Visualization of Large Graphs

Romain Bourqui Maître de Conférence

- I. Introduction
- **II.** Multiscale force directed algorithms
- **III.** Compound Graph Visualization
- **IV.** Fitting the Level Of Detail with the user interest
- **V. Conclusion and Future Work**

I. Introduction

- **II.** Multiscale force directed algorithms
- **III. Compound Graph Visualization**
- **IV.** Fitting the Level Of Detail with the user interest
- **V. Conclusion and Future Work**

Introduction

Dedicated algorithms for particular graphs

• Planar graphs

- Planar graphs
- Trees

- Planar graphs
- Trees
- Directed Acyclic Graphs

- Planar graphs
- Trees
- Directed Acyclic Graphs
- •

Dedicated algorithms for particular graphs

- Planar graphs
- Trees
- Directed Acyclic Graphs
- •

Problem:

real-world graphs usually do not belong to these classes

Force directed algorithms:

- Nodes are physical objects
- Edges are springs linking the objects

⇒Many algorithms (Eades 84, Kamada and Kawai 89, Fruchterman and Reingold 91, Frick et al. 94)

Force directed algorithms:

- Nodes are physical objects
- Edges are springs linking the objects
- ⇒Many algorithms (Eades 84, Kamada and Kawai 89, Fruchterman and Reingold 91, Frick et al. 94)

Problem:

Time complexity is too high for large graphs

Introduction: Large Graph Drawing

Solution:

- Trade off between computation time and aesthetic criteria
- Multi-scale techniques

⇒Many algorithms (Gajer and Kobourov 00, Hachul and Junger 04, Adai et al. 04, Lauther 06)

I. Introduction

- **II.** Multiscale force directed algorithms
- **III. Compound Graph Visualization**
- **IV.** Fitting the Level Of Detail with the user interest
- V. Conclusion and Future Work

I. Introduction

II. Multiscale force directed algorithms III. Compound Graph Visualization IV. Fitting the Level Of Detail with the user interest V. Conclusion and Future Work

Multiscale force directed:

- Visually pleasant and structurally significant results
- Good computation time

• •••

Among them:

- GRIP [Gajer and Kobourov 00]
- FM3 [Hachul and Junger 04]
- LGL [Adai et al. 04]

Among them:

- GRIP [Gajer and Kobourov 00]
- FM3 [Hachul and Junger 04]
- LGL [Adai et al. 04]

Main Idea:

- Election of pivots (several levels)
- Placement of each level using force directed algorithms

Two main steps:

- Vertex filtration: *Maximal Independant Set Filtration (MISF)*
- Vertex placement using force directed algorithms (Fruchterman-Reingold and Kamada-Kawai)

Vertex Filtration (MISF)

• Let G=(V, E) be a simple and connected graph

Maximal Independent Set Filtration (MISF) \mathcal{V} of the set of vertices V of G, $\mathcal{V}: V_0 \supset V_1 \supset V_2 \supset ... \supset V_k \supset \emptyset$ where $V_0 = V$ and $\forall 0 < i \leq k, V_i$ is a maximal subset of V_{i-1} such that for all pairs u, v of vertices of V_i the graph distance between u and v is greater or equal to 2^i .

Vertex Filtration (MISF)

•
$$|V_0| = |V| = 70$$

Vertex Filtration (MISF)

Vertex Filtration (MISF)

Vertex Filtration (MISF)

Vertex Filtration (MISF)

Vertex Filtration (MISF)

For each *i* from 1 to k:

1.Let $V^* = V_{i-1}$

- 2.Randomly choosen a vertex *u* of *V**.
- 3. Remove *u* and all vertices at distance at most 2^{*i*-1} from V* and add *u* in V_{*i*}.

4.Go to step 2 until there is no vertex in *V**.

