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I. L'histoire



Pattern avoiding permutationsClassial pattern avoidaneConsider Sn(2−3−1); the olletion of all permutations π ∈ Sn suh that theredo not exist indies 1 ≤ i < j < k ≤ n with πk < πi < πj.

Sn(2 − 3 − 1) = Sn

(

 

 

 

)

Generalized pattern avoidaneConsider Sn(23 − 1); the olletion of all permutations π ∈ Sn suh that theredo not exist indies 1 ≤ i < i + 1 < k ≤ n with πk < πi < πi+1.

Sn(23 − 1) = Sn

(

 

 

 

)

The `−' represents an elasti length.

• E. Babson and E. Steingrímsson, Generalized permutation patterns and a lassi�ation ofthe Mahonian statistis, Sém. Lothar. Combin. 44 (2000) Art. B44b, 18 pp.



A new lass of pattern avoiding permutations

What about
Rn = Sn

(

 

 

 

) ?

A permutation is in Rn if there do not exist indies i and k satisfying 1 ≤ i <

i + 1 < k ≤ n and suh that
πk + 1 = πi < πi+1.
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Enumeration

Some known results:
• Sn

(

 

 

 

)

⇒ Cn, Catalan numbers

• Sn

(

 

 

 

)

⇒ Bn, Bell numbers

What about

• Rn = Sn

(

 

 

 

)

⇒ 1,1,2,5,15,53,217,1014...?

In the On-Line Enylopedia of Integer Sequenes: A022493- Unlabelled interval orders on n points- Linearized hord diagrams of degree n, introdued by Stoimenow, 1998(here: involutions with no neighbour nesting)
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II. Involutions with no neighbour nestings andinterval orders



Involutions with no neighbour nestings

1 2 3 4 6 7 85 109A (�xed-point free) involution



Involutions with no neighbour nestings

1 2 3 4 6 7 85 109A nesting between two arhes



Involutions with no neighbour nestings

1 2 3 4 6 7 85 109A neighbour nesting



Involutions with no neighbour nestings

1 2 3 4 6 7 85 109A neighbour nesting
1 2 3 4 6 7 85 109Another one



Involutions with no neighbour nestings

1 2 3 4 6 7 85 109 11 12 13 14 15 16

[Stoimenow 98℄: bounds on the dimension of the vetor spae of Vassilievinvariants of degree nEquivalently: all desents ross the diagonalExample: n = 3



Interval orders

De�nition: The relative order of a olletion of intervals of the real line underthe order relation:
[x, y] < [z, t] ⇐⇒ y < z.

Example

b

a d e

c
a b c

d

e2 3 4 5 6 7 8 9 101

Intervals (Labelled) Poset Unlabelled Poset(Hasse diagram)



Remarks

• Di�erent olletions of intervals may give the same order:

a a

b b
a b

• Example: n = 3

• For the number of unlabelled posets, only 16 terms are known!(18 in the labelled ase)



Interval orders: two haraterizations

• First haraterization: The poset P has no indued (2 + 2) sub-poset

[Fishburn 70℄
Example:
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Interval orders: two haraterizations

• First haraterization: The poset P has no indued (2 + 2) sub-poset

[Fishburn 70℄
Example:



Interval orders: two haraterizations

• Seond haraterization [Fishburn 70℄. The predeessor sets (or: down-sets)

D(x) = {y ∈ P : y < x}, for x ∈ Pan be totally ordered by inlusion.Example:

a b c

d

e

∅ = D(a) = D(b) = D(c) ⊂ D(d) = {a, b} ⊂ D(e) = {a, b, c, d}Counter-example: In

a b

c d

D(c) = {a} is not omparable to D(d) = {b}.



First bijetion:From involutions with no neighbour nesting to interval orders

b

a d e
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a b c
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e
1 2 3 4 5 6 7 8 9 10



First bijetion:From involutions with no neighbour nesting to interval orders

b

a d e

c

1 2 3 4 5 6 7 8 9 10
Ω

Proposition: Ω sends bijetively involutions on 2n points with no neighbournesting onto interval orders on n unlabelled elements.Remark. Re�eting σ aross a vertial line ⇐⇒ Taking the dual poset.



