Pattern avoiding permutations,

interval orders

and

involutions with no neighbour nesting

Mireille Bousquet-Mélou
http://www.labri.fr/~bousquet
joint work with...

The Icelanders:

Mark Dukes ${ }^{1}$ Anders Claesson ${ }^{2}$ Sergey Kitaev ${ }^{2}$

1. University of Iceland
2. University of Reykjavík

I. L'histoire

Pattern avoiding permutations

Classical pattern avoidance

Consider $\mathcal{S}_{n}(2-3-1)$; the collection of all permutations $\pi \in \mathcal{S}_{n}$ such that there do not exist indices $1 \leq i<j<k \leq n$ with $\pi_{k}<\pi_{i}<\pi_{j}$.

$$
\mathcal{S}_{n}(2-3-1)=\mathcal{S}_{n}(\bullet \bullet)
$$

Generalized pattern avoidance
Consider $\mathcal{S}_{n}(23-1)$; the collection of all permutations $\pi \in \mathcal{S}_{n}$ such that there do not exist indices $1 \leq i<i+1<k \leq n$ with $\pi_{k}<\pi_{i}<\pi_{i+1}$.

$$
\mathcal{S}_{n}(23-1)=\mathcal{S}_{n}\left(\square_{\bullet \bullet}^{\bullet}\right)
$$

The '-' represents an elastic length.

- E. Babson and E. Steingrímsson, Generalized permutation patterns and a classification of the Mahonian statistics, Sém. Lothar. Combin. 44 (2000) Art. B44b, 18 pp.

A new class of pattern avoiding permutations

What about

$$
\mathcal{R}_{n}=\mathcal{S}_{n}\left(\underset{\bullet^{\bullet}}{\bullet}\right) ?
$$

A permutation is in \mathcal{R}_{n} if there do not exist indices i and k satisfying $1 \leq i<$ $i+1<k \leq n$ and such that

$$
\pi_{k}+1=\pi_{i}<\pi_{i+1}
$$

$31524 \in \mathcal{R}_{5}$

$32541 \notin \mathcal{R}_{5}$

Enumeration

Some known results:

- $\mathcal{S}_{n}(\bullet \bullet) \Rightarrow C_{n}$,

Catalan numbers

- $\mathcal{S}_{n}(\bullet \bullet \bullet) \Rightarrow B_{n}, \quad$ Bell numbers

What about

- $\mathcal{R}_{n}=\mathcal{S}_{n}(\stackrel{\bullet \cdot}{\bullet \cdot}) \Rightarrow 1,1,2,5,15,53,217,1014 \ldots$?

In the On-Line Encyclopedia of Integer Sequences: A022493

- Unlabelled interval orders on n points
- Linearized chord diagrams of degree n, introduced by Stoimenow, 1998 (here: involutions with no neighbour nesting)

Interval orders

$\mathcal{I}_{2 n}$
Stoimenow's involutions

counted by Zagier, 2001

II. Involutions with no neighbour nestings and interval orders

Involutions with no neighbour nestings

A (fixed-point free) involution

Involutions with no neighbour nestings

A nesting between two arches

Involutions with no neighbour nestings

A neighbour nesting

Involutions with no neighbour nestings

A neighbour nesting

Another one

Involutions with no neighbour nestings

[Stoimenow 98]: bounds on the dimension of the vector space of Vassiliev invariants of degree n

Equivalently: all descents cross the diagonal

Example: $n=3$

Interval orders

Definition: The relative order of a collection of intervals of the real line under the order relation:

$$
[x, y]<[z, t] \Longleftrightarrow y<z
$$

Example

Intervals
(Labelled) Poset
Unlabelled Poset
(Hasse diagram)

Remarks

- Different collections of intervals may give the same order:

- Example: $n=3$

- For the number of unlabelled posets, only 16 terms are known! (18 in the labelled case)

Interval orders: two characterizations

- First characterization: The poset P has no induced $(2+2)$ sub-poset

[Fishburn 70]

Example:

Interval orders: two characterizations

- First characterization: The poset P has no induced $(2+2)$ sub-poset

[Fishburn 70]

Example:

Interval orders: two characterizations

- First characterization: The poset P has no induced $(2+2)$ sub-poset

[Fishburn 70]

Example:

Interval orders: two characterizations

- Second characterization [Fishburn 70]. The predecessor sets (or: down-sets)

$$
D(x)=\{y \in P: y<x\}, \quad \text { for } x \in P
$$

can be totally ordered by inclusion.
Example:

$$
\emptyset=D(a)=D(b)=D(c) \subset D(d)=\{a, b\} \subset D(e)=\{a, b, c, d\}
$$

Counter-example: In

$D(c)=\{a\}$ is not comparable to $D(d)=\{b\}$.

