face-transitive variations

Gg: given source group

Factorization:
Gg = HgAq
_ Hg: subgroup Gg
Ag: subset G,
tile of Fuchsian map
here (0; 4, 2, 2)

I2
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Face-transitive variations

Fuchsian groups:

Hyperbolic plane can be
tesselated with face-
transitive polygons,

. characterized by genus and
rotational symmetry
boundary points

(Poincaré, 1882)

Approach

* Take regular maps. Produce face-transitive
variations by enumerating subgroups;
Make target shapes. Produce face-transitive
maps by duplicating regular maps,
enumerating subgroups, punching, gluing;

Match variations regular map and target.

Producing target surface Producing target surfaces

G+ group target surface

Factorization:
Gr=H;A;
H+: subgroup Gt
A;: subset G,
tile of Fuchsian map
here (0; 3, 2, 2, 2, 2)

13
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Approach Approach

 Take regular maps. Produce face-transitive * Match variations regular map and target:
variations by enumerating subgroups;
Make target shapes. Produce face-transitive
maps by duplicating regular maps,
enumerating subgroups, punching, gluing

Given lists of factorizations of regular maps
and alternative target surfaces:

* Find matches of Gg= HiAg and G = H{AT
Match variations regular map and target: such that Hg = Hy and Ag= A;

— same type of face, same group * Find corresponding polygons in the

hyperbolic plane

— geometric match in hyperbolic plane

R9.16 {5, 6} on tetrahedron R9.6 {4, 8} on torus 2,2

. w.,. o8 ,/ ". .:n.

R4.2 {4, 5} on hosohedron-3 R9.16 {5, 6} on tetrahedron

14
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R17.20 {6, 6} on torus 2,0 R9.6 {4, 8} on torus 2,2

R7.1 {3, 7} on 7-hosohedron

The genus 7 Hurwitz/MacBeath
surface...

15
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""' (N
Embadded Graphs @

atical Institute, St. Petersburg, Russia
4/EG/

Holes Faces Holes Faces

3 56 done 3 56 done
168 168 done

14 364 14 364

Some place
20XX

Thank you!

The chase ain’t over yet
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