The case q=3 (m=6,k=1) (Section 13.2)

>    T:=proc(m) subs(cos(x)=x,expand(cos(m*x))): end:

>    T(6);

32*x^6-48*x^4+18*x^2-1

>    m:=6: k:=1: 2+2*cos(2*k*Pi/m);

3

>    I2:=normal(subs(C=CC,II=I1,q=3,sqrt(C)^m*subs(x=xsubs,T(m)))):

>    indets(I2);

{y, t, beta, Q(0,y)}

>    factor(series(normal(I2),y,1));

series((-27*t^12*(1+beta)^6)*y^(-12)+O(y^(-11)),y,-11)

The invariant equation

>    eqinv:=subs(q=3,beta=nu-1,Q(0,y)=Q(y),I2-add(c[i]*(t*I1)^i,i=0..6)):

>   

Determination of the series c_i (and more): an equation with 4 unknown additional series
(counting near-triangulations with outer degree 1,3,5,7)

>   

>   

>   

Le cas nu=0 (triangulations bien 3-coloriées, donc eulériennes)

>   

>