First bijection:
From involutions with no neighbour nesting to interval orders

First bijection:

From involutions with no neighbour nesting to interval orders

Proposition: Ω sends bijectively involutions on $2 n$ points with no neighbour nesting onto interval orders on n unlabelled elements.

Remark. Reflecting σ across a vertical line \Longleftrightarrow Taking the dual poset.

First bijection:

From involutions with no neighbour nesting to interval orders

- Ω is surjective. Let P be an interval order on n elements.
- Take a collection of n intervals whose order is P
- One can assume that the endpoints of these intervals are $2 n$ distinct points

- One can assume that these points are $1,2, \ldots, 2 n \Rightarrow$ a fixed point free invoIution
- Delete neighbour nestings without changing the order

(and symmetrically)

Surjectivity: an example

Collection of intervals: [1, 8], [2, 5], [3, 4], [6, 7], [9, 10]

No neighbour nesting

From involutions with no neighbour nesting to interval orders

- Ω is injective. Let $\sigma \in \mathcal{I}_{2 n}$, and let $P=\Omega(\sigma)$. How can we reconstruct σ from P ?

From involutions with no neighbour nesting to interval orders

- Ω is injective. Let $\sigma \in \mathcal{I}_{2 n}$, and let $P=\Omega(\sigma)$. How can we reconstruct σ from P ?

- Display P in canonical form: if $\{D(x), x \in P\}=\left\{D_{0}, D_{1}, \ldots, D_{k}\right\}$ with $\emptyset=$ $D_{0} \subset D_{1} \subset \cdots \subset D_{k}$, put x at level i if $D(x)=D_{i}$.

From involutions with no neighbour nesting to interval orders

- Ω is injective. Let $\sigma \in \mathcal{I}_{2 n}$, and let $P=\Omega(\sigma)$. How can we reconstruct σ from P ?

- Display P in canonical form: if $\{D(x), x \in P\}=\left\{D_{0}, D_{1}, \ldots, D_{k}\right\}$ with $\emptyset=$ $D_{0} \subset D_{1} \subset \cdots \subset D_{k}$, put x at level i if $D(x)=D_{i}$.
- Display the dual poset P^{*} in canonical form

From involutions with no neighbour nesting to interval orders

- Ω is injective. Let $\sigma \in \mathcal{I}_{2 n}$, and let $P=\Omega(\sigma)$. How can we reconstruct σ from P ?

- Display P in canonical form: if $\{D(x), x \in P\}=\left\{D_{0}, D_{1}, \ldots, D_{k}\right\}$ with $\emptyset=$ $D_{0} \subset D_{1} \subset \cdots \subset D_{k}$, put x at level i if $D(x)=D_{i}$.
- Display the dual poset P^{*} in canonical form
- Form runs of opening/closing arches by reading the levels in P (resp. P^{*})

From involutions with no neighbour nesting to interval orders

- Ω is injective. Let $\sigma \in \mathcal{I}_{2 n}$, and let $P=\Omega(\sigma)$. How can we reconstruct σ from P ?

- Display P in canonical form: if $\{D(x), x \in P\}=\left\{D_{0}, D_{1}, \ldots, D_{k}\right\}$ with $\emptyset=$ $D_{0} \subset D_{1} \subset \cdots \subset D_{k}$, put x at level i if $D(x)=D_{i}$.
- Display the dual poset P^{*} in canonical form
- Form runs of opening/closing arches by reading the levels in P (resp. P^{*})

- Match half-arches by identifying points in P and P^{*}

From involutions with no neighbour nesting to interval orders

- Ω is injective. Let $\sigma \in \mathcal{I}_{2 n}$, and let $P=\Omega(\sigma)$. How can we reconstruct σ from P ?

