Pattern avoiding permutations,

interval orders

and

involutions with no neighbour nesting

Mireille Bousquet-Mélou http://www.labri.fr/~bousquet joint work with...

The Icelanders:

Mark Dukes¹ Anders Claesson² Sergey Kitaev²

- 1. University of Iceland
- 2. University of Reykjavík

I. L'histoire

Pattern avoiding permutations

Classical pattern avoidance

Consider $S_n(2-3-1)$; the collection of all permutations $\pi \in S_n$ such that there do not exist indices $1 \le i < j < k \le n$ with $\pi_k < \pi_i < \pi_j$.

$$S_n(2-3-1) = S_n\left(\bullet \right)$$

Generalized pattern avoidance

Consider $S_n(23-1)$; the collection of all permutations $\pi \in S_n$ such that there do not exist indices $1 \le i < i + 1 < k \le n$ with $\pi_k < \pi_i < \pi_{i+1}$.

$$S_n(23-1) = S_n\left(ullet ul$$

The '-' represents an elastic length.

• E. Babson and E. Steingrímsson, Generalized permutation patterns and a classification of the Mahonian statistics, *Sém. Lothar. Combin.* **44** (2000) Art. B44b, 18 pp.

A new class of pattern avoiding permutations

What about

$$\mathcal{R}_n = \mathcal{S}_n \left(\begin{array}{c} \bullet \\ \bullet \end{array} \right) ?$$

A permutation is in \mathcal{R}_n if there do not exist indices i and k satisfying $1 \le i < i + 1 < k \le n$ and such that

$$\pi_k + 1 = \pi_i < \pi_{i+1}.$$

Enumeration

Some known results:

• $S_n\left(\begin{array}{c}\bullet\\\bullet\end{array}\right) \Rightarrow C_n$, Catalan numbers

• $S_n\left(\begin{array}{c}\bullet\\\bullet\end{array}\right) \Rightarrow B_n$, Bell numbers

What about

•
$$\mathcal{R}_n = S_n\left(\underbrace{\bullet}_{\bullet} \right) \Rightarrow 1, 1, 2, 5, 15, 53, 217, 1014...?$$

In the On-Line Encyclopedia of Integer Sequences: A022493

- Unlabelled interval orders on n points
- Linearized chord diagrams of degree n_i , introduced by Stoimenow, 1998 (here: involutions with no neighbour nesting)

In this talk

II. Involutions with no neighbour nestings and interval orders

A (fixed-point free) involution

A nesting between two arches

A neighbour nesting

A neighbour nesting

Another one

[Stoimenow 98]: bounds on the dimension of the vector space of Vassiliev invariants of degree \boldsymbol{n}

Equivalently: all descents cross the diagonal

Interval orders

Definition: The relative order of a collection of intervals of the real line under the order relation:

 $[x, y] < [z, t] \iff y < z.$

Example

(Hasse diagram)

Remarks

• Different collections of intervals may give the same order:

• For the number of unlabelled posets, only 16 terms are known! (18 in the labelled case)

• First characterization: The poset P has no induced (2+2) sub-poset

• First characterization: The poset P has no induced (2+2) sub-poset

• First characterization: The poset P has no induced (2+2) sub-poset

• Second characterization [Fishburn 70]. The predecessor sets (or: down-sets)

$$D(x) = \{ y \in P : y < x \}, \quad \text{for } x \in P$$

can be totally ordered by inclusion.

$$\begin{array}{c} c & d \\ a & b \end{array}$$

 $D(c) = \{a\}$ is not comparable to $D(d) = \{b\}.$

First bijection:

From involutions with no neighbour nesting to interval orders

First bijection:

From involutions with no neighbour nesting to interval orders

Proposition: Ω sends bijectively involutions on 2n points with no neighbour nesting onto interval orders on n unlabelled elements.

Remark. Reflecting σ across a vertical line \iff Taking the dual poset.