First bijetion:From involutions with no neighbour nesting to interval orders

• Ω is surjetive. Let P be an interval order on n elements.- Take a olletion of n intervals whose order is P- One an assume that the endpoints of these intervals are 2n distint points

- One an assume that these points are 1,2, . . . ,2n ⇒ a �xed point free invo-lution- Delete neighbour nestings without hanging the order
πiπi+1 i i + 1 πi+1πi i + 1i(and symmetrially)



Surjetivity: an example

Colletion of intervals: [1,8], [2,5], [3,4], [6,7], [9,10]

1 2 3 4 6 7 85 109

1 2 3 4 6 7 85 109

1 2 3 4 6 7 85 109

1 2 3 4 6 7 85 109

1 2 3 4 6 7 85 109

No neighbour nesting



From involutions with no neighbour nesting to interval orders

• Ω is injetive. Let σ ∈ I2n, and let P = Ω(σ). How an we reonstrut σfrom P?



From involutions with no neighbour nesting to interval orders

• Ω is injetive. Let σ ∈ I2n, and let P = Ω(σ). How an we reonstrut σfrom P?
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- Display P in anonial form: if {D(x), x ∈ P} = {D0, D1, . . . , Dk} with ∅ =

D0 ⊂ D1 ⊂ · · · ⊂ Dk, put x at level i if D(x) = Di.
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- Display P in anonial form: if {D(x), x ∈ P} = {D0, D1, . . . , Dk} with ∅ =

D0 ⊂ D1 ⊂ · · · ⊂ Dk, put x at level i if D(x) = Di.- Display the dual poset P ∗ in anonial form



From involutions with no neighbour nesting to interval orders
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- Display P in anonial form: if {D(x), x ∈ P} = {D0, D1, . . . , Dk} with ∅ =

D0 ⊂ D1 ⊂ · · · ⊂ Dk, put x at level i if D(x) = Di.- Display the dual poset P ∗ in anonial form- Form runs of opening/losing arhes by reading the levels in P (resp. P ∗)

0 1 1 1 2 30 4 0 011224 3



From involutions with no neighbour nesting to interval orders
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- Math half-arhes by identifying points in P and P ∗
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From involutions with no neighbour nesting to interval orders
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III. From permutations avoiding  

 

 to asent sequenes



Deomposition of permutations of Rn

• Consider π = 61832547 ∈ R8 and remove the largest entry:

τ = 6132547 ∈ R7



Deomposition of permutations of Rn

• Consider π = 61832547 ∈ R8 and remove the largest entry:

τ = 6132547 ∈ R7

• Conversely, 8 ould be inserted in the following ative sites of τ :

τ = ⋆6 1⋆3 2⋆5 4⋆ 7⋆

• Ative sites:- to the left of τ ,- just after the entry i, provided i − 1 does not appear to the right of i.
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τ = 6132547 ∈ R7

• Conversely, 8 ould be inserted in the following ative sites of τ :

τ = ⋆6 1⋆3 2⋆5 4⋆ 7⋆

• Labelling of the ative sites:
06 113 225 4374The 8 appears in the ative site with label 1

⇒ π ∈ R8 may be reovered from the pair (τ,1) where τ ∈ R7.



Deomposition of permutations of Rn

• Consider π = 61832547 ∈ R8 and remove the largest entry:

τ = 6132547 ∈ R7

• Conversely, 8 ould be inserted in the following ative sites of τ :

τ = ⋆6 1⋆3 2⋆5 4⋆ 7⋆

• Labelling of the ative sites:
06 113 225 4374The 8 appears in the ative site with label 1

⇒ π ∈ R8 may be reovered from the pair (τ,1) where τ ∈ R7.

• Repeating this until ending up with the empty permutation, we have thesequene

Λ(π) = (0,1,1,2,2,0,3,1)from whih π an be reonstruted.



Asent sequenes

De�nition. A sequene (x1, . . . , xn) of non-negative integers an asent sequeneif
• x1 = 0, and
• xi ∈ [0,1 + asc(x1, . . . , xi−1)] for all 1 < i ≤ n.

Asent number: asc(0,0,1,0,1,2,0) = 3Examples:All asent sequenes of length 3:(0,0,0) (0,0,1) (0,1,0) (0,1,1) (0,1,2)All asent sequenes of length 4:(0,0,0,0) (0,0,0,1) (0,0,1,0) (0,0,1,1) (0,0,1,2) (0,1,0,0) (0,1,0,1)(0,1,0,2) (0,1,1,0) (0,1,1,1) (0,1,1,2) (0,1,2,0) (0,1,2,1) (0,1,2,2)(0,1,2,3)



Seond bijetion:from permutations avoiding  

 

 to asent sequenes

• De�nition of Λ: if π ∈ Rn is obtained by inserting n in the ative site labelled

i of τ ∈ Rn−1 then
Λ(π) = (x1, x2, . . . , xn−1, i) where Λ(τ) = (x1, x2, . . . , xn−1).