- Display P in canonical form: if $\{D(x), x \in P\}=\left\{D_{0}, D_{1}, \ldots, D_{k}\right\}$ with $\emptyset=$ $D_{0} \subset D_{1} \subset \cdots \subset D_{k}$, put x at level i if $D(x)=D_{i}$.
- Display the dual poset P^{*} in canonical form
- Form runs of opening/closing arches by reading the levels in P (resp. P^{*})

- Match half-arches by identifying points in P and P^{*}

From involutions with no neighbour nesting to interval orders

- Ω is injective. Let $\sigma \in \mathcal{I}_{2 n}$, and let $P=\Omega(\sigma)$. How can we reconstruct σ from P ?

- Display P in canonical form: if $\{D(x), x \in P\}=\left\{D_{0}, D_{1}, \ldots, D_{k}\right\}$ with $\emptyset=$ $D_{0} \subset D_{1} \subset \cdots \subset D_{k}$, put x at level i if $D(x)=D_{i}$.
- Display the dual poset P^{*} in canonical form
- Form runs of opening/closing arches by reading the levels in P (resp. P^{*})

- Match half-arches by identifying points in P and P^{*}

From involutions with no neighbour nesting to interval orders

- Ω is injective. Let $\sigma \in \mathcal{I}_{2 n}$, and let $P=\Omega(\sigma)$. How can we reconstruct σ from P ?

- Display P in canonical form: if $\{D(x), x \in P\}=\left\{D_{0}, D_{1}, \ldots, D_{k}\right\}$ with $\emptyset=$ $D_{0} \subset D_{1} \subset \cdots \subset D_{k}$, put x at level i if $D(x)=D_{i}$.
- Display the dual poset P^{*} in canonical form
- Form runs of opening/closing arches by reading the levels in P (resp. P^{*})

- Match half-arches by identifying points in P and P^{*}

From involutions with no neighbour nesting to interval orders

- Ω is injective. Let $\sigma \in \mathcal{I}_{2 n}$, and let $P=\Omega(\sigma)$. How can we reconstruct σ from P ?

- Display P in canonical form: if $\{D(x), x \in P\}=\left\{D_{0}, D_{1}, \ldots, D_{k}\right\}$ with $\emptyset=$ $D_{0} \subset D_{1} \subset \cdots \subset D_{k}$, put x at level i if $D(x)=D_{i}$.
- Display the dual poset P^{*} in canonical form
- Form runs of opening/closing arches by reading the levels in P (resp. P^{*})

- Match half-arches by identifying points in P and P^{*}

Where we stand

III. From permutations avoiding $\stackrel{\bullet}{\bullet}_{\bullet}^{\circ}$ to ascent sequences

Decomposition of permutations of \mathcal{R}_{n}

- Consider $\pi=61832547 \in \mathcal{R}_{8}$ and remove the largest entry:

$$
\tau=6132547 \in \mathcal{R}_{7}
$$

Decomposition of permutations of \mathcal{R}_{n}

- Consider $\pi=61832547 \in \mathcal{R}_{8}$ and remove the largest entry:

$$
\tau=6132547 \in \mathcal{R}_{7}
$$

- Conversely, 8 could be inserted in the following active sites of τ :

$$
\tau=\star 61_{\star} 32_{\star} 54_{\star} 7_{\star}
$$

- Active sites:
- to the left of τ,
- just after the entry i, provided $i-1$ does not appear to the right of i.

Decomposition of permutations of \mathcal{R}_{n}

- Consider $\pi=61832547 \in \mathcal{R}_{8}$ and remove the largest entry:

$$
\tau=6132547 \in \mathcal{R}_{7}
$$

- Conversely, 8 could be inserted in the following active sites of τ :

$$
\tau=\star 61_{\star} 32_{\star} 54_{\star} 7_{\star}
$$

- Labelling of the active sites:

$$
061_{1} 32_{2} 54_{3} 7_{4}
$$

The 8 appears in the active site with label 1
$\Rightarrow \pi \in R_{8}$ may be recovered from the pair $(\tau, 1)$ where $\tau \in \mathcal{R}_{7}$.