Vertex Placement Placement of V_k , $V_{k-1} \setminus V_k$..., $V_1 \setminus V_2$, $V_0 \setminus V_1$

Vertex Placement Placement of V_k, V_{k-1} \setminus V_k \dots, V_1 \setminus V_2, V_0 \setminus V_1

Vertex Placement

Placement of V_k: vertices are laid out such that:

 $\forall u, v \in V_k: d_{\mathbb{R}}(u, v) = d_G(u, v)$

- Placement of V_i \ V_{i-1} 0 < i < k: Kamada-Kawai algorithm
- Placement of $V_0 \setminus V_1$: Fruchterman-Reingold algorithm

Examples/Results

GRIP: 0,13s GEM: 30s

Examples/Results

GRIP: 0,26s GEM: 15min

Main Steps:

- Election of pivots: analogy the solar systems
- Placement using force directed approach

Multiscale Force Directed: FM3 [HJ 04]

Multilevel strategy:

Multiscale Force Directed: FM3 [HJ 04]

Multiscale Force Directed: FM3 [HJ 04]

Multiscale Force Directed: FM3 [HJ 04]

Main Steps:

- Election of pivots: analogy the solar systems
- Placement using force directed approach

=> Time Complexity: O(|V| log|V| + |E|)

Main Steps:

- Election of pivots: spanning tree
- Placement using force directed approach

Main Steps:

- Election of pivots: spanning tree
- Placement using force directed approach

=> Can take edge weights into account

Multiscale force directed:

- Visually pleasant and structurally significant results
- Good computation time

• • • •

Remaining issues:

- Clutter (node-node or node-edge overlaps, edge-edge crossings)
- Rendering speed

I. Introduction

II. Multiscale force directed algorithms III. Compound Graph Visualization IV. Fitting the Level Of Detail with the user interest V. Conclusion and Future Work

I. Introduction

- **II.** Multiscale force directed algorithms
- **III.** Compound Graph Visualization
- **IV.** Fitting the Level Of Detail with the user interest
- **V. Conclusion and Future Work**

Introduction: Large Graph Visualization

Building an abstraction

Building an abstraction

Clustering algorithm (or input partition)

Building an abstraction

- **Clustering algorithm (or input partition)**
- Compound graph

Building an abstraction

- Clustering algorithm (or input partition)
- Compound graph

⇒ Needs a dedicated interaction system

Definitions

Let G=(V,E) be a graph and $T=(V_{\tau},E_{\tau})$ a hierarchy tree

A set *C* is a *CUt* in the hierarchy tree if *C* is a set of vertices such that no vertex of *C* is a successor/ancestor of another vertex of *C*.

A cut C is *maximal* iff there exists no $u \in V_{\tau} \setminus C$, such that $C \cup \{u\}$ is a *cut*.

A set C is a **Sub-cut** iff C is a cut of a sub-hiearchy of *T*.

Compound Graph Visualization

We consider two approaches

We consider two approaches

Classical compound visualization

We consider two approaches

- Classical compound visualization
- Multilvel compound visualization

Visualize One maximal cut of the hierarchy tree

Examples: Grouse [Archambault et al. 07]

- Node shape shows cluster topology
- Cluster drawn on demand using the appropriate algorithm

Examples: Ask-GraphView [Abello et al. 06]

Huge graphs
Cluster drawn on demand

Multilevel Compound Graph Visualization

Visualize Several maximal sub-cuts of the hierarchy tree

Multilevel Compound Graph Visualization

Examples: [Balzer and Deussen 07]

Problem How to retrieve the relations between elements of the original network?

⇒ Enable the user to modify the Level Of Detail (LOD)

Compound Graph Visualization

Modifying the LOD: Expand/Collapse Operation

Compound Graph Visualization

Modifying the LOD: Expand/Collapse Operation

Modifying the LOD: Expand/Collapse Operation

Modifying the LOD: Expand/Collapse Operation

Combination of Expand/Collapse + transparency

Advantages:

- Allows fast rendering
- Gives an overview of the global stucture of the graph

Drawbacks:

- Relationships within a sub-network
- Level Of Detail (LOD) too low
- Labeling problem

Multilevel Compound Graph Visualization

Advantages:

- Can reduce the number of displayed elements
- Gives overview of both the global and the local stuctures of the graph

Drawbacks:

 Level Of Detail (LOD) may be unnecessary high in some regions of the visualization

I. Introduction

- **II.** Multiscale force directed algorithms
- **III.** Compound Graph Visualization
- **IV.** Fitting the Level Of Detail with the user interest
- **V. Conclusion and Future Work**

I. Introduction

- **II.** Multiscale force directed algorithms
- **III. Compound Graph Visualization**

IV. Fitting the Level Of Detail with the user interest

V. Conclusion and Future Work

Three main aspects:

- Mixing classical and multilvel compound visualization
- Multiple views
- Dedicated interaction

Summary:

- Classical compound visualization: low LOD
- Multilevel compound visualization: too high LOD in some parts of the visualization

Mixing classical and multilevel visualization

Use of the classical visualization in parts of the visualization that are uninteresting for the user and the multilevel visualization for the remaining parts

⇒ Combines advantages of both techniques

Mixing classical and multilevel visualization

Use of the classical visualization in parts of the visualization that are uninteresting for the user and the multilevel visualization for the remaining parts

Mixing classical and multilevel visualization

Example on UBC website

Multiple Views

Problem: Clustering algorithms are usually heuristics

Multiple Views

Problem: Clustering algorithms are usually heuristics

Solution:

- Provide multiple clustering algorithms
- Support multiple views and Linking & Brushing
Multiple Views

MCL clustering

Strenght Clustering

Coreness based

UBC website

/ Visualization

Modifying the LOD

• In previous work: *Expand/Collapse* Operation

Modifying the LOD

- In previous work: *Expand/Collapse* Operation
- We consider 2 Operations:
 - Expand/Collapse
 - Show/Hide (opaque/transparent)

Modifying the LOD

A metanode can have four states

- Collapsed and Hidden (opaque)
- Collapsed and Shown (transparent)
- Expanded and Hidden
- Expanded and Shown

Defined by three facets:

- Operation: *Expand/Collapse* and *Show/Hide*
- Mode: More Detail/Less Detail
- Scope: Set of (meta)nodes on which the operation is applied

Defining the different scopes according to the user interest

- Atomic: user interested in the clicked metanode
- *Level*: user interested in the sub-hierarchy rooted on the clicked metanode
- Whole: user interested in the metanodes of the sub-hierarchy rooted on the "clicked" metanode

Simple and Thorough Interaction: Scope facet

Atomic

Level

Whole

Different scopes of the Scope facet

/ Visualization

Simple and Thorough Interaction

- 3 Facets: Operation, Mode, Scope
- Few distinct values per facet

Simple and Thorough Interaction

- 3 Facets: Operation, Mode, Scope
- Few distinct values per facet
- ⇒ Minimal User Interface:
 - 2 buttons ~ Expand/Collapse and Show/Hide
 - Left/Right clicks ~ More Detail/Less Detail
 - 1 slider ~ Atomic/Level/Whole

Simple and Thorough Interaction

- 3 Facets: Operation, Mode, Scope
- Few distinct values per facet
- ⇒ Minimal User Interface:
 - -3 buttons ~ *Expand/Collapse* and *Show/Hide* and *Selection*
 - Left/Right clicks ~ More Detail/Less Detail
 - 1 slider ~ Atomic/Level/Whole

I. Introduction

- **II.** Multiscale force directed algorithms
- **III. Compound Graph Visualization**

IV. Fitting the Level Of Detail with the user interest

V. Conclusion and Future Work

I. Introduction

- **II.** Multiscale force directed algorithms
- **III. Compound Graph Visualization**

IV. Fitting the Level Of Detail with the user interest

V. Conclusion and Future Work

- New compound graph visualization combining both classical and multilevel visualizations
- Simple and thorough interaction system allowing to modify freely the *LOD*
- ViiFit Sotware

....

- Multiple clustering algorithms
- Multiple views
- Linking and Brushing