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A “Tutte invariant” ?

                The chromatic polynomial of a graph ? 

                 Its generalization, the Tutte polynomial ?
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A “Tutte invariant” ?

                The chromatic polynomial of a graph ? 

                 Its generalization, the Tutte polynomial ?

No graph invariants!

Instead, we’ll see many

functional equations for combinatorial enumeration.
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In this talk

I. An equation

II. More equations with two catalytic variables

III. Catalytic variables: 0<1<2< …

IV. Tutte’s invariants

V. Quadrant walks: the whole picture

VI. Three-quadrant walks: a partial picture
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An equation

Series Q(t;x,y)  Q(x,y) :≡ Q(x,y) :

● Defines a unique formal power series in t

● The coefficients are polynomials in x and y

● Involves two divided differences w.r.t. x and y

● The variables x and y are said to be catalytic [Zeilberger 00].

Notation: 

Tautological equation at x=0 and y=0

kernel
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An equation for walks in a quadrant

Series Q(t;x,y)  Q(x,y) :≡ Q(x,y) :

● Then q
i,j
(n) is the number of walks with n steps NE, W, S 

going from (0,0) to (i,j) in the first quadrant.

Write
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An equation for Kreweras’ walks in a quadrant

Series Q(t;x,y)  Q(x,y) :≡ Q(x,y) :

● Then q
i,j
(n) is the number of walks with n steps NE, W, S, 

going from (0,0) to (i,j) in the first quadrant [Kreweras 65].

Write

8 / 43



An equation for Kreweras’ walks in a quadrant

Series Q(t;x,y)  Q(x,y) :≡ Q(x,y) :

● Then q
i,j
(n) is the number of walks with n steps NE, W, S, 

going from (0,0) to (i,j) in the first quadrant [Kreweras 65].

Write

● The series Q(t;x,y) is algebraic ! [Gessel 86]: there exists a 
non-zero polynomial P(u,x,y,t) such that
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II. More equations in 

two catalytic variables



Quadrant walks with different steps

● Gessel’s walks

● Kreweras’ walks  
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Quadrant walks with different steps

● Gessel’s walks

● The kernel describes the new steps

● Coefficients on the r.h.s. have changed as well

● This series is algebraic again ! [Bostan, Kauers 10]

● Some nice coefficients [Kauers, Koutschan, Zeilberger 09]

● Kreweras’ walks  
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Quadrant walks with different steps

● The simple walk

● The kernel describes the new steps.

● Coefficients on the r.h.s. have changed as well

● This series is not algebraic, but stil l D-finite.

● Nice coefficients:
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A hierarchy of formal power series

● Rational

● Algebraic

● D-finite

● D-algebraic
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A hierarchy of formal power series

● Rational

● Algebraic

● D-finite

● D-algebraic
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Kreweras’ walks in three quadrants

● Walks in a three-quadrant cone, ending above the diagonal:

13 / 
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Coloured triangulations: a historical example

Properly q-coloured triangulations : series T(t,q;x,y)≡ Q(x,y) :T(x,y):

● Known : T(1,0) is D-algebraic, and 
algebraic for some q (q=2, q=3…)

[Tutte, 1973-1984]

The birth of invariants

14 / 
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Three-stack sortable permutations

● A non-linear example [Defant, Elvey Price, Guttmann 21]

Stack-sorting [Knuth 68] Not D-finite?
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III. Equations with 

catalytic variables :

0<1<2<...



No catalytic variable: polynomial equations

● Example 1 : Dyck paths, counted by steps

D = 1 + t2 D2

● Example 2: plane trees with degrees 5 and 18

T= 1 + t T5 + t T18

● Many branching structures

● One-stack sortable permutations
      

    P = 1 + t P2
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D = 1 + t2 D2

● Example 2: plane trees with degrees 5 and 18

T= 1 + t T5 + t T18

● Many branching structures

● One-stack sortable permutations
      

    P = 1 + t P2

Algebraic series
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One catalytic variable x

● Planar maps [Tutte 68]

or, with A(x)=M(x+1):

● Many families of (uncoloured) maps

18 / 
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One catalytic variable x

● Two-stack sortable permutations [Zeilberger 92]
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One catalytic variable x

● Two-stack sortable permutations [Zeilberger 92]

Theorem [MBM-Jehanne 06]
Let P(A(x), A

1
, A

2
, …, A

k
,t,x) be a polynomial 

equation in one catalytic variable x. Under 
natural assumptions, the series A(x) and 
the A

i
’s are algebraic.

 

Algebraic series
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One catalytic variable x

● Two-stack sortable permutations [Zeilberger 92]

Theorem [MBM-Jehanne 06]
Let P(A(x), A

1
, A

2
, …, A

k
,t,x) be a polynomial 

equation in one catalytic variable x. Under 
natural assumptions, the series A(x) and 
the A

i
’s are algebraic.