Decomposition of permutations of \mathcal{R}_{n}

- Consider $\pi=61832547 \in \mathcal{R}_{8}$ and remove the largest entry:

$$
\tau=6132547 \in \mathcal{R}_{7}
$$

- Conversely, 8 could be inserted in the following active sites of τ :

$$
\tau=\star 61_{\star} 32_{\star} 54_{\star} 7_{\star}
$$

- Labelling of the active sites:

$$
061_{1} 32_{2} 54_{3} 7_{4}
$$

The 8 appears in the active site with label 1
$\Rightarrow \pi \in R_{8}$ may be recovered from the pair $(\tau, 1)$ where $\tau \in \mathcal{R}_{7}$.

- Repeating this until ending up with the empty permutation, we have the sequence

$$
\wedge(\pi)=(0,1,1,2,2,0,3,1)
$$

from which π can be reconstructed.

Ascent sequences

Definition. A sequence $\left(x_{1}, \ldots, x_{n}\right)$ of non-negative integers an ascent sequence if

- $x_{1}=0$, and
- $x_{i} \in\left[0,1+\operatorname{asc}\left(x_{1}, \ldots, x_{i-1}\right)\right]$ for all $1<i \leq n$.

Ascent number: $\operatorname{asc}(0,0,1,0,1,2,0)=3$

Examples:
All ascent sequences of length 3 :
$(0,0,0)(0,0,1)(0,1,0)(0,1,1)(0,1,2)$

All ascent sequences of length 4:
(0,0,0,0) (0,0,0,1) (0,0,1,0)
(0,0,1,1)
$(0,0,1,2)$
(0,1,0,0) (0,1,0,1)
$(0,1,0,2) \quad(0,1,1,0) \quad(0,1,1,1) \quad(0,1,1,2) \quad(0,1,2,0) \quad(0,1,2,1) \quad(0,1,2,2)$
(0,1,2,3)

Second bijection:

from permutations avoiding $\stackrel{\bullet}{\bullet}_{\bullet}^{\bullet}$ to ascent sequences

- Definition of \wedge : if $\pi \in \mathcal{R}_{n}$ is obtained by inserting n in the active site labelled i of $\tau \in \mathcal{R}_{n-1}$ then

$$
\wedge(\pi)=\left(x_{1}, x_{2}, \ldots, x_{n-1}, i\right) \quad \text { where } \quad \wedge(\tau)=\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)
$$

Theorem: The map \wedge is a bijection between permutations of \mathcal{R}_{n} and ascent sequences of length n.

- Proof: by induction on n, using

$$
s(\pi)=2+\operatorname{asc}(x) \quad \text { and } \quad b(\pi)=x_{n}
$$

where $s(\pi)$ is the number of active sites, and $b(\pi)$ the label of the active site located just before the largest entry of π.

Where we stand

IV. From interval orders to ascent sequences

Third bijection: from interval orders to ascent sequences

Display P in canonical form: if $\{D(x), x \in P\}=\left\{D_{0}, D_{1}, \ldots, D_{k}\right\}$ with $\emptyset=D_{0} \subset$ $D_{1} \subset \cdots \subset D_{k}$, put x at level i if $D(x)=D_{i}$. We denote $\ell(P)=k$.

Decomposition of $(2+2)$-free posets

Let $\ell^{\star}(P)$ be the minimum level containing a maximal element. Let $L_{i}(P)$ be the set of elements of P at level i. All the maximal elements located at level i are order-equivalent in P. We will remove one of them. Let Q be the poset that results from applying:
(i) If $\left|L_{i}(P)\right|>1$, or if $\left|L_{i}(P)\right|=1$ and $i=\ell(P)$, then remove one of the maximal elements at level i.
(ii) If $\left|L_{i}(P)\right|=1$ and $i<\ell(P)$ then set $\mathcal{N}=D_{i+1}(P) \backslash D_{i}(P)$. Make each element in \mathcal{N} a maximal element of the poset by deleting from the order all relations $x<y$ where $x \in \mathcal{N}$. Finally, remove the unique element lying at level i.

- Definition of the map Ψ between posets and ascent sequences:

$$
\Psi(P)=\left(x_{1}, \ldots, x_{n-1}, i\right) \quad \text { where } \quad \Psi(Q)=\left(x_{1}, \ldots, x_{n-1}\right)
$$

Decomposition of $(2+2)$-free posets

(ii) If $\left|L_{i}(P)\right|=1$ and $i<\ell(P)$ then set $\mathcal{N}=D_{i+1}(P) \backslash D_{i}(P)$. Make each element in \mathcal{N} a maximal element of the poset by deleting from the order all relations $x<y$ where $x \in \mathcal{N}$. Finally, remove the unique element lying at level i.