Theorem: The map Λ is a bijetion between permutations of Rn and asentsequenes of length n.
• Proof: by indution on n, using

s(π) = 2 + asc(x) and b(π) = xnwhere s(π) is the number of ative sites, and b(π) the label of the ative siteloated just before the largest entry of π.
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IV. From interval orders to asent sequenes



Third bijetion: from interval orders to asent sequenes

Display P in anonial form: if {D(x), x ∈ P} = {D0, D1, . . . , Dk} with ∅ = D0 ⊂
D1 ⊂ · · · ⊂ Dk, put x at level i if D(x) = Di. We denote ℓ(P) = k.

0

1

2

3

4



Deomposition of (2 + 2)-free posets

Let ℓ⋆(P) be the minimum level ontaining a maximal element. Let Li(P) bethe set of elements of P at level i. All the maximal elements loated at level

i are order-equivalent in P . We will remove one of them. Let Q be the posetthat results from applying:(i) If |Li(P)| > 1, or if |Li(P)| = 1 and i = ℓ(P), then remove one of themaximal elements at level i.(ii) If |Li(P)| = 1 and i < ℓ(P) then set N = Di+1(P) \ Di(P). Make eahelement in N a maximal element of the poset by deleting from the orderall relations x < y where x ∈ N . Finally, remove the unique element lyingat level i.

• De�nition of the map Ψ between posets and asent sequenes:

Ψ(P) = (x1, . . . , xn−1, i) where Ψ(Q) = (x1, . . . , xn−1)



Deomposition of (2 + 2)-free posets
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ℓ(P) = 4, i = 2 < ℓ(P) ⇒ x8 = 2

(ii) If |Li(P)| = 1 and i < ℓ(P) then set N = Di+1(P) \ Di(P). Make eahelement in N a maximal element of the poset by deleting from the orderall relations x < y where x ∈ N . Finally, remove the unique element lyingat level i.



Deomposition of (2 + 2)-free posets
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ℓ(P) = 4, i = 2 < ℓ(P) ⇒ x8 = 2

(ii) If |Li(P)| = 1 and i < ℓ(P) then set N = Di+1(P) \ Di(P). Make eahelement in N a maximal element of the poset by deleting from the orderall relations x < y where x ∈ N . Finally, remove the unique element lyingat level i.



Deomposition of (2 + 2)-free posets

3
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0

1 * * 1

0
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3

ℓ(P) = 3, i = 1 < ℓ(P) ⇒ x7 = 1

(i) If |Li(P)| > 1, or if |Li(P)| = 1 and i = ℓ(P), then remove one of themaximal elements at level i.



Deomposition of (2 + 2)-free posets

*1

0

2

3

1

0

2

3

ℓ(P) = 3, i = 1 < ℓ(P) ⇒ x6 = 1

(i) If |Li(P)| > 1, or if |Li(P)| = 1 and i = ℓ(P), then remove one of themaximal elements at level i.



Deomposition of (2 + 2)-free posets

1

0

2

3 *

1

0

2

ℓ(P) = 3, i = 3 = ℓ(P) ⇒ x5 = 3

(i) If |Li(P)| > 1, or if |Li(P)| = 1 and i = ℓ(P), then remove one of themaximal elements at level i.



Third bijetion: from interval orders to asent sequenes

1

0

2

*

# 0

1

* 0

1 *

0

x4 = 1 x3 = 0 x2 = 1 x1 = 0

Ψ(P) = (0,1,0,1,3,1,1,2)

Theorem: The map Ψ is a bijetion between (2 + 2)-free posets on n elementsand asent sequenes of length n.Remark: other deompositions given by [El-Zahar 89℄, [Khamis 04℄, [Haxel,MDonald,Thomasson 87℄
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Some properties of our bijetions

Given an asent sequene x, let P and π be the poset and permutation orre-sponding to x, and let σ be the involution orresponding to P . Then

lir(σ) = min(P) = zeros(x) = ldr(π)

ℓ⋆(P) = last(x) = b(π)

or(σ) − 1 = ℓ(P) = asc(x) = asc(π−1) = s(π) − 2

with

• lir(π): leftmost inreasing run (the largest integer i suh that π1 < π2 < · · · <

πi)

• ldr(π): leftmost dereasing run
• or(σ): number of opening runs of σ

• s(π): number of ative sites

• b(π): label of the ative site loated just before the largest entry of π.