 

Algebraic series

effective

[Popescu 85, Swan 98] 19 / 
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Arbitrarily many catalytic variables

● Walks in ℕd with unit steps (0,…, 0, ± 1, 0, …, 0) :

D-finite
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Arbitrarily many catalytic variables

● Walks in ℕd with unit steps (0,…, 0, ± 1, 0, …, 0) :

D-finite

[mbm 11]                              D-finite  [Gessel 90]

● Permutations with no ascending sub-sequence of length (d+2)

● Permutations sortable by (d+1) stacks ? 

20 / 
43



IV. Back to two catalytic 

variables :

Tutte’s invariants

A tool for proving (D)-algebraicity



Framework

An equation in two catalytic variables, defining a series A(t;x,y):

● linear in A(t;x,y)≡ Q(x,y) :A(x,y), 

● with two divided differences at x=0 and y=0, of first order.

Typical form:

where the kernel K(x,y) satisfies:

for polynomials R and S. 

22 / 
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where the kernel K(x,y) satisfies:

for polynomials R and S. 
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Framework

Typical form:

where the kernel K(x,y) satisfies:

for polynomials R and S. 

Example 1: quadrant walks with Kreweras’ steps

Here,
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Framework
Typical form:

where the kernel K(x,y) satisfies:

for polynomials R and S. 

Example 2: Tutte’s coloured triangulations

Framework
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Framework
Typical form:

where the kernel K(x,y) satisfies:

for polynomials R and S. 

Example 2: Tutte’s coloured triangulations

Or, with A(x,y)=T(x+1,y) and u=x+1,

Framework
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Framework

● In our equations,

has poles of unbounded order at x=0 and y=0.

Example: for simple walks in the quadrant,

and the n-th coefficient has a pole of order n at x=0 (and at y=0).

25 / 
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Invariants for a kernel K(x,y)

Def. A pair of series (I(x),J(y)), with rational coefficients in x (resp. 
y) is a pair of invariants if 

(I(x)-J(y))/K(x,y)

has poles of bounded order (p.b.o.) at x=0 and y=0.

26 / 
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Invariants for a kernel K(x,y)

Def. A pair of series (I(x),J(y)), with rational coefficients in x (resp. 
y) is a pair of invariants if 

(I(x)-J(y))/K(x,y)

has poles of bounded order (p.b.o.) at x=0 and y=0.

no

no

yes

Poles of bounded order ?

26 / 
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Explicit kernels, explicit invariants

Def. A pair of series (I(x),J(y)) is a pair of invariants if 

(I(x)-J(y))/K(x,y)

has poles of bounded order at x=0 and y=0.
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Explicit kernels, explicit invariants

Def. A pair of series (I(x),J(y)) is a pair of invariants if 

(I(x)-J(y))/K(x,y)

has poles of bounded order at x=0 and y=0.

Example 1. Simple walks in the quadrant :

Then

form a pair of invariants since
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From a functional equation to invariants

Def. A pair of series (I(x),J(y)) is a pair of invariants if 

(I(x)-J(y))/K(x,y)

has poles of bounded order at x=0 and y=0.

Example 2. Kreweras’ walks in the quadrant:
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From a functional equation to invariants

Def. A pair of series (I(x),J(y)) is a pair of invariants if 

(I(x)-J(y))/K(x,y)

has poles of bounded order at x=0 and y=0.

Example 2. Kreweras’ walks in the quadrant:

Since 

we have 

and a second pair of invariants:
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The invariant lemma

Lemma. Let (I(x),J(y)) be a pair of invariants such that the series

(I(x)-J(y))/K(x,y)

not only has p.b.o. at x=0 and y=0, but in fact vanishes at x=0 and 
y=0 (“strict” invariants). Then I(x) and J(y) are trivial:

I(x)=J(y) is independent of x (and y). 

Lemma. The componentwise sum and product of two pairs of 
invariants (I

0
(x), J

0
(y)), (I

1
(x), J

1
(y)) is another pair of invariants. 
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Application: Kreweras’ walks in the quadrant

● Two pairs of invariants:
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Application: Kreweras’ walks in the quadrant

● Two pairs of invariants:

● Observation: the following pair of invariants has no pole at x=0 or 
y=0:

Moreover, (I(x)-J(y))/K(x,y) vanishes at x=0 and y=0!
By the invariant lemma, I(x)=I(0), that is,
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Application: Kreweras’ walks in the quadrant

Summary: starting from an equation in two catalytic variables, 

involving Q(x,y), Q(x,0) and Q(0,y), we have derived an equation 

in only one catalytic variable, involving Q(x,0) and Q(0,0) only   

 ⇒ algebraicity
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Application: Kreweras’ walks in the quadrant

Summary: starting from an equation in two catalytic variables, 

involving Q(x,y), Q(x,0) and Q(0,y), we have derived an equation 

in only one catalytic variable, involving Q(x,0) and Q(0,0) only   

 ⇒ algebraicity

Theorem [Kreweras 65, Gessel 86, mbm 05…]: let Z(t) ≡ Q(x,y) : Z be 
the only series in t such that Z=t(2+Z3). Then 
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V. Walks in a quadrant:

the whole picture



About twenty years ago...