Decomposition of $(2+2)$-free posets

(ii) If $\left|L_{i}(P)\right|=1$ and $i<\ell(P)$ then set $\mathcal{N}=D_{i+1}(P) \backslash D_{i}(P)$. Make each element in \mathcal{N} a maximal element of the poset by deleting from the order all relations $x<y$ where $x \in \mathcal{N}$. Finally, remove the unique element lying at level i.

Decomposition of $(2+2)$-free posets

(i) If $\left|L_{i}(P)\right|>1$, or if $\left|L_{i}(P)\right|=1$ and $i=\ell(P)$, then remove one of the maximal elements at level i.

Decomposition of $(2+2)$-free posets

$$
\ell(P)=3, \quad i=1<\ell(P) \quad \Rightarrow x_{6}=1
$$

(i) If $\left|L_{i}(P)\right|>1$, or if $\left|L_{i}(P)\right|=1$ and $i=\ell(P)$, then remove one of the maximal elements at level i.

Decomposition of $(2+2)$-free posets

$$
\ell(P)=3, \quad i=3=\ell(P) \quad \Rightarrow x_{5}=3
$$

(i) If $\left|L_{i}(P)\right|>1$, or if $\left|L_{i}(P)\right|=1$ and $i=\ell(P)$, then remove one of the maximal elements at level i.

Third bijection: from interval orders to ascent sequences

$x_{4}=1$

$$
x_{2}=1
$$

$$
x_{1}=0
$$

$$
\psi(P)=(0,1,0,1,3,1,1,2)
$$

Theorem: The map ψ is a bijection between $(2+2)$-free posets on n elements and ascent sequences of length n.

Remark: other decompositions given by [El-Zahar 89], [Khamis 04], [Haxel, McDonald,Thomasson 87]

Where we stand

Some properties of our bijections

Given an ascent sequence x, let P and π be the poset and permutation corresponding to x, and let σ be the involution corresponding to P. Then

$$
\begin{aligned}
& \operatorname{lir}(\sigma)=\min (P)=\operatorname{zeros}(x)=\operatorname{ldr}(\pi) \\
& \ell^{\star}(P)=\operatorname{last}(x)=b(\pi) \\
& \operatorname{or}(\sigma)-1=\ell(P)=\operatorname{asc}(x)=\operatorname{asc}\left(\pi^{-1}\right)=s(\pi)-2
\end{aligned}
$$

with

- $\operatorname{lir}(\pi)$: leftmost increasing run (the largest integer i such that $\pi_{1}<\pi_{2}<\cdots<$ π_{i})
- Idr (π) : leftmost decreasing run
- or (σ) : number of opening runs of σ
- $s(\pi)$: number of active sites
- $b(\pi)$: label of the active site located just before the largest entry of π.

V. Enumeration

Which is the most manageable class of objects?

Which is the most manageable class of objects?

Ascent sequences

Recursive description of ascent sequences

The only ascent sequence of length 1 is (0).
For $n \geq 1$, the sequence $\left(x_{1}, \ldots, x_{n}\right)$ is an ascent sequence iff

- $\left(x_{1}, \ldots, x_{n-1}\right)$ is an ascent sequence, and
- $x_{n} \in\left[0,1+\operatorname{asc}\left(x_{1}, \ldots, x_{n-1}\right)\right]$.
\Rightarrow Obvious recursive description, keeping track of
- the number of ascents,
- the value of the last entry.

A functional equation

Let $F(t ; u, v) \equiv F(u, v)$ be the generating function of ascent sequences, counted by length (t), number of ascents (u) and last entry (v). This is a formal power series in t with coefficients in $\mathbb{Q}[u, v]$. The first few terms of $F(t ; u, v)$ are

$$
F(t ; u, v)=1+t+(1+u v) t^{2}+\left(1+2 u v+u+u^{2} v^{2}\right) t^{3}+O\left(t^{4}\right)
$$