First bijection:

From involutions with no neighbour nesting to interval orders

- Ω is surjective. Let *P* be an interval order on *n* elements.
- Take a collection of n intervals whose order is P
- One can assume that the endpoints of these intervals are 2n distinct points

- One can assume that these points are $1,2,\ldots,2n$ \Rightarrow a fixed point free involution
- Delete neighbour nestings without changing the order

(and symmetrically)

Surjectivity: an example

Collection of intervals: [1,8], [2,5], [3,4], [6,7], [9,10]

No neighbour nesting

- Display P in canonical form: if $\{D(x), x \in P\} = \{D_0, D_1, \dots, D_k\}$ with $\emptyset = D_0 \subset D_1 \subset \cdots \subset D_k$, put x at level i if $D(x) = D_i$.

- Display P in canonical form: if $\{D(x), x \in P\} = \{D_0, D_1, \dots, D_k\}$ with $\emptyset = D_0 \subset D_1 \subset \dots \subset D_k$, put x at level i if $D(x) = D_i$.
- Display the dual poset P^* in canonical form

- Display P in canonical form: if $\{D(x), x \in P\} = \{D_0, D_1, \dots, D_k\}$ with $\emptyset = D_0 \subset D_1 \subset \dots \subset D_k$, put x at level i if $D(x) = D_i$.
- Display the dual poset P^* in canonical form
- Form runs of opening/closing arches by reading the levels in P (resp. P^*)

• Ω is injective. Let $\sigma \in \mathcal{I}_{2n}$, and let $P = \Omega(\sigma)$. How can we reconstruct σ from P?

- Display P in canonical form: if $\{D(x), x \in P\} = \{D_0, D_1, \dots, D_k\}$ with $\emptyset = D_0 \subset D_1 \subset \cdots \subset D_k$, put x at level i if $D(x) = D_i$.

- Display the dual poset P^* in canonical form
- Form runs of opening/closing arches by reading the levels in P (resp. P^*)

• Ω is injective. Let $\sigma \in \mathcal{I}_{2n}$, and let $P = \Omega(\sigma)$. How can we reconstruct σ from P?

- Display P in canonical form: if $\{D(x), x \in P\} = \{D_0, D_1, \dots, D_k\}$ with $\emptyset = D_0 \subset D_1 \subset \cdots \subset D_k$, put x at level i if $D(x) = D_i$.

- Display the dual poset P^* in canonical form
- Form runs of opening/closing arches by reading the levels in P (resp. P^*)

• Ω is injective. Let $\sigma \in \mathcal{I}_{2n}$, and let $P = \Omega(\sigma)$. How can we reconstruct σ from P?

- Display P in canonical form: if $\{D(x), x \in P\} = \{D_0, D_1, \dots, D_k\}$ with $\emptyset = D_0 \subset D_1 \subset \dots \subset D_k$, put x at level i if $D(x) = D_i$.
- Display the dual poset P^* in canonical form
- Form runs of opening/closing arches by reading the levels in P (resp. P^*)

• Ω is injective. Let $\sigma \in \mathcal{I}_{2n}$, and let $P = \Omega(\sigma)$. How can we reconstruct σ from P?

- Display P in canonical form: if $\{D(x), x \in P\} = \{D_0, D_1, \dots, D_k\}$ with $\emptyset = D_0 \subset D_1 \subset \dots \subset D_k$, put x at level i if $D(x) = D_i$.
- Display the dual poset P^* in canonical form
- Form runs of opening/closing arches by reading the levels in P (resp. P^*)

• Ω is injective. Let $\sigma \in \mathcal{I}_{2n}$, and let $P = \Omega(\sigma)$. How can we reconstruct σ from P?

- Display P in canonical form: if $\{D(x), x \in P\} = \{D_0, D_1, \dots, D_k\}$ with $\emptyset = D_0 \subset D_1 \subset \dots \subset D_k$, put x at level i if $D(x) = D_i$.
- Display the dual poset P^* in canonical form
- Form runs of opening/closing arches by reading the levels in P (resp. P^*)

Where we stand

III. From permutations avoiding . to ascent sequences

• Consider $\pi = 61832547 \in \mathcal{R}_8$ and remove the largest entry:

 $\tau = 6132547 \in \mathcal{R}_7$

• Consider $\pi = 61832547 \in \mathcal{R}_8$ and remove the largest entry:

 $\tau = 6132547 \in \mathcal{R}_7$

• Conversely, 8 could be inserted in the following active sites of τ :

 $\tau = *61*32*54*7*$

- Active sites:
- to the left of au,
- just after the entry i, provided i 1 does not appear to the right of i.