V. Enumeration
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Pn
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Asent sequenes



Reursive desription of asent sequenes

The only asent sequene of length 1 is (0).For n ≥ 1, the sequene (x1, . . . , xn) is an asent sequene i�

• (x1, . . . , xn−1) is an asent sequene, and

• xn ∈ [0,1 + asc(x1, . . . , xn−1)].
⇒ Obvious reursive desription, keeping trak of

• the number of asents,
• the value of the last entry.



A funtional equation

Let F(t; u, v) ≡ F(u, v) be the generating funtion of asent sequenes, ountedby length (t), number of asents (u) and last entry (v). This is a formal powerseries in t with oe�ients in Q[u, v]. The �rst few terms of F(t; u, v) are

F(t; u, v) = 1 + t + (1 + uv)t2 + (1 + 2uv + u + u2v2)t3 + O(t4).

Proposition: The generating funtion F(t; u, v) satis�es

(v − 1 − tv(1 − u))F(u, v) = (v − 1)(1 − tuv) − tF(u,1) + tuv2F(uv,1)

Remark: one unknown series only on the right-hand side



First expression of the solution

(v − 1 − tv(1 − u))F(u, v) = (v − 1)(1 − tuv) − tF(u,1) + tuv2F(uv,1).

The kernel vanishes when v = V (u), with V (u) = 1/(1 − t + tu). Replaing vby V (u) in the equation results in:
F(u,1) =

(1 − u)(1 − t)

(1 − t + tu)2
+

u

(1 − t + tu)2
F

(

u

1 − t + tu
,1

)

.

Iterating this equation gives:Proposition: The series F(t; u,1) ounting asent sequenes by their lengthand asent number, seen as a series in u, has rational oe�ients in t, andsatis�es

F(t; u,1) =
∑

k≥1

(1 − u)uk−1(1 − t)k

(u − (u − 1)(1 − t)k)
∏k

i=1(u − (u − 1)(1 − t)i)
.

A formal series in u with rational oe�ients in t!



Massaging the solution

F(t; u,1) =
∑

k≥1

(1 − u)uk−1(1 − t)k

(u − (u − 1)(1 − t)k)
∏k

i=1(u − (u − 1)(1 − t)i)
.

Lemma. For m ≥ 1, let
S(t;u) =

∑

k≥1

(u − 1)m uk−1(1 − t)mk

∏k
i=1(u − (u − 1)(1 − t)i)

.

Then S(t;u) is atually a polynomial in u and t:
S(t;u) = −

m−1
∑

j=0

(u − 1)jum−1−j(1 − t)j
m−1
∏

i=j+1

(

1 − (1 − t)i
)

.



Seond expression of the solution

• Theorem. Let n ≥ 0, and onsider the following polynomial in t and u:

Fn(t; u) =
n
∑

ℓ=0

(u − 1)n−ℓuℓ
n
∑

m=ℓ

(−1)n−m
(n

m

)

(1 − t)m−ℓ
m
∏

i=m−ℓ+1

(

1 − (1 − t)i
)

.Then Fn(t;u) is a multiple of tn.The generating funtion of asent sequenes, ounted by the length and theasent number, is
F(t; u,1) =

∑

n≥0

Fn(t;u).

• When u = 1, Fn(t; 1) =
n
∏

i=1

(

1 − (1 − t)i
)

, so that the generating funtion ofasent sequenes, (2 + 2)-free posets, permutations avoiding  

 

 , involutionswith no neighbour nesting is:

F(t; 1,1) =
∑

n≥0

n
∏

i=1

(

1 − (1 − t)i
)

.



What a beautiful series!

The generating funtion of asent sequenes, (2 + 2)-free posets, permutationsavoiding  

 

 , involutions with no neighbour nesting is:

P(t) =
∑

n≥0

n
∏

i=1

(

1 − (1 − t)i
)

.Obtained by Zagier for involutions with no neighbour nesting, using a deom-position of involutions found in [Stoimenow 98℄.

• Asymptoti behaviour:
pn

n!
∼ κ

(

6

π2

)n√
n, where κ =

12
√

3

π5/2
eπ2/12.

• A remarkable formula:

P(1 − e−24x) = ex
∑

n≥0

Tn

n!
xn,where

∑

n≥0

Tn

(2n + 1)!
x2n+1 =

sin2x

2cos 3x
.[Zagier 01℄