Proposition: The generating function $F(t ; u, v)$ satisfies

$$
(v-1-t v(1-u)) F(u, v)=(v-1)(1-t u v)-t F(u, 1)+t u v^{2} F(u v, 1)
$$

Remark: one unknown series only on the right-hand side

First expression of the solution

$$
(v-1-t v(1-u)) F(u, v)=(v-1)(1-t u v)-t F(u, 1)+t u v^{2} F(u v, 1)
$$

The kernel vanishes when $v=V(u)$, with $V(u)=1 /(1-t+t u)$. Replacing v by $V(u)$ in the equation results in:

$$
F(u, 1)=\frac{(1-u)(1-t)}{(1-t+t u)^{2}}+\frac{u}{(1-t+t u)^{2}} F\left(\frac{u}{1-t+t u}, 1\right)
$$

Iterating this equation gives:
Proposition: The series $F(t ; u, 1)$ counting ascent sequences by their length and ascent number, seen as a series in u, has rational coefficients in t, and satisfies

$$
F(t ; u, 1)=\sum_{k \geq 1} \frac{(1-u) u^{k-1}(1-t)^{k}}{\left(u-(u-1)(1-t)^{k}\right) \prod_{i=1}^{k}\left(u-(u-1)(1-t)^{i}\right)}
$$

A formal series in u with rational coefficients in t !

Massaging the solution

$$
F(t ; u, 1)=\sum_{k \geq 1} \frac{(1-u) u^{k-1}(1-t)^{k}}{\left(u-(u-1)(1-t)^{k}\right) \prod_{i=1}^{k}\left(u-(u-1)(1-t)^{i}\right)}
$$

Lemma. For $m \geq 1$, let

$$
S(t ; u)=\sum_{k \geq 1} \frac{(u-1)^{m} u^{k-1}(1-t)^{m k}}{\prod_{i=1}^{k}\left(u-(u-1)(1-t)^{i}\right)}
$$

Then $S(t ; u)$ is actually a polynomial in u and t :

$$
S(t ; u)=-\sum_{j=0}^{m-1}(u-1)^{j} u^{m-1-j}(1-t)^{j} \prod_{i=j+1}^{m-1}\left(1-(1-t)^{i}\right)
$$

Second expression of the solution

- Theorem. Let $n \geq 0$, and consider the following polynomial in t and u :

$$
F_{n}(t ; u)=\sum_{\ell=0}^{n}(u-1)^{n-\ell} u^{\ell} \sum_{m=\ell}^{n}(-1)^{n-m}\binom{n}{m}(1-t)^{m-\ell} \prod_{i=m-\ell+1}^{m}\left(1-(1-t)^{i}\right)
$$

Then $F_{n}(t ; u)$ is a multiple of t^{n}.

The generating function of ascent sequences, counted by the length and the ascent number, is

$$
F(t ; u, 1)=\sum_{n \geq 0} F_{n}(t ; u)
$$

- When $u=1, F_{n}(t ; 1)=\prod_{i=1}^{n}\left(1-(1-t)^{i}\right)$, so that the generating function of ascent sequences, $(2+2)$-free posets, permutations avoiding $\stackrel{\bullet}{\bullet}_{\bullet}^{\bullet}$, involutions with no neighbour nesting is:

$$
F(t ; 1,1)=\sum_{n \geq 0} \prod_{i=1}^{n}\left(1-(1-t)^{i}\right)
$$

What a beautiful series!

The generating function of ascent sequences, $(2+2)$-free posets, permutations avoiding $\stackrel{{ }^{\bullet}}{\bullet}$, involutions with no neighbour nesting is:

$$
P(t)=\sum_{n \geq 0} \prod_{i=1}^{n}\left(1-(1-t)^{i}\right)
$$

Obtained by Zagier for involutions with no neighbour nesting, using a decomposition of involutions found in [Stoimenow 98].

- Asymptotic behaviour:

$$
\frac{p_{n}}{n!} \sim \kappa\left(\frac{6}{\pi^{2}}\right)^{n} \sqrt{n}, \quad \text { where } \quad \kappa=\frac{12 \sqrt{3}}{\pi^{5 / 2}} e^{\pi^{2} / 12}
$$

- A remarkable formula:

$$
P\left(1-e^{-24 x}\right)=e^{x} \sum_{n \geq 0} \frac{T_{n}}{n!} x^{n}
$$

where

$$
\sum_{n \geq 0} \frac{T_{n}}{(2 n+1)!} x^{2 n+1}=\frac{\sin 2 x}{2 \cos 3 x}
$$

[Zagier 01]