• Consider $\pi = 61832547 \in \mathcal{R}_8$ and remove the largest entry:

 $\tau = 6132547 \in \mathcal{R}_7$

• Conversely, 8 could be inserted in the following active sites of τ :

 $\tau = *61*32*54*7*$

• Labelling of the active sites:

 $_{0}61_{1}32_{2}54_{3}7_{4}$

The 8 appears in the active site with label 1 $\Rightarrow \pi \in R_8$ may be recovered from the pair $(\tau, 1)$ where $\tau \in \mathcal{R}_7$.

• Consider $\pi = 61832547 \in \mathcal{R}_8$ and remove the largest entry:

 $\tau = 6132547 \in \mathcal{R}_7$

• Conversely, 8 could be inserted in the following active sites of τ :

 $\tau = *61*32*54*7*$

• Labelling of the active sites:

₀6 1₁3 2₂5 4₃7₄

The 8 appears in the active site with label 1

 $\Rightarrow \pi \in R_8$ may be recovered from the pair $(\tau, 1)$ where $\tau \in \mathcal{R}_7$.

• Repeating this until ending up with the empty permutation, we have the sequence

 $\Lambda(\pi) = (0, 1, 1, 2, 2, 0, 3, \mathbf{1})$

from which π can be reconstructed.

Ascent sequences

Definition. A sequence (x_1, \ldots, x_n) of non-negative integers an ascent sequence if

- $x_1 = 0$, and
- $x_i \in [0, 1 + \operatorname{asc}(x_1, \dots, x_{i-1})]$ for all $1 < i \le n$.

```
Ascent number: asc(0, 0, 1, 0, 1, 2, 0) = 3
```

Examples:

All ascent sequences of length 3: (0,0,0) (0,0,1) (0,1,0) (0,1,1) (0,1,2)

All ascent sequences of length 4: (0,0,0,0) (0,0,0,1) (0,0,1,0) (0,0,1,1) (0,0,1,2) (0,1,0,0) (0,1,0,1) (0,1,0,2) (0,1,1,0) (0,1,1,1) (0,1,1,2) (0,1,2,0) (0,1,2,1) (0,1,2,2)(0,1,2,3)

Second bijection: from permutations avoiding • to ascent sequences

• Definition of A: if $\pi \in \mathcal{R}_n$ is obtained by inserting n in the active site labelled i of $\tau \in \mathcal{R}_{n-1}$ then

 $\Lambda(\pi) = (x_1, x_2, \dots, x_{n-1}, i)$ where $\Lambda(\tau) = (x_1, x_2, \dots, x_{n-1}).$

Theorem: The map Λ is a bijection between permutations of \mathcal{R}_n and ascent sequences of length n.

• Proof: by induction on *n*, using

$$s(\pi) = 2 + \operatorname{asc}(x)$$
 and $b(\pi) = x_n$

where $s(\pi)$ is the number of active sites, and $b(\pi)$ the label of the active site located just before the largest entry of π .

Where we stand

IV. From interval orders to ascent sequences

Third bijection: from interval orders to ascent sequences

Display P in canonical form: if $\{D(x), x \in P\} = \{D_0, D_1, \dots, D_k\}$ with $\emptyset = D_0 \subset D_1 \subset \cdots \subset D_k$, put x at level i if $D(x) = D_i$. We denote $\ell(P) = k$.

Let $\ell^*(P)$ be the minimum level containing a maximal element. Let $L_i(P)$ be the set of elements of P at level i. All the maximal elements located at level i are order-equivalent in P. We will remove one of them. Let Q be the poset that results from applying:

(i) If $|L_i(P)| > 1$, or if $|L_i(P)| = 1$ and $i = \ell(P)$, then remove one of the maximal elements at level *i*.

(ii) If $|L_i(P)| = 1$ and $i < \ell(P)$ then set $\mathcal{N} = D_{i+1}(P) \setminus D_i(P)$. Make each element in \mathcal{N} a maximal element of the poset by deleting from the order all relations x < y where $x \in \mathcal{N}$. Finally, remove the unique element lying at level i.