● Systematic study of quadrant walks

 Set of steps (“model”) in

●  Some models are trivial, or equivalent to a half plane problem

⇒ 79 really interesting and distinct small step models [mbm-Mishna 
10]

● Systematic approach via a functional equation

34 / 
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Twenty years later: classification of quadrant walks

Bernardi, Bostan, mbm, Budd, Chyzak, Dreyfus, Elvey Price, Gessel, 
Hardouin, Kauers, Koutschan, Kurkova, Melczer, Mishna, Pech, 
Raschel, Rechnitzer, Roques, Salvy, Singer, van Hoeij, Zeilberger...

quadrant models: 79

G finite: 23 G infinite: 56

D-finite not D-finite

algebraic DF transc. D-alg. not D-alg.

4 19 9 47
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Formal power 

series algebra

Computeralgebra

Galoistheory

Complex 

analysis

Probability

G-functions
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VI. Walks in three quadrants:

a partial picture



Since 2015...

● Systematic study of three-quadrant walks with small steps

 Set of steps in

●  Some models are trivial, or equivalent to a half plane problem

⇒ 74 really interesting and distinct models

● For ten x/y-symmetric step sets*, an equation reminiscent of 
quadrant equations:

* those with no NW nor SE step 37 / 
43



A partial classification of three-quadrant walks

mbm, Budd, Dreyfus, Elvey Price, Mustapha, Raschel, Trotignon, 
Wallner...

10 three-quadrant models

D-finite not D-finite

algebraic DF transc. D-alg. not D-alg.

rat. inv. 6 no rat. inv: 4

U-inv. 3 U-inv. 1no U-inv. 3 no U-inv. 3
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A partial classification of three-quadrant walks

10 three-quadrant models

D-finite not D-finite

algebraic DF transc. D-alg. not D-alg.

rat. inv. 6 no rat. inv: 4

U-inv. 3 U-inv. 1no U-inv. 3 no U-inv. 3

[mbm 21(a)]
Theorem [Elvey Price 22(a)] The Gfs of quadrant walks and 
three quadrant walks with the same (small) steps are of the same 
nature, at least w.r.t. x and y. 38 / 
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Applications of Tutte’s invariants

● Properly coloured triangulations [Tutte 73-84]

● General colourings of maps (= Potts model) [Bernardi-mbm 11-17]

● Quadrant walks [Bernardi, mbm, Raschel 17(a)]

● Three-quadrant walks [mbm 21(a)]

● Continuous walks in a cone [mbm, Elvey Price, Franceschi, 
Hardouin, Raschel...]

39 / 
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Perspectives/work in progress

● (D)-algebraicity for more three-quadrant walks, e.g. Gessel’s walks

● Quadrant walks with larger steps (P. Bonnet)

● 3-dimensional walks: from 3 to 2 catalytic variables?

40 / 
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Perspectives/work in progress

● (D)-algebraicity for more three-quadrant walks, e.g. Gessel’s walks

● Quadrant walks with larger steps (P. Bonnet)

● 3-dimensional walks: from 3 to 2 catalytic variables?

Constructing invariants,

● from an explicit rational kernel

● or from a functional equation

should be automatized (if possible…).

[Buchacher, Kauers, Pogudin 20(a)]

40 / 
43



Arbitrarily many catalytic variables

● Walks in ℕd with unit steps (0,…, 0, ± 1, 0, …, 0) :

D-finite
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Arbitrarily many catalytic variables

● Walks in ℕd with unit steps (0,…, 0, ± 1, 0, …, 0) :

D-finite

D-finite  [Gessel 90]

● Permutations with no ascending sub-sequence of length d+2 :

with
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Implicit kernels, implicit invariants

Example 2. Tutte’s coloured triangulations  (with u=x+1) :

Then

form a pair of invariants since 

Def. A pair of series (I(x),J(y)) is a pair of invariants if 

(I(x)-J(y))/K(x,y)

has poles of bounded order at x=0 and y=0.

42 / 
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Application: Kreweras’ walks in the quadrant

● The kernel:

● Explicit rational invariants from the kernel:

with
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Application: Kreweras’ walks in the quadrant

● The kernel:

● Explicit rational invariants from the kernel:

with

● Implicit invariants from the functional equation:

implies that the pair

satisfies
43 / 
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