The case q=3 (m=6,k=1) (Section 13.2)
> | T:=proc(m) subs(cos(x)=x,expand(cos(m*x))): end: |
> | T(6); |
> | m:=6: k:=1: 2+2*cos(2*k*Pi/m); |
> | I2:=normal(subs(C=CC,II=I1,q=3,sqrt(C)^m*subs(x=xsubs,T(m)))): |
> | indets(I2); |
> | factor(series(normal(I2),y,1)); |
The invariant equation
> | eqinv:=subs(q=3,beta=nu-1,Q(0,y)=Q(y),I2-add(c[i]*(t*I1)^i,i=0..6)): |
> |
Determination of the series c_i (and more): an equation with 4 unknown additional series
(counting near-triangulations with outer degree 1,3,5,7)
> |
> |
> |
Le cas nu=0 (triangulations bien 3-coloriées, donc eulériennes)
> |
> |