• Definition of the map Ψ between posets and ascent sequences:

$$\Psi(P) = (x_1, \dots, x_{n-1}, i)$$
 where $\Psi(Q) = (x_1, \dots, x_{n-1})$

$\ell(P) = 4, \quad i = 2 < \ell(P) \quad \Rightarrow x_8 = 2$

(ii) If $|L_i(P)| = 1$ and $i < \ell(P)$ then set $\mathcal{N} = D_{i+1}(P) \setminus D_i(P)$. Make each element in \mathcal{N} a maximal element of the poset by deleting from the order all relations x < y where $x \in \mathcal{N}$. Finally, remove the unique element lying at level i.

 $\ell(P) = 4, \quad i = 2 < \ell(P) \quad \Rightarrow x_8 = 2$

(ii) If $|L_i(P)| = 1$ and $i < \ell(P)$ then set $\mathcal{N} = D_{i+1}(P) \setminus D_i(P)$. Make each element in \mathcal{N} a maximal element of the poset by deleting from the order all relations x < y where $x \in \mathcal{N}$. Finally, remove the unique element lying at level i.

$$\ell(P) = 3, \quad i = 1 < \ell(P) \quad \Rightarrow x_7 = 1$$

(i) If $|L_i(P)| > 1$, or if $|L_i(P)| = 1$ and $i = \ell(P)$, then remove one of the maximal elements at level *i*.

$$\ell(P) = 3, \quad i = 1 < \ell(P) \quad \Rightarrow x_6 = 1$$

(i) If $|L_i(P)| > 1$, or if $|L_i(P)| = 1$ and $i = \ell(P)$, then remove one of the maximal elements at level *i*.

$$\ell(P) = 3, \quad i = 3 = \ell(P) \quad \Rightarrow x_5 = 3$$

(i) If $|L_i(P)| > 1$, or if $|L_i(P)| = 1$ and $i = \ell(P)$, then remove one of the maximal elements at level *i*.

Third bijection: from interval orders to ascent sequences

 $\Psi(P) = (0, 1, 0, 1, 3, 1, 1, 2)$

Theorem: The map Ψ is a bijection between (2+2)-free posets on n elements and ascent sequences of length n.

Remark: other decompositions given by [El-Zahar 89], [Khamis 04], [Haxel, McDonald, Thomasson 87]

Where we stand

Some properties of our bijections

Given an ascent sequence x, let P and π be the poset and permutation corresponding to x, and let σ be the involution corresponding to P. Then

$$lir(\sigma) = min(P) = zeros(x) = ldr(\pi)$$
$$\ell^{\star}(P) = last(x) = b(\pi)$$
$$or(\sigma) - 1 = \ell(P) = asc(x) = asc(\pi^{-1}) = s(\pi) - 2$$

with

- lir(π): leftmost increasing run (the largest integer i such that $\pi_1 < \pi_2 < \cdots < \pi_i$)
- $Idr(\pi)$: leftmost decreasing run
- $or(\sigma)$: number of opening runs of σ
- $s(\pi)$: number of active sites
- $b(\pi)$: label of the active site located just before the largest entry of π .

V. Enumeration

Which is the most manageable class of objects?

Which is the most manageable class of objects?

Ascent sequences

Recursive description of ascent sequences

The only ascent sequence of length 1 is (0). For $n \ge 1$, the sequence (x_1, \ldots, x_n) is an ascent sequence iff

- (x_1, \ldots, x_{n-1}) is an ascent sequence, and
- $x_n \in [0, 1 + \operatorname{asc}(x_1, \dots, x_{n-1})].$

 \Rightarrow Obvious recursive description, keeping track of

- the number of ascents,
- the value of the last entry.

A functional equation

Let $F(t; u, v) \equiv F(u, v)$ be the generating function of ascent sequences, counted by length (t), number of ascents (u) and last entry (v). This is a formal power series in t with coefficients in $\mathbb{Q}[u, v]$. The first few terms of F(t; u, v) are

$$F(t; u, v) = 1 + t + (1 + uv)t^{2} + (1 + 2uv + u + u^{2}v^{2})t^{3} + O(t^{4}).$$

Proposition: The generating function F(t; u, v) satisfies

$$(v-1-tv(1-u))F(u,v) = (v-1)(1-tuv) - tF(u,1) + tuv^2F(uv,1)$$

Remark: one unknown series only on the right-hand side

First expression of the solution

$$(v-1-tv(1-u))F(u,v) = (v-1)(1-tuv) - tF(u,1) + tuv^2F(uv,1).$$

The kernel vanishes when v = V(u), with V(u) = 1/(1 - t + tu). Replacing v by V(u) in the equation results in:

$$F(u,1) = \frac{(1-u)(1-t)}{(1-t+tu)^2} + \frac{u}{(1-t+tu)^2} F\left(\frac{u}{1-t+tu},1\right)$$

Iterating this equation gives:

Proposition: The series F(t; u, 1) counting ascent sequences by their length and ascent number, seen as a series in u, has rational coefficients in t, and satisfies

$$F(t; u, 1) = \sum_{k \ge 1} \frac{(1-u) u^{k-1} (1-t)^k}{(u - (u-1)(1-t)^k) \prod_{i=1}^k (u - (u-1)(1-t)^i)}.$$

A formal series in u with rational coefficients in t!

Massaging the solution

$$F(t; u, 1) = \sum_{k \ge 1} \frac{(1-u) u^{k-1} (1-t)^k}{(u - (u-1)(1-t)^k) \prod_{i=1}^k (u - (u-1)(1-t)^i)}.$$

Lemma. For $m \ge 1$, let

$$S(t; u) = \sum_{k \ge 1} \frac{(u-1)^m u^{k-1} (1-t)^{mk}}{\prod_{i=1}^k (u-(u-1)(1-t)^i)}.$$

Then S(t; u) is actually a polynomial in u and t:

$$S(t; u) = -\sum_{j=0}^{m-1} (u-1)^j u^{m-1-j} (1-t)^j \prod_{i=j+1}^{m-1} \left(1 - (1-t)^i\right).$$

Second expression of the solution

• Theorem. Let $n \ge 0$, and consider the following polynomial in t and u:

$$F_n(t;u) = \sum_{\ell=0}^n (u-1)^{n-\ell} u^\ell \sum_{m=\ell}^n (-1)^{n-m} \binom{n}{m} (1-t)^{m-\ell} \prod_{i=m-\ell+1}^m \left(1 - (1-t)^i \right).$$

Then $F_n(t; u)$ is a multiple of t^n .

The generating function of ascent sequences, counted by the length and the ascent number, is

$$F(t; u, 1) = \sum_{n \ge 0} F_n(t; u).$$

• When u = 1, $F_n(t; 1) = \prod_{i=1}^n \left(1 - (1-t)^i\right)$, so that the generating function of

ascent sequences, (2+2)-free posets, permutations avoiding $\overbrace{\bullet}^{\bullet}$, involutions with no neighbour nesting is:

$$F(t; 1, 1) = \sum_{n \ge 0} \prod_{i=1}^{n} \left(1 - (1-t)^{i} \right).$$

What a beautiful series!

The generating function of ascent sequences, (2+2)-free posets, permutations avoiding \bullet , involutions with no neighbour nesting is: $P(t) = \sum_{n \ge 0} \prod_{i=1}^{n} \left(1 - (1-t)^{i}\right).$

Obtained by Zagier for involutions with no neighbour nesting, using a decomposition of involutions found in [Stoimenow 98].

• Asymptotic behaviour:

$$\frac{p_n}{n!} \sim \kappa \left(\frac{6}{\pi^2}\right)^n \sqrt{n}, \quad \text{where} \quad \kappa = \frac{12\sqrt{3}}{\pi^{5/2}} e^{\pi^2/12}.$$

• A remarkable formula:

$$P(1 - e^{-24x}) = e^x \sum_{n \ge 0} \frac{T_n}{n!} x^n,$$

where

$$\sum_{n\geq 0} \frac{T_n}{(2n+1)!} x^{2n+1} = \frac{\sin 2x}{2\cos 3x}.$$

[Zagier 